
Worm Evolution Tracking via Timing Analysis

Moheeb Abu Rajab Fabian Monrose Andreas Terzis
Computer Science Department

Johns Hopkins University
{moheeb,fabian,terzis}@cs.jhu.edu

ABSTRACT
We present a technique to infer a worm’s infection sequence from
traffic traces collected at a network telescope. We analyze the fi-
delity of the infection evolution as inferred by our technique, and
explore its effectiveness under varying constraints including the
scanning rate of the worm, the size of the vulnerable population,
and the size of the telescope itself. Moreover, we provide guidance
regarding the point at which our method’s accuracy diminishes be-
yond practical value. As we show empirically, this point is reached
well after a few hundred initial infected hosts (possibly including
“patient zero”) has been reliably identified with more than 80% ac-
curacy. We generalize our mechanism by exploiting the change in
the pattern of inter-arrival times exhibited during the early stages
of such an outbreak to detect the presence and approximate size of
the hit-list. Our mechanism is resilient to varying parameters like
the worm scanning rate and the size of the vulnerable population,
and can provide significant insights into the characteristics of the
hit-list even under spreading dynamics that exceed that of currently
known worms. Lastly, to illustrate the practicality of our solution,
we apply our approach to real-world traces of the Witty worm and
provide a refined estimate on the previously suspected hit-list size.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Invasive Soft-
ware

General Terms
Security, Measurement

Keywords
network security, Internet worms, methods of attribution

1. INTRODUCTION
Worm outbreaks are security events that occur with relatively

low frequency, but when they do occur, they can have significant
impact on daily network operations. This ever-present threat of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORM’05, November 11, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-229-1/05/0011 ...$5.00.

severe network disruption has been the motivating factor behind
most, if not all, research on practical strategies for worm detection
and containment ( see [11, 16, 18, 20, 21] ). There is, however, one
desirable aspect of research that falls under the general umbrella
of worm mitigation that has received far less attention in the past,
namely back-tracking the evolution of a worm outbreak. In fact,
thus far there has been little progress in the design and analysis of
effective strategies for discovering the sequence with which a worm
infected its victims. Even for worms that exhibit uniform scanning
behavior, uncovering this sequence is a daunting task, but one that
provides invaluable information. For one, doing so has direct prag-
matic implications as it allows network operators to pinpoint the
initial set of infected machines, thereby gleaning potentially useful
forensic evidence.
Unfortunately, to date there have been few proposals for retrac-

ing the steps of a worm infection. Xie et al. offered a randomized
approach that traces the origin of a worm attack by performing a
random walk over the hosts contact graph [23]. The graph is gen-
erated by collecting traffic traces containing the list of hosts that
contacted other potential victims during the worm’s propagation.
While this approach can provide a wealth of information about
the worm’s evolution, most notably, the who-infected-whom tree
and patient zero (i.e., the initial victim), it requires traffic traces on
a global scale to reconstruct the evolution of a large scale event.
A different approach was suggested more recently by Kumar et.
al. [8] where the Witty worm [15] was reverse engineered to re-
cover the random scanning algorithm and corresponding initial seeds.
Given knowledge of the target selection algorithm, the sequence of
scans could be re-enacted to provide a detailed view of the worm’s
evolution, and also provide insights into characteristics of the in-
fected hosts. However, although the information required for this
approach (i.e., the payload) can be recovered locally, the mecha-
nism can not be easily generalized to other worms, since each in-
stance will have to undergo the same, possibly arduous, task of
reverse-engineering.
In this paper, we address these limitations by exploring a differ-

ent, and we believe more general, approach whereby we can infer
the infection evolution from the history of worm scans seen at a
network telescope [9]. Intuitively, if probes from an infected source
arrive at the monitor1 before scans from a different infected host,
we can infer that the first host was infected before the latter one.
However, factors such as the randomness inherent in the scanning
process, the telescope size relative to the vulnerable population size
as well as the stage of the worm propagation compound the issue
of reliably inferring the evolution. Moreover, as the time difference
between contacts at the telescope decreases, it becomes increas-
ingly difficult to detect the actual infection sequence. Nonetheless,

