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Frontiers of Planning

The goal is to be able to specify a task and have the planning 
system compute a sequence of actions to accomplish the task
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(Simplified) Planning Schema
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The goal is to be able to specify a task and have the planning 
system compute a sequence of actions to accomplish the task



Classic AI Planning
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Applications
 Robotics
 Decision making
 Resource handling
 Game playing
 Model checking …
Planners
 STRIPS [Stanford]
 Graphplan [CMU]
 Blackbox [AT&T Labs] …

Advantages
Effectively handles
 Large number of states and actions 
 Rich task models, e.g., reachability 

and temporal objectives

Limitations
 Discrete world 
 Finite set of discrete actions
 Difficult to design general controllers that can follow sequence of actions

Planning in a 
continuous setting?



Geometric Path Planning

Advantages
Effectively handles
 Collision avoidances
 High-dimensional continuous spaces

physical worldphysical robot task

world geometryrobot geometry goal placement

Geometric Path Planning

collision-free path

Controller
hardware 
commands

Applications
 Robotics
 Assembly
 Manipulation
 Character animation
 Computational biology …



Limitations of Geometric Path Planning

1. Geometric path planning ignores
 robot dynamics
 robot interactions with the environment
 external forces, e.g., friction, gravity

Geometric paths are 
difficult to follow

Planning with rich models of the robot and physical world?
Significantly increases problem complexity
Renders current planners computationally impractical

2. Current methods in geometric path planning cannot handle
 Temporal objectives: reach desired states w.r.t. a linear ordering of 

time, i.e., “A or B”  “A and B”  “B after A” “B next to A”
Example:

  “inspect all the contaminated areas, then visit one of the   
 decontamination stations, and then return to the base”

Planning with temporal objectives?
Significantly increases problem complexity
Currently possible only in a discrete setting 



Approach

Feasibility & progress estimation

Discrete Planning discrete plan

Motion Planning

planning problem: physical system, physical world, task
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Feasibility & progress estimation

rich-model solution

planning problem: physical system, physical world, task

discrete model

rich model

Discrete Planning
 Artificial Intelligence
 Computer Logic

Motion Planning
 Probabilistic Sampling
 Control Theory

synergic

combination

Rich Models
 Nonlinear Dynamics
 Physical Realism
 Hybrid Systems

Tasks
 Reachability
 Temporal objectives

Motion Planning

Feasibility & progress estimation

Discrete Planning discrete plan

Plaku, Kavraki, Vardi:
TRO05, ICRA07, RSS07 
CAV07, ICRA08, 
FMSD08 , TACAS08

SyCLoP: Synergic Combination of Layers of Planning
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 Motion Planning: Background & Related Work
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 Applications of SyCLoP to Motion Planning with

 Dynamics
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 Discussion



Motion-Planning Problem

S
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 Motion obeys physical constraints
 Accounts for system dynamics
 Accounts for interactions of the system with the world

Compute a trajectory
 ζ  : [0, T] → S
such that

1. ζ (0) = s0

2. INVALID(ζ (t)) = false, ∀ t ∈ [0, T] 

3. GOAL(ζ (T)) = true



Tree-Search Framework in Motion Planning

Search the state space S by growing 
a tree T rooted at the initial state s0

REPEAT UNTIL GOAL IS REACHED

1. Select a state s from T

2. Select a control u

3. Select a time duration t

4. Extend tree from s by applying 
    the control u for t time units
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snew
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Control Simulation



Related Work

 Probabilistic Roadmap Method PRM [Kavraki, Svestka, Latombe, Overmars ‘96]

 Obstacle based PRM [Amato, Bayazit, Dale ’98]

 Expansive Space Tree (EST) [Hsu et al., ‘97, ’00]

 Rapidly-exploring Random Tree (RRT) [Kuffner, LaValle ‘99, ‘01]

 Gaussian PRM [Boor, Overmars, van der Stappen ‘01]

 Single Query Bidirectional Lazy Tree (SBL) [Sanchez, Latombe ’01]

