Medical Image Synthesis Methods and Applications

Jerry L. Prince

with Aaron Carass, Snehashis Roy, Amod Jog, Dzung Pham,and Junghoon Lee

JOHNS HOPKINS WHITING SCHOOL

MR Intensity Scale is Arbitrary

SPGR

MPRAGE

- This causes problems in most postprocessing methods
 - Inconsistency or algorithm failure

WHITING SCHOOL of Engineering

Joint Histogram

SPGR-MPRAGE Joint Histogram (Log color scale)

3 T Philips MPRAGE

WHITING SCHOOL of ENGINEERING

Problem With Histogram Matching

Target

Subject

Histogram Matched Subject

WHITING SCHOOL of ENGINEERING

Tissue Classification Result

Tissue Classified

Correct classification

Histogram Matched

Original

This result yields an underestimation of CSF

WHITING SCHOOL of ENGINEERING

MRI Has Multiple Tissue Contrasts

T1-w

T2-w

- Uses:
 - Ideal for visualization of certain anomalies
 - Helps in intersubject registration
- Problems:
 - A pulse sequence/image contrast can be missing
 - Desired image can be corrupted or have low resolution

Joint Histogram

T₂w-MPRAGE Joint Histogram (Log color scale)

3 T MPRAGE

WHITING SCHOOL of ENGINEERING

Image Synthesis Framework

MIMECS SYNTHESIS METHOD

<u>MR</u> <u>IM</u>age <u>E</u>xamplar-based <u>C</u>ontrast <u>Synthesis</u>

WHITING SCHOOL IM of ENGINEERING CO

MIMECS and Sparsity

- Choose one patch?
 - Probably not quite a good match to the subject
- Combine many patches?
 - Any one (bad) patch can spoil the combination
- It is best to use sparsity:
 - Find a small number of patches that will reconstruct the subject patch
 - Use the same coefficients to reconstruct the synthetic patch

Synthetic T2

WHITING SCHOOL of ENGINEERING

The MIMECS Atlas

Subject

Target

An overcomplete patch dictionary

The MIMECS Algorithm

WHITING SCHOOL of ENGINEERING

Sparse Reconstruction

- The reconstruction should closely match the subject patch b₁(j)
- The coefficients in x(j) should be sparse
- L2-L1 reconstruction:

$$\hat{\mathbf{x}}(j) = \arg\min_{\mathbf{x}} \{ \|\mathbf{b}_1(j) - A_1\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1 \}$$

Reconstruct the Patch in A₂

 Reconstruct A₂ patch using corresponding patches and the same sparse coefficients

$$\hat{\mathbf{b}}_2 = A_2 \mathbf{x}$$

WHITING SCHOOL of ENGINEERING

A Few "Tricks"

- Use kd-tree to reduce the size of A₁
 - Use L_2 similarity
 - Rapidly finds roughly 100 patches
- We have also explored dictionary learning
- Use +1 higher dimension to normalize patches
 - Dictionary elements should have unit norm
 - If patch dimension = n-1
 - Project to sphere in Rⁿ

WHITING SCHOOL of Engineering

Example 1: Longitudinal Analysis

JOHNS HOPKINS

WHITING SCHOOL of ENGINEERING

Example 1: Longitudinal Analysis

GM VOLUME

JOHNS HOPKINS

WHITING SCHOOL

of ENGINEERING

Example 2: High Res T2 Synthesis

Brainweb atlas. Both images are high-resolution

Subject SPGR

Nonlocal means superresolution reconstruction

MIMECS synthesized superresolution image

WHITING SCHOOL of ENGINEERING

GENESIS SYNTHESIS METHOD

Generative Sub-Image Synthesis

WHITING SCHOOL IMAC of ENGINEERING COMM

Gaussian Observation Model

 Suppose each subject patch x_i originates from a single atlas patch y_j as a Gaussian random vector

$$\mathbf{f}_{ij} = \mathbf{x}_i - \mathbf{y}_j$$

JOHNS HOPKIN

• Then

$$p(\mathbf{x}_i; \mathbf{y}_j, \Sigma_j) = \frac{1}{\sqrt{(2\pi)^n |\Sigma_j|}} \exp\left\{-\frac{1}{2}\mathbf{f}_{ij}^T \Sigma_j^{-1} \mathbf{f}_{ij}\right\}$$

WHITING SCHOOL of ENGINEERING

Sparsity-2 Model Is Better

 Suppose each subject patch x_i originates from two atlas patches y_j and y_k as a Gaussian random vector

• Let
$$t = \{j, k\}$$
 and

$$\mathbf{y}_{j}$$

Atlas A₁ patches
 \mathbf{x}_{i}
 \mathbf{y}_{k}
Subject patch

$$\mathbf{f}_{it} = \mathbf{x}_i - (\alpha_{it}\mathbf{y}_j + (1 - \alpha_{it})\mathbf{y}_k)$$

JOHNS HOPKINS

• Then

$$p(\mathbf{x}_i; \mathbf{y}_j, \mathbf{y}_k, \Sigma_t, \alpha_{it}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma_t|}} \exp\left\{-\frac{1}{2}\mathbf{f}_{it}^T \Sigma_t^{-1} \mathbf{f}_{it}\right\}$$

WHITING SCHOOL

of ENGINEERING

What about the Second Modality?