1We use the terms monitor and network telescope interchangeably.



we show that while the approach suggested here is relatively sim-
ple, it does lead to tangible results.
Our contributions in this paper are twofold. First, we provide

an analytical model that expresses the fidelity of the infection evo-
lution generated by the monitor as a function of the size of the
vulnerable population, the size of the monitor, and the worm scan-
ning rate. We validate the accuracy of our model using simulations
under varying conditions. We argue that such simulations are nec-
essary, as they are the only prudent method to accurately obtain the
exact worm evolution and compare it against the one generated by
the monitor. The results of our analysis are encouraging and they
show that our technique is highly accurate in determining the initial
set of infected hosts—including possibly identifying patient zero.
Second, we provide a similarly intuitive approach for detecting the
presence and size of a hit list. We do so solely on information
gained by exploiting the change in the pattern of inter-arrival times
exhibited during the early stages of a worm outbreak. We apply our
technique to real-world traces of the Witty Worm [22] and show
that it can reliably detect the existence and the size of the hit-list.
The rest of the paper is organized as follows: We present an

overview of our techniques and analyze the accuracy of the tele-
scope’s view of the infection in Section 2. In Section 3 we evaluate
the accuracy of the infection sequence provided by our method to
the actual sequence through simulations. Section 4 explains how
the existence and size of a potential list can be detected. We present
previous work in Section 5 and conclude in Section 6.

2. ANALYTICAL MODEL
Our methodology exploits two invariant properties of worm be-

havior, namely that (i) worms spread by actively scanning the IP
space2 at random looking for vulnerable hosts to infect (see [3, 4,
10] for examples of past scanning worms) and (ii) worm spread-
ing follows the classical characteristics of pathogen spreading in
a fixed population — the worm onset starts with a slow spreading
rate followed by a dramatic rise in the rate of infection after enough
hosts have been infected [6]. With these invariants in mind, we es-
timate the initial worm evolution sequence and identify patient zero
(or any initial hit list) by observing the order of scans and the pat-
tern of inter-arrival times between successive first scans arriving at
a network telescope.
The telescope’s ability to correctly reconstruct the evolution se-

quence, relies however on a number of key elements including the
telescope’s size, the scanning rate of the worm, and the size of the
vulnerable population. Here, we quantify the accuracy between the
sequence generated from the point of view of a network telescope
to the actual infection sequence of a simulated worm, and evalu-
ate the extent to which the telescope can accurately reproduce this
sequence.
In order to do so, we first need to distinguish between two pri-

mary quantities, namely, the average time to infect a new host,
which we denote as Tin, and Td, the time taken by the telescope
to detect (with a particular confidence level α) a newly infected
host. In general, with few scanners during the initial stages of the
infection, the time to infect a new host will be relatively large com-
pared to the time it takes any infected host to send its first scan to
the telescope. Therefore, with high likelihood, a newly infected
host will send at least one scan to the telescope before the worm
is able to infect additional vulnerable hosts. The general idea we

2To be accurate, the class of scanning worms from the taxonomy
proposed in [19] propagate by active probing. Our analysis is
nonetheless relevant since the majority of worms observed in the
wild so far are scanning worms

V Total number of vulnerable hosts
ni Number of infected nodes at time step i
s Average scan rate (scans/time step)

per infected node
M The size of the telescope address space
Tin The average time elapsed before subsequent

infections from the vulnerable population
Pj The probability of infecting at least one

new host at time j
RT The number of trials needed in order to

contact the telescope (at confidence level α)
Td Time to detect (with α confidence) at least

one scan from a worm instance
pe Probability that more than one host is detected

within detection window Td

YB→A Weighted similarity between sorted sets B and A
r(i,B) The rank of element i in sorted set B

m The length of the range over which the similarity
between sets B and A is computed