 Extended Execution RRT (ERRT) [Bruce, Veloso ’02]

 Guided Expansive Space Tree [Phillips et al. ’03]

 Random Bridge Building Planner [Hsu, Jiang, Reif, Sun ’03]

 Adaptive Dynamic Domain RRT (ADRRT) [Yershova et al., ‘04, ‘05]

 PDST [Ladd, Kavraki  ‘04, ’05]

 Utility-guided RRT [Burns, Brock ’07]

 Particle RRT [Nik, Reid ’07]

 GRIP [Bekris, Kavraki ’07]

 Multipartite RRT [Zucker et al., ‘07]

 …



Issues in Current Motion-Planning Approaches

On challenging motion-planning problems
 Exploration frequently gets stuck
 Progress slows down

Possible causes
(i) Exploration guided by limited information, such as  
    distance metrics and nearest neighbors

(ii) Lack of global sense of direction toward goal

(iii) Difficult to discover new promising directions toward goal 
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SyCLoP: Synergic Combination of Layers of Planning

Feasibility & progress estimation

Discrete Planning discrete plan

Motion Planning

planning problem: physical system, physical world, task

discrete model

rich model

rich-model solution



SyCLoP: Synergic Combination of Layers of Planning

Discrete Model 
 provides simplified high-level planning layer

 Decomposition of state 
space into regions

 Graph encodes adjacency of 
regions
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sequences of regions connecting initial to goal



SyCLoP: Synergic Combination of Layers of Planning

Discrete Plan
 sequence of regions connecting initial to goal
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SyCLoP: Synergic Combination of Layers of Planning

Core Loop
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Extend tree branches along regions 
specified by current discrete plan 



SyCLoP: Synergic Combination of Layers of Planning

Core Loop
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Motion Planning
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Update feasibility & progress estimation based on 
information gathered by motion planning

Feasibility & progress 
estimation



SyCLoP: Synergic Combination of Layers of Planning

Core Loop
Discrete 
Planning

discrete 
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Motion Planning

Compute new discrete plan based on 
updated feasibility/progress estimation

Feasibility & progress 
estimationinitial

goal



SyCLoP: Synergic Combination of Layers of Planning

Core Loop
Discrete 
Planning

discrete 
plan

Motion Planning

Extend branches along discrete plan &
updated feasibility/progress estimation

Feasibility & progress 
estimationinitial

goal



SyCLoP: Synergic Combination of Layers of Planning

Core Loop
Discrete 
Planning

discrete 
plan

Motion Planning

Repeat core loop until the search tree reaches a goal state

Feasibility & progress 
estimationinitial

goal

rich-model solution



SyCLoP: Synergic Combination of Layers of Planning

Discrete Planning
 Which discrete plan to select at each iteration? 
 Combinatorially many possibilities

 Estimate feasibility of including
   region R in plan

 Search problem on the 
   weighted discrete-model graph

R1 R2 R3 R4

R5 R6 R7 R8

R9 R10 R11 R12

goal

initial

Methodical 
Search

Greedy 
Search

Compute discrete plan 
as shortest path with 
high probability p Compute plan as random 

path with probability (1 – p)



SyCLoP: Synergic Combination of Layers of Planning

Motion Planning
 Discrete plan: σ = R1, R2, …, Rn

 Extend tree along discrete plan

REPEAT FOR A SHORT TIME
 Select region Ri from σ
 Select state s from Ri

 Extend branch from s

initial

goal



SyCLoP: Synergic Combination of Layers of Planning

Application: Motion Planning with Dynamics

RandomSlantedWalls
890 obstacles

WindingTunnels

Various workspace environments
 Tens to hundreds of obstacles
 Long narrow corridors
 Random obstacles
Uniform grid-based decomposition

RandomObstacles
278 obstacles

Misc

Various robot models
 First-order car
 Second-order car
 Second-order unicycle
 Second-order differential drive