- Assume the same convex $\mathbf{g}_{it} = \mathbf{u}_i - (\alpha_{it}\mathbf{v}_j + (1 - \alpha_{it})\mathbf{v}_k)$ combination
- Assume independence

$$p(\mathbf{f}, \mathbf{g}, \mathbf{z} | \boldsymbol{\Theta}) = K \prod_{t \in \Psi} \prod_{i=1}^{N} \left[\frac{1}{\sigma_{1t} \sigma_{2t}} \exp\left\{ -\frac{\|\mathbf{f}_{it}\|^2}{2\sigma_{1t}^2} \right\} \exp\left\{ -\frac{\|\mathbf{g}_{it}\|^2}{2\sigma_{2t}^2} \right\} \right]^{z_{it}}$$

of ENGINEERING

COMMUNICATIONS LAB

ML Estimation using EM Algorithm

EM algorithm iteratively estimates

$$\Theta^{(m)} = \{\sigma_{1t}^{(m)}, \sigma_{2t}^{(m)}, \alpha_{it}^{(m)}; i = 1, \dots, N, \forall t\}$$

• The E-step computes

$$w_{it} = E[z_{it}|\mathbf{f}, \mathbf{g}, \mathbf{\Theta}^m]$$

- The M-step maximizes likelihood w.r.t. Θ
- Patches are synthesized using

$$\hat{\mathbf{u}}_i = E[\mathbf{u}_i | \boldsymbol{\Theta}^{(m)}] = \sum_{t \in \Psi} w_{it}^{(m)} \left(\alpha_{it}^{(m)} \mathbf{v}_j + (1 - \alpha_{it}^{(m)}) \mathbf{v}_k \right)$$

• They are linear combination of small number of atlas patches

VHITING SCHOOL of Engineering

Experiment 3: Intensity Normalization

Subject (α = 20°)

Normalized

to α = 30°

Subject (α = 30°)

SPGR images with different tip angles

11/5/2015

WHITING SCHOOL of Engineering

Experiment 4: MR to CT Image Synthesis

- CT is needed for
 - Surgical planning
 - PET reconstruction
- Sometimes not acquired
 - Avoid dose
 - Not standard of care
 - PET/MR scanners
- Acquire two ultrashort TE MR (UTE) scans; atlas also has CT
- Compared to other methods, GENESIS is far superior

WHITING SCHOOL of ENGINEERING

REPLICA SYNTHESIS METHOD

Regression Ensembles with Patch Learning for Image Contrast Agreement

Replica Uses a Regression Framework

Feature vector at **x**: $\mathbf{f}(\mathbf{x})$

Image value at **x**: $a(\mathbf{x})$

Source Images

Target Image

Given a training atlas learn ${\cal A}$ such that:

 $a(\mathbf{x}) \approx \mathcal{A}\{\mathbf{f}(\mathbf{x})\}$

WHITING SCHOOL of Engineering

Building a Single Regression Tree

JOHNS HOPKINS

How to Create a Random Forest

- Train 60 regression trees:
 - At each nodal split, consider a random one third of the feature elements
 - Minimize the least squares criterion for these features
 - Recursively partition until there are no fewer than 5 training samples remaining in each leaf node
 - Average each leaf node

- To start, each tree uses bootstrapped training data (patches):
 - Training data are ~10⁵
 patches from 5 subjects
 - Sampled from all patches (with replacement)
- Training time is approximately 20 minutes

How to Use a Random Forest

- Processing subject images
 - White matter peak normalize all images
 - Form patches and append into feature vectors

- Subject patches
 - Apply to each tree
 - Trace through each tree until hits leaf node
 - Average all leaf nodes to create synthetic image value
- Synthesis takes approximately 1 minute

Patch + Context + Multiscale Features

- Coarse-to-fine process:
 - Synthesize at coarsest level
 - Upsample
 - At next finer level, augment features with coarser synthetic value

WHITING SCHOOL IMAG of ENGINEERING COMM

Experiment 5: Synthetic FLAIR Images

T1-w

Synthetic FLAIR

- Subject images include T1w, T2w, PDw
- Atlas images include T1w, T2w, PDw

True FLAIR

WHITING SCHOOL of Engineering

Synthetic FLAIR: Saving a "Bad" Dataset

True FLAIR + Lesion TOADs seg.