Table 1: Notation.

explore here (as shown in Figure 1) is that by observing the first
scan from each unique source at the telescope, we can infer a close
estimate of the actual worm initial infection sequence. The accu-
racy of this estimate, however, deteriorates as the worm progresses
and Tin approaches or becomes less than Td. However, as we show
later, significant degradation in accuracy occurs long after we infer
the initial worm evolution sequence with high confidence.
Determining the presence (and size) of a hit list is accomplished

by a similar straightforward conjecture — i.e., the inter-arrival pat-
tern of hosts from this list contacting the telescope should exhibit
different pattern compared to the inter-arrivals of hosts infected as
the worm propagates. As we show in Section 4, when a hit list is
used, the change in the inter-arrival pattern of new infected hosts
exhibited near the onset of the worm spreading allows us to pin-
point the size of that list.
In what follows, we quantify both Tin and Td then compute the

likelihood of reconstructing the correct infection sequence at the
telescope. To simplify the analysis we assume a constant scanning
rate among all infected hosts. This assumption may be reasonable
for TCP-based worms [12, 17, 24] where the scanning rate is lim-
ited by network delay rather than bandwidth. On the other hand,
the scanning rate of UDP-based worms depends heavily on the link
bandwidth and therefore exhibits significantly more inhomogeneity
as shown by Witty [15]. We explore the effect of this inhomogene-
ity in Section 3.
The notation we use in the remainder of the paper is summarized

in Table 1.

2.1 Infection and Detection Times
Consider a uniform scanning worm spreading with a per host

scanning rate s over a vulnerable population of size V . We use a
discrete time model in our analysis, following the model presented
in [5]. In this model, the number infected hosts ni, at the end of the
i-th time step is given by:

ni = ni−1 + (V − ni−1)

"
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#

(1)

where R is the total number of scans sent by the ni−1 infected
hosts. The second term in Eq.(1) represents the increase in the
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Figure 1: The view of the infection series order as seen by the telescope compared to the actual infection. When Tin is greater than
Td the telescope’s view of the infection series will be very similar to the actual series. However, as Tin approaches Td (i.e., as the
worm spreads), the probability of mis-classifying the series order grows accordingly.

number of infected hosts. To compute the time Tin necessary to
infect one additional host, we set this term to one:

(V − ni−1)
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Solving Eq.(2) for Tin, we have:
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In computing the detection time by the telescope, rather than
considering the average case, we are concerned with the point at
which we can judge with confidence α that a newly infected host
has indeed been detected by the telescope. The probability α that
at least one scan from the host will reach the telescope from RT

scans is:

α = 1 −
„

1 − M
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«RT

(4)

Solving Eq.(4) for RT we get:

RT =
log(1 − α)

log
`
1 − M
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´ (5)

and therefore, the time Td = RT /s, where s is the average scan-
ning rate.

2.2 Telescope Accuracy
The relation between Td and Tin defines the telescope’s ability

to reconstruct the actual sequence of the worm evolution. When
Tin > Td, the latest infected host will be detected with high likeli-
hood by the telescope before any infected node is able to infect ad-
ditional hosts from the vulnerable population. Therefore, the order
of unique infected sources detected by the telescope will be close to
the actual worm infection sequence. On the other hand, when Tin

approaches or becomes lower than Td, it is likely that more hosts
will be infected within Td, and these hosts may be detected out of
order, thereby causing lower correspondence between the infection
sequence observed at the telescope and the actual worm evolution.

To provide a measure of this degradation in accuracy between
the two views, we compute the probability Pe that more that one
infected hosts are detected by the telescope within the detection
time Td.

Actual Infections

Scans arrivingTd

at the telescope

T 2
inT 1

in

i3i2i1

Figure 2: When Tin < Td it is possible for the telescope to see
a scan from hosts i2 and i3 that were infected after i1 before it
sees a scan from i1.

