Motion Planning with Dynamics, Physics-based Simulations, and Linear Temporal Objectives

Erion Plaku

Laboratory for Computational Sensing and Robotics
Johns Hopkins University

Frontiers of Planning

The goal is to be able to specify a **task** and have the planning system compute a **sequence of actions** to **accomplish** the task

(Simplified) Planning Schema

The goal is to be able to specify a **task** and have the planning system compute a **sequence of actions** to **accomplish** the task

Classic Al Planning

Advantages

Effectively handles

- Large number of states and actions
- Rich task models, e.g., reachability and temporal objectives

Limitations

- Finite set of discrete actions

Planning in a Discrete world continuous setting?

BLOCK WORLD

В

goal

sequence of

initial

move actions

Difficult to design general controllers that can follow sequence of actions

Geometric Path Planning

Applications

- Robotics
- Assembly
- Manipulation
- Character animation
- Computational biology ...

Advantages

Effectively handles

- Collision avoidances
- High-dimensional continuous spaces

Limitations of Geometric Path Planning

- 1. Geometric path planning ignores
- robot dynamics
- robot interactions with the environment
- external forces, e.g., friction, gravity

Geometric paths are difficult to follow

- 2. Current methods in geometric path planning cannot handle
- **Temporal objectives**: reach desired states w.r.t. a linear ordering of time, i.e., "A or B" "A and B" "B after A" "B next to A" Example:

"inspect all the contaminated areas, then visit one of the decontamination stations, and then return to the base"

Planning with rich models of the robot and physical world? Significantly increases problem complexity Renders current planners computationally impractical

Planning with temporal objectives?
Significantly increases problem complexity
Currently possible only in a discrete setting

Approach

Discrete Planning

- Artificial Intelligence
- Computer Logic

Motion Planning

- Probabilistic Sampling
- Control Theory

combination

Discrete Planning

- Artificial Intelligence
- Computer Logic

synergic Motion Planning

Probabilistic Sampling

Control Theory

Tasks

- Reachability
- Temporal objectives

Plaku, Kavraki, Vardi: TRO05, ICRA07, RSS07 CAV07, ICRA08, FMSD08, TACAS08

Rich Models

- Nonlinear Dynamics
- Physical Realism
- Hybrid Systems

Overview

- Motion Planning: Background & Related Work
- SyCLoP: Synergic Combination of Layers of Planning
- Applications of SyCLoP to Motion Planning with
 - Dynamics
 - Physics-based Simulations
 - Temporal Objectives
- Discussion

Motion-Planning Problem

false}

controls/actions

Control Simulation

Control

Space

U

Compute a trajectory

 ζ : [0, T] \rightarrow S such that

- 1. ζ (0) = s_0
- 2. $INVALID(\zeta (t)) = false, \forall t \in [0, T]$
- 3. $GOAL(\zeta(T)) = true$
- Motion obeys physical constraints
- Accounts for system dynamics
- Accounts for interactions of the system with the world

Tree-Search Framework in Motion Planning

Search the state space \mathbf{S} by growing a tree \mathbf{T} rooted at the initial state \mathbf{S}_{o}

REPEAT UNTIL GOAL IS REACHED

- 1. Select a state **s** from **T**
- 2. Select a control **u**
- 3. Select a time duration **t**
- 4. Extend tree from **s** by applying the control **u** for **t** time units

Control Simulation

Related Work

- Probabilistic Roadmap Method PRM [Kavraki, Svestka, Latombe, Overmars '96]
- Obstacle based PRM [Amato, Bayazit, Dale '98]
- Expansive Space Tree (EST) [Hsu et al., '97, '00]
- Rapidly-exploring Random Tree (RRT) [Kuffner, LaValle '99, '01]
- Gaussian PRM [Boor, Overmars, van der Stappen '01]
- Single Query Bidirectional Lazy Tree (SBL) [Sanchez, Latombe '01]
- Extended Execution RRT (ERRT) [Bruce, Veloso '02]
- Guided Expansive Space Tree [Phillips et al. '03]
- Random Bridge Building Planner [Hsu, Jiang, Reif, Sun '03]
- Adaptive Dynamic Domain RRT (ADRRT) [Yershova et al., '04, '05]
- PDST [Ladd, Kavraki '04, '05]
- Utility-guided RRT [Burns, Brock '07]
- Particle RRT [Nik, Reid '07]
- GRIP [Bekris, Kavraki '07]
- Multipartite RRT [Zucker et al., '07]
- **-** ...