Synth. FLAIR + Lesion TOADs seg.

WHITING SCHOOL I of ENGINEERING C

Experiment 6: Synthesis with Skull

- T1 \rightarrow T2 problematic due to intensity ambiguity
- T1-T2 Histogram:

Experiment 6: T2 Synthesis with Skull

• Context features and multiscale are critical

MPRAGE (Subject)

T2 (Synthetic)

T2 (Actual)

WHITING SCHOOL of ENGINEERING

Experiment 7: Intrasubject Registration Intrasubject T1w **>** T2-w deformable registration

Rigid NMI

JOHNS HOPKINS

T1 → T2 NMI $[nT1, sT2] \Rightarrow [sT1, nT2]$ CC

PSI-CLONE

Pulse sequence information-based contrast learning on neighborhood ensembles

"Chicken and Egg" Problem

- The subject image must "match" an atlas image
 - In not, cannot choose good patches
- How to make subject image "match" the atlas?
 - Use MIMECS, GENESIS, or REPLICA ☺
- But this requires a matching atlas image
 - Uh oh... 😕

WHITING SCHOOL of Engineering

PSI-CLONE Framework

- Estimate subject pulse sequence parameters
 - E.g., TR, α , TE
- Synthesize a new *atlas* image *a* using pulse
 sequence parameters and
 atlas quantitative maps
- Atlas quantitative mapsImage: State of the state

- Use REPLICA training phase to learn a regression from *a* to the desired atlas contrast
- Use REPLICA synthesis process to synthesize a new subject image with the desired contrast

Atlas images

T1w WHITING SCHOOL of ENGINEERING

IMAGE ANALYSIS AND COMMUNICATIONS LAB

PDw

T2w

Estimating Pulse Sequence Parameters

- Underlying tissue properties $\beta(\mathbf{x}) = [P_D(\mathbf{x}), T_1(\mathbf{x}), T_2(\mathbf{x})]$
- Assume 3 unknown pulse sequence parameters,

e.g.,

$$\boldsymbol{\Theta} = [T_E, T_R, \alpha]$$

Imaging equations

 $b_i(\mathbf{x}) = \Gamma_i(\boldsymbol{\beta}(\mathbf{x}); \boldsymbol{\Theta}_i)$

• Average tissue parameters in CSF, GM, and WM

$$ar{oldsymbol{eta}}_C = ar{oldsymbol{eta}}_G = ar{oldsymbol{eta}}_W$$

 Carry out 3-class classification of brain

 $\bar{b}_{iC} = \Gamma_i(\bar{\boldsymbol{\beta}}_C; \boldsymbol{\Theta}_i)$ $\bar{b}_{iG} = \Gamma_i(\bar{\boldsymbol{\beta}}_G; \boldsymbol{\Theta}_i)$ $\bar{b}_{iW} = \Gamma_i(\bar{\boldsymbol{\beta}}_W; \boldsymbol{\Theta}_i)$

• Solve for Θ

VHITING SCHOOL IN of ENGINEERING CO

Experiment 8: BrainWeb Simulation

- Use quantitative maps from brainweb phantom
- Use Brainweb to synthesize a subject image: b
- Carry out Psi-CLONE on the subject to get an "atlas" image *a* with subject tissue contrast

JOHNS HOPKINS

• Result:

Experiment 9: WM Volume Stability

- Normal human imaged weekly on the same scanner for 9 weeks
- Atlas (different subject):
 - MPRAGE (TR=10.3ms, TE=6ms)
 - Quantitative T1, T2, PD

JOHNS HOPK

 Run Psi-CLONE to compute normalized MPRAGE images

- Segment MPRAGE images using TOADS
- Compute relative WM volume (w.r.t. ICV)
- Result:

of ENGINEERING

COMMUNICATIONS LAB

11/5/2015

Summary

- Different methods for image synthesis based on patches:
 - MIMECS
 - GENESIS
 - REPLICA
 - Psi-CLONE
- Many potential applications:
 - Improve consistency of classification/segmentation
 - Stabilize longitudinal analysis
 - Generate high resolution alternative contrasts
 - Enhance abnormal features (e.g., lesions)
 - Improve cross modal registration
 - Reduce artifacts

HITING SCHOOL of Engineering

Acknowledgements

- People:
 - Snehashis Roy
 - Aaron Carass
 - Amod Jog
 - Dzung Pham
 - Junghoon Lee

- Funding:
 - NIH/NIBIB 1R21EB012765
 - NIH/NINIB 1R01EB017743
 - NIH/NINDS 5R01NS070906

QUESTIONS?

11/5/2015

45

COMMUNICATIONS LAB