Figure 2 provides a visual example of this scenario. Considering
the previous discussion, it is clear that if Td < Tin, then Pe = 0
since i1 will be detected by the telescope before the next host is
infected. On the other hand, if Td > Tin it is possible that a host
infected after i1 will scan the telescope first. From Figure 2, we can
see that the probability that none of the (Td − T 1

in) · s scans from
i2 arrive at the telescope is:

Prob[ i2 is undetected] =

„
1 − M

232

«(Td−T1
in)·s

(6)

Similarly, the probability that i3 will not be detected is:

Prob[ i3 is undetected] =

„
1 − M

232

«(Td−T1
in−T2

in)·s
(7)

Pe is then the probability that at least one of the n hosts infected
within time Td from the first host in the sequence (i1 in the figure),
sends at least one scan to the telescope, therefore:



Number of Vulnerable hosts 12,000
Average scanning rate per infected host (s) 350 scans/tick
Size of initial Hit List 1
Scanning Algorithm Uniform
The telescope detection confidence α 95%
Network Delay µ = 50 ms
(Normally distributed) σ = 20 ms

Table 2: Simulation Parameters .
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3. EVALUATION
In the remainder of the paper we validate the analytical model

presented in Section 2 via simulation. The simulator we built al-
lows us to simulate worms spreading over populations of vulnera-
ble hosts of different size and density. It is also possible to simulate
worms with different scanning rates and target selection strategies.
In the following experiments, unless otherwise specified, we use

the simulation parameters from Table 2. We later vary these param-
eters to show their impact on the accuracy of the monitor’s view.

3.1 Time to Infect and Time to Detect
To validate the correctness of our approach in inferring the worm

evolution sequence, we first present the inter-arrival time of newly
infected sources (i.e. Tin) as a function of time. In Figure 3, we plot
the average time to infect Tin (see Eq.3) as a function of the number
of infected hosts. The horizontal line shows the detection time (Td)
for a /8 telescope of a worm instance with an average scanning rate
of 350 scans per second. Note that since we are concerned with
detecting scans from unique infected hosts, Td remains constant
regardless of the worm’s progress. Tin, on the other hand, varies as
a function of the worm’s propagation. The dots on Figure 3 depicts
the time to infect for a simulated worm with the parameters listed in
Table 2. While the simulation shows some variability (attributable
to the randomness in node selection), it is evident that the analytical
model accurately predicts the overall inter-arrival trend.
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Figure 3: Tin as a function of the simulation parameters given
in Table 2.
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Figure 4: Probability that more than one host is infected and
detected within Td.

We show in Figure 4 how the probability Pe (cf. Eq.(8)) that
more than one hosts is infected and detected within Td changes as
the number of infected hosts increases. As the graph illustrates,
during the initial infection stages the probability that the worm in-
fects any additional host within the telescope’s detection time re-
mains negligible. However, as the number of scanners increases,
the time to infect a new host decreases and in doing so increases
the likelihood of detecting more than one infected host within Td.
Not surprisingly, at this point the telescope’s capability of inferring
the actual worm evolution will start to deteriorate. We point out
that Pe starts to grow in Figure 4 when about 400 hosts have been
infected which is also the same point in Figure 3 when Tin ≈ Td.

3.2 Worm Evolution Similarity
We now evaluate the ability of telescopes to accurately estimate

the evolution of a worm infection including the identification of
patient zero. Specifically, we assess the sensitivity of the method
presented in the previous section to the following factors: the size
of the vulnerable population, the telescope size, and the worm scan-
ning rate.
We view the actual worm evolution sequence as a sorted list of

IP addresses A = {a1, a2, . . . , am} where host ai was infected
before host aj if i < j. Similarly, the sequence generated by the
telescope is (a possibly different) set B. The similarity of set B to
set A can then be expressed as:

YB→A =

mX
i=0

`
m − r(ei,A)