Issues in Current Motion-Planning Approaches

On challenging motion-planning problems

- Exploration frequently gets stuck
- Progress slows down

Possible causes

- (i) Exploration guided by limited information, such as distance metrics and nearest neighbors
- (ii) Lack of global sense of direction toward goal
- (iii) Difficult to discover new promising directions toward goal

Overview

- Motion Planning: Background & Related Work
- SyCLoP: Synergic Combination of Layers of Planning
- Applications of SyCLoP to Motion Planning with
 - Dynamics
 - Physics-based Simulations
 - Temporal Objectives
- Discussion

Discrete Model

provides simplified high-level planning layer

- Decomposition of state space into regions
- Graph encodes adjacency of regions

discrete plans: sequences of regions connecting initial to goal

Discrete Plan

sequence of regions connecting initial to goal

Extend tree branches along regions specified by current discrete plan

Update feasibility & progress estimation based on information gathered by motion planning

goal

Core Loop

Compute new discrete plan based on updated feasibility/progress estimation

Core Loop

Extend branches along discrete plan & updated feasibility/progress estimation

Core Loop

Repeat core loop until the search tree reaches a goal state

Discrete Planning

Which discrete plan to select at each iteration?

Greedy

Search

- Combinatorially many possibilities
- Estimate feasibility of including region R in plan

Search problem on the weighted discrete-model graph

Compute discrete plan as shortest path with high probability p

Motion Planning

- Discrete plan: $\sigma = R_1, R_2, ..., R_n$
- Extend tree along discrete plan

REPEAT FOR A SHORT TIME

- Select region R_i from σ
- Select state s from R_i
- Extend branch from s

Application: Motion Planning with Dynamics

Various workspace environments

- Tens to hundreds of obstacles
- Long narrow corridors
- Random obstacles

Uniform grid-based decomposition

Misc

RandomObstacles 278 obstacles

WindingTunnels

RandomSlantedWalls 890 obstacles

Various robot models

- First-order car
- Second-order car
- Second-order unicycle
- Second-order differential drive

Compared to

- RRT [LaValle, Kuffner '01]
- ADDRRT [Yershova et al., '05]
- EST [Hsu et al., '01]
- same math and utility functions
- ⇒ same tree data structure
- ⇒ same control parameters
- same collision detector: PQP
- ⇒ same hardware

Application: Motion Planning with Dynamics

Second-order dynamics

```
Car [state = (x, y, \theta, v, \phi)]
```

- u_0 , u_1 acceleration and steering velocity controls
- $x' = v \cos(\theta)$; $y' = v \sin(\theta)$; $\theta' = v \tan(\Phi) / L$; $v' = u_0$; $\Phi' = u_1$

Differential drive [state = (x, y, θ, w_l, w_r)]

- u_0 , u_1 left and right wheel acceleration controls
- $x' = cos(\theta) r(w_l + w_r)/2; \ y' = sin(\theta) r(w_l + w_r)/2;$ $\theta' = r(w_r - w_l)/L; \ w_l' = u_0; \ w_r' = u_1$

Unicycle [state = (x, y, θ, v, w)]

- \blacksquare u_0 , u_1 translational and rotational acceleration controls
- $x' = r \ v \cos(\theta)$; $y' = r \ v \sin(\theta)$; $\theta' = w$; $v' = u_0$; $w' = u_1$

Application: Motion Planning with Dynamics

Application: Motion Planning with Dynamics

Application: Motion Planning with Dynamics

Up to two orders of magnitude speedup

Speedup becomes more pronounced as problem difficulty increases

Application: Motion Planning with Physics-based Simulations

- 3D rigid body dynamics
- Wheels form friction contacts
- Torques are bounded
- Open-Dynamics Engine (ODE)
- Stewart-Trinkle model

Accounts for system dynamics and interactions with the world

Application: Motion Planning with Physics-based Simulations

Application: Motion Planning with Physics-based Simulations

Application: Motion Planning with Physics-based Simulations

Application: Motion Planning with Linear Temporal Logic

■ **Temporal objectives**: reach desired states w.r.t. a linear ordering of time, i.e., "A or B" "A and B" "B after A" "B next to A"

"After inspecting the contaminated areas C_1 and C_2 , visit the decontamination station D, and then return to one of the base stations B_1 or B_2 "

Propositions: $\pi_1, \pi_2, ..., \pi_n$

$$s \in S \longrightarrow \pi$$
 ; π ; π

Boolean operators:

Temporal operators:

F (eventually), **N** (next)

$$\psi = O U (\psi_1 | \psi_2)$$

- $O = ! (B_1 | B_2 | C_1 | C_2 | D)$
- $\Psi_1 = C_1 \& ((C_1 | O) U C_2 \& ((C_2 | O) U \Psi_3))$
- $\Psi_2 = C_2 \& ((C_1 | O) U C_1 \& ((C_1 | O) U \Psi_3))$
- $\psi_3 = D \& ((D | O) U (B_1 | B_2))$

Summary

SyCLoP

Discrete Planning

- Artificial Intelligence
- Computer Logic

synergic combination

Motion Planning

- Probabilistic Sampling
- Control Theory

Effective motion planning for:

Tasks

- Reachability
- Temporal objectives

Plaku, Kavraki, Vardi: TRO05, ICRA07, RSS07 CAV07, ICRA08, FMSD08, TACAS09

Rich Models

- Nonlinear Dynamics
- Physical Realism
- Hybrid Systems

OOPSMP www.cs.jhu.edu/~erion/Software.html

 Extensive publicly-available motion-planning package for research or teaching robotics