Compared to
 RRT [LaValle, Kuffner ‘01]
 ADDRRT [Yershova et al., ‘05]
 EST [Hsu et al., ‘01]
 same math and utility functions
 same tree data structure
 same control parameters            
 same collision detector: PQP
 same hardware



SyCLoP: Synergic Combination of Layers of Planning

Application: Motion Planning with Dynamics

Second-order dynamics

Car [state = (x, y, θ, v, Φ)]
 u0, u1  – acceleration and steering velocity controls 

 x’ = v cos(θ); y’ = v sin(θ); 
   θ’ = v tan(Φ) / L;  v’ = u0; Φ’ = u1

Differential drive [state = (x, y, θ, wl, wr)]
 u0, u1  – left and right wheel acceleration controls 

 x’ = cos(θ )r(wl+wr)/2; y’ = sin(θ )r(wl+wr)/2; 
   θ’ = r(wr-wl)/L;  wl’ = u0; wr’ = u1

Unicycle [state = (x, y, θ, v, w)]
 u0, u1  – translational and rotational acceleration controls 

 x’ = r  v cos(θ); y’ = r v sin(θ); 
   θ’ = w;  v’ = u0; w’ = u1 



SyCLoP: Synergic Combination of Layers of Planning

Application: Motion Planning with Dynamics
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Up to two orders of 
magnitude speedup

Speedup becomes more 
pronounced as problem 
difficulty increases

[LaValle, Kuffner: 
’01-’08]



SyCLoP: Synergic Combination of Layers of Planning

Application: Motion Planning with Dynamics
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SyCLoP: Synergic Combination of Layers of Planning

Application: Motion Planning with Dynamics
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SyCLoP: Synergic Combination of Layers of Planning

Application: Motion Planning with Physics-based Simulations

 3D rigid body dynamics
 Wheels form friction contacts
 Torques are bounded

 Open-Dynamics Engine (ODE)
 Stewart-Trinkle model

 Accounts for system dynamics
   and interactions with the world



SyCLoP: Synergic Combination of Layers of Planning

Application: Motion Planning with Physics-based Simulations



SyCLoP: Synergic Combination of Layers of Planning

Application: Motion Planning with Physics-based Simulations



SyCLoP: Synergic Combination of Layers of Planning

Application: Motion Planning with Physics-based Simulations



SyCLoP: Synergic Combination of Layers of Planning

Application: Motion Planning with Linear Temporal Logic

 Temporal objectives: reach desired states w.r.t. a linear ordering of time, 
i.e., “A or B”  “A and B”  “B after A” “B next to A”

“After inspecting the contaminated 
areas C1 and C2 , visit the 
decontamination station D, and then 
return to one of the base stations B1 or 
B2”

s0

C2

DC1

B1

B2

 Propositions: π 1, π  2, …, π n

 Boolean operators: 
             & (and), | (or), ! (not)
 Temporal operators: 
            U (until),  G (always), 
            F (eventually), N (next)

{true, false}s ∈  S π  i

 O = ! (B1 | B2 | C1 | C2 | D)
 ψ 1 = C1 & ((C1 | O) U  C2 & ((C2 | O) U  ψ 3)) 
 ψ 2 = C2 & ((C1 | O) U  C1 & ((C1 | O) U  ψ 3))
 ψ 3 = D & ((D | O) U  (B1 | B2))

ψ  = O U  (ψ 1 |ψ 2)



Proposed Approach

Plaku, Kavraki, Vardi:
TRO05, ICRA07, RSS07 
CAV07, ICRA08, 
FMSD08 , TACAS09

Summary

Rich Models
 Nonlinear Dynamics
 Physical Realism
 Hybrid Systems

Tasks
 Reachability
 Temporal objectives

Effective motion planning for:

Discrete Planning
 Artificial Intelligence
 Computer Logic

Motion Planning
 Probabilistic Sampling
 Control Theory

synergic

combination

SyCLoP

OOPSMP www.cs.jhu.edu/~erion/Software.html
 Extensive publicly-available motion-planning 
  package for research or teaching robotics
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