´
1 + |r(ei,B) − r(ei,A)| (9)

where,m is the maximum rank over which we compute the similar-
ity between the two sets. ei is the ith element in set A and r(ei,B)

is the rank of element ei in set B created by the telescope.
A few points are worth mentioning regarding Eq. (9): First, by

varying the maximum rankm we can calculate the similarity of the
two lists for different subsets of A and B and therefore assess the
accuracy of the telescope view at different stages of the infection.
Second, YB→A assigns higher weight for elements existing in both
sets that appear towards the initial stages of the infection. We do
this since this period is critical in detecting the origins of the worm
evolution. Finally, the similarity YB→A metric is penalized by the
difference in ranks of the elements in set B and the actual set A.



Next, we compute the similarity between the telescope generated
sequence and that of the actual worm evolution, and show beyond
which point the measure decreases in quality to be of practical use.
To do so, we simulate the worm infection by initially selecting a
single infected host at random (i.e., patient-zero), which in turn
starts spreading the worm. The worm evolution sequence generated
by the simulator is used as our baseline (that is, to derive setA), si-
multaneously, we record the timestamps of the first scan from each
unique infected host hitting a /8 telescope. The sequence observed
by the telescope represents the inferred worm evolution sequence,
namely set B. We then apply the metric given in Eq. (9) to compute
the similarity between the two sets, and normalize the results by the
similarity of setA with itself. The normalized similarity of the two
sets is shown in Figure 5. Each point on the graph represents a sim-
ilarity score (averaged over ten simulation runs) between the two
sequences up to the first m infected host. Observe, for example,
that up to the first 200 infected hosts, the /8 telescope is capable
of re-constructing the actual worm evolution with a similarity score
of 0.98. Accuracy degrades below 0.75 after more than 4000 hosts
have been infected.

3.2.1 Effect of monitor size:
To gain a better understanding of the reliability of the view gen-

erated by different monitor sizes, we consider the optimistic case
of having an aggregate view from two known /8 telescopes —
CAIDA’s [2] telescope and the iSink [7] — compared to a less
fortunate scenario of having only a single /16 telescope. These
results are also depicted in Figure 5. As expected, the larger the
size of the telescope relative to the vulnerable population size the
more accurate it is in constructing the actual infection sequence,
and can do so even farther into the progress of the worm propa-
gation. For example, in the optimistic case, we retain a similarity
score of above 0.8, until close to the point at which 50% of the vul-
nerable population has already been infected. The /16 telescope,
on the other hand, fairs significantly worse in correctly classifying
the sequence from the very beginning of the worm propagation.
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Figure 5: Normalized similarity of the telescope reconstructed
sequence to the actual infection sequence of the worm for dif-
ferent telescope sizes.

3.2.2 Effect of vulnerable population size:
Our baseline case has a vulnerable population of only 12,000

hosts. In what follows, we consider the effect of larger vulnerable

populations on the accuracy of the telescope, keeping all other pa-
rameters the same. As the results in Figure 6 show, the accuracy
of the telescope is highly sensitive to the vulnerable population;
higher population sizes cause Tin to drop very quickly below Td,
thereby increasing the likelihood of mis-ordering. In this case, had
the vulnerable population been on the order of 100,000 hosts, the
reconstruction correctness of the /8 telescope would be severely
limited beyond the first 450 infected hosts.
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Figure 6: Normalized Similarity of the telescope reconstructed
sequence to the actual infection sequence of the worm for dif-
ferent vulnerable population sizes.

3.2.3 Effect of Scanning Rate:
While we have shown that even at 350 scans per second tele-

scopes of reasonable size can be successfully used to infer the ac-
tual infection evolution (at least during the early stages), we are
also interested in evaluating the impact of scanning rate on this
accuracy. In particular, we consider two aspects, namely, (i) the
impact of varying the scanning rate and (ii) the impact of scanning
rate inhomogeneity which has been observed particularly for band-
width limited worms (e.g., UDP worms like Witty [15]).
In the first case, we evaluate the accuracy with scanning rates 10,

100, 500, and 1000 scans per second while keeping other simula-
tion parameters unchanged. Somewhat surprisingly, we find that
the scanning rate has minimal impact on the overall accuracy of
the monitor view. This seems non intuitive at first, but on closer
inspection notice that Td and Tin both change with 1/s. Hence,
increasing the scan rate not only results in closer inter-arrivals of
infected hosts, but also faster detection of a single scanner within
Td. For this reason, the telescope’s accuracy is not significantly
affected by uniform changes in the scanning rate.
In the second scenario, rather than considering a constant per-

host scanning rate, for each worm instance we choose a randomly
generated scanning rate. We investigate a case where this rate fol-
lows a normal distribution with average scanning rate of µ = 350
scans/sec and standard deviation3 σ = 50, and another where scan-
ning rates are randomly generated following the heavy tailed distri-
bution of Witty worm rates observed by CAIDA’s telescope [15].
Figure 7 shows that the accuracy of the telescope view is signifi-

cantly influenced by the inhomogeneity in scanning rates and drops
sharply beyond the first 200 infected hosts. However, observe that

3We avoid generating non-positive scanning rates.



for all cases the telescope still provides an accurate estimate of the
set of early infectees, which is arguably one of the most important
aspects of worm evolution tracking.
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sequence to the actual evolution sequence of a worm with inho-
mogeneous scanning rate.

3.2.4 Effect of Packet Loss:
Packet loss presents yet another potential factor that can distort

the telescope’s view of the infection. As the population of infected
hosts grows, the amount of probe traffic can exceed the network’s
capacity. Therefore scan packets may be dropped before they reach
the telescope, hindering its view of newly infected hosts.
To investigate the effect of worm-induced packet loss on the ac-

curacy of our method, we enhanced our simulator with the ability
to mimic loss patterns resulting from worm propagation. Specifi-
cally, packet loss grows linearly with the number of infected hosts
scanning the network. Experimental results showed that packet loss
becomes an issue only after an overwhelming number of hosts have
been infected. At this point however, Tin < Td and the accuracy
of the telescope’s view is already compromised.

4. DETECTINGTHEEXISTENCEANDSIZE
OF THE HIT LIST

In Section 3 we assumed that the worm outbreak started with a
single infected host. However, it is common for worm authors to
instead use either a hit-list (i.e., a list of known vulnerable hosts) or
previously compromised hosts to initiate the infection. In this case,
identifying patient zero could be rather troublesome (and arguably
infeasible beyond mere speculation) especially if the hit-list was
targeted by a flash style targeted attack. However, we show that
even in this case telescopes are still useful in detecting the existence
of the hit list, its members, and its approximate size.
The intuition behind our approach is rather straightforward and

is based on the fact that the hit-list is targeted by an out-of-band
mechanism, and so its impact on the telescope is distinct from the
normal scanning activity of the worm. In essence, the inter-arrival
pattern of unique hosts from that list at the telescope manifests dif-
ferent characteristics compared to the arrivals of hosts infected by
the worm’s normal spreading behavior. In a flash style directed
hit-list attack, one would expect that the inter-arrival times of the
first scan from sources in the hit-list would be clustered in a rela-
tively short interval with a nearly fixed average inter-arrival time at

the telescope. Beyond the hit-list boundaries, however, the infected
population exhibits the classical exponential growth which is dis-
tinct from that of the initial hit-list. This change in the inter-arrival
pattern at the onset of worm spreading provides an indication of
the existence of a hit-list, and by examining the boundary where
the change occurs, one can unmask the size and members of that
list.
We argue that this pattern will still persist under a wide range of

parameters. To see why, consider for a moment that the worm starts
by infecting a hit-list of size h0 at time t0. Given the telescope’s
single host detection capability, Td, and assuming a uniform scan-
ning rate, the average inter-arrival time of the first scan from hosts
in the hit-list will be Td/h0. Then a hit-list with size h0 can not be
detected if the worm is able to infect new hosts such that:

Tin ≤ Td

h0
(10)

Substituting for Tin and Td from Eq.(3) and Eq.(5) we have:
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Solving the above equation for h0 for a Witty-like worm, we

found that given a /8 telescope there is no such h0 that satisfies
the above inequality. This provides evidence that in the case of
Witty, if a hit-list exists it will be detected by the telescope.
To illustrate how the change in the inter-arrival pattern leads to

identifying the initial hit-list, we seed the simulator with an initial
hit-list of 100 sources which are simultaneously infected at time
zero. Figure 8 depicts the running average of the inter-arrival times
of unique infected hosts as seen at the telescope — the stark con-
trast in inter-arrivals as we approach the boundary of the first 100
infected hosts reveals that the worm was initiated using a hit-list of
approximately 100 hosts.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  200  400  600  800  1000

In
te

r-
ar

riv
al

 ti
m

es
 (

se
c)

Number of infected hosts

Figure 8: Average Inter-arrival time of a simulated worm with
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To investigate whether this pattern is general, we explore the im-
pact of different vulnerable population and hit-list sizes, as well
as the impact of scanning rate inhomogeneity as illustrated in Sec-
tion 3.2. To do so, we increase the vulnerable population to 50,000
hosts and choose an initial hit-list of 1,000 sources. Figure 9 shows
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Figure 9: Average Inter-arrival time of unique infected hosts
as seen by a /8 telescope for a population size of 50,000 hosts
and 1000 hosts in the hit list. The clear change in the pattern
of inter-arrivals at the boundary of the hit list reveals that the
worm used an initial hit list of approximately 1000 hosts.

the moving average of the inter-arrivals of unique sources at a /8
telescope. Because a larger hit-list is used, the change in the pat-
tern of inter-arrivals is even more pronounced. The reason is that
since more hosts are infected within the initial Td, the inter-arrival
time of sources at the onset of the worm is even smaller. For small
hit list sizes, a similar experiment (not shown) was conducted with
a hit-list of 10 sources, and found that the source inter-arrivals ex-
hibit the same pattern at the boundaries of the hit-list. Additionally,
we generated random scanning rates following the distribution ob-
served by CAIDA’s telescope [15] and the results showed that the
change in inter-arrival pattern is still preserved at the boundaries of
the hit-list even under highly non-homogeneous scanning rates.
Finally, we validate our approach by studying the inter-arrivals

of new Witty infected sources as observed by CAIDA’s telescope.
Figure 10 illustrates the running average of the inter-arrivals of the
first 1,000 infected hosts. The graph reflects the same pattern ob-
served in our simulations, with the change in behavior occurring
near the first 80 infected hosts. Upon further inspection of the list
of these sources, we find that 66 of the sources fall in the same
/16 subnet. SinceWitty does not apply local preferential scanning,
this clearly indicates that these hosts were infected by some other
means. Moreover, reverse DNS lookups reveals that 70 sources in
the list belong to the same institution, which strengthens the be-
lief [15] that the worm was initiated by a targeted attack against
known vulnerable hosts in that institution.

5. RELATEDWORK
Over the last few years several researchers have used traffic mon-

itors on unused address space (also called network telescopes or
traffic sinks) to monitor large scale network security events and to
provide forensic analysis of different network anomalies. Moore et.
al, for example, investigated the prevalence of DoS attacks by ana-
lyzing incoming backscatter traffic to CAIDA’s telescope [13] and
provided analysis of pertinent aspects of global worm outbreaks [10,
12]. Baily et. al presented a distributed network monitoring and
data collection infrastructure, called the Internet Motion Sensor
(IMS) [1], and provided insights into various scanning activities
by aggregating the views of theses monitors. Recently, Rajab et.
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Figure 10: Average Inter-arrival time of unique infected hosts
as seen by CAIDA’s /8 telescope. Again, the clear change in the
pattern of inter-arrivals at the boundary of the hit-list reveals
that the Witty worm used an initial hit-list of approximately 80
hosts.

al [14] explored a number of constraints related to distributed tele-
scope deployment, and showed how such telescopes—if deployed
correctly—can be used to detect non-uniform scanning worms early
in the worms’ propagation.
Forensic analysis of worms and understanding how they prop-

agate is by no means a new problem. CAIDA [2] has provided
detailed insights into different aspects pertaining to popular worm
outbreaks. Recently, Shannon et. al [15] presented one such anal-
ysis for the Witty worm as detected by CAIDA’s /8 telescope. Of
the elements presented there, were the worm spreading time, the
vulnerable population size and the domains that they belonged to.
Additionally, based on the observation that 110 of the hosts hitting
the telescope arrived within the first 10 seconds of the outbreak—
which clearly could not have occurred based solely on Witty’s reg-
ular spreading dynamics (i.e., given its scanning rate and the size of
the vulnerable population) — it was assumed that these hosts rep-
resented the initial hit-list. We analytically show that the existence
of a hit list will result in unique inter-arrival pattern that changes
at the hit-list boundaries, and showed how this pattern reveals the
existence of the hit-list and it size. For the Witty case we arrive
at a result similar to that presented in [15], though with a smaller
hit-list.
Xie et. al. [23] proposed an algorithm to track the origin(s) of a

worm infection. The algorithm uses random walks to sample edges
in the connection history of hosts to deduce the worm causal tree
of infection which, as the authors showed, is rooted at the first host
that starts the infection at the monitored network. For the case of
multiple sources starting the infection at the same time (i.e. a hist
list), the algorithm converges to the multiple entry points on the
causal graph representing the initial hit-list. While the results are
sound, the technique assumes full knowledge of all hosts contact
graphs over an unlimited time range. By contrast, the approach
we present is simpler in nature since it only requires having traces
collected at the network telescope, and does not assume any knowl-
edge of the topology or hosts connection history.
Lately, Kumar et.al. [8] presented a forensic analysis of theWitty

worm by reverse engineering the worm and exploiting several flaws
in the random number generator. The authors show how this in-



depth analysis can reveal some fairly interesting aspects pertaining
to worm spreading (e.g. the IP space missed by the Witty worms
scans, the up-time of a number of machines, the number of disks on
the infected hosts, etc). By correlating different events the authors
speculated the identity of patient zero. While this result still needs
to be validated, one would argue whether the aberrant events that
are relied upon indeed pinpoint patient zero, particularly given the
presence of a hit list. Nonetheless, the authors provide interesting
insights that hopefully can be applied to similar findings for other
malware events.

6. SUMMARY
Reconstructing the course of a worm’s infection has been an

interesting challenge. In this paper we presented a simple tech-
nique that uses the history of scans from unique hosts as seen by
a network telescope to infer the actual sequence of host infections.
While such an approach appears simplistic at first, our analysis ver-
ified by simulation results shows that it can very accurately track
the initial (and most crucial) steps of an infection. The effectiveness
of our technique deteriorates earlier in the progress of the worm
propagation, for smaller telescope sizes, or worms with highly non-
homogeneous scanning rates, or for large vulnerable population
sizes relative to the monitor size. However, in several cases the
telescope is still able to reconstruct the worm evolution especially
towards the early stage of its propagation with reasonable accuracy.
We have also shown how we can exploit changes in the pattern

of unique source inter-arrivals at the telescope to detect the exis-
tence and infer the size of a hit-list. We show this pattern persists
over a wide range of hit-list and vulnerable population sizes. Fi-
nally, we validated our mechanism for identifying the hit-list us-
ing the inter-arrivals of new Witty infected sources as observed by
CAIDA’s telescope.
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