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Abstract

Distributed monitoring of unused portions of the IP
address space holds the promise of providing early and
accurate detection of high-profile security events, espe-
cially Internet worms. While this observation has been
accepted for some time now, a systematic analysis of the
requirements for building an effective distributed mon-
itoring infrastructure is still missing. In this paper, we
attempt to quantify the benefits of distributed monitor-
ing and evaluate the practicality of this approach. To do
so we developed a new worm propagation model that re-
laxes earlier assumptions regarding the uniformity of the
underlying vulnerable population. This model allows us
to evaluate how the size of the monitored address space,
as well the number and locations of monitors, impact
worm detection time. We empirically evaluate the effect
of these parameters using traffic traces from over 1.5 bil-
lion suspicious connection attempts observed by more
than 1600 intrusion detection systems dispersed across
the Internet.
Our results show that distributed monitors with half

the space of a centralized monitor can detect non-
uniform scanning worms in half the time. Alternatively,
a distributed monitor of the same size as a centralized
monitor can detect the worm four times faster. Further-
more, we show that even partial knowledge of the vul-
nerable population density can be used to improve mon-
itor placement. Exploiting information about the loca-
tion of the vulnerable population leads, in some cases,
to detection time that is seven times as fast compared to
random monitor deployment.

1 Introduction

Attacks from malware, such as network worms, pose
without a doubt, one of the most significant threats to the
livelihood of the Internet [1]. For the most part, these
attacks are countered today by manual, collaborative ef-
forts by network operators. Typically, operators mon-

itor traffic through their networks using network man-
agement tools, and report any suspicious traffic surges
to mailing lists (e.g., NANOG [15]) to alert other oper-
ators about the active spread of a new malware strain.
Operators managing different networks then apply rudi-
mentary traffic filters to block suspected malicious traf-
fic or to drop all packets coming from offending sources.
In an effort to establish a broader knowledge base

for analyzing suspicious traffic, there has been a recent
movement towards widespread participation in central-
ized repositories like DShield [6]. Over the past year,
DShield’s repository, for example, has observed a steady
increase in the submission of intrusion logs by volun-
teering networks from all over the globe. For the most
part, these repositories correlate events across the sup-
plied reports, and release daily summaries of malicious
traffic activity (e.g., top offenders) that can be used to
update network filtering rules.
While these approaches can provide some level of de-

fense, the fact that information is not generated and dis-
seminated in a timely fashion limits the value of these
approaches. Recent studies [18, 19] have shown that
worms can reach saturation in just a few minutes, ren-
dering these solutions of little practical value in detect-
ing and containing such outbreaks. To address this prob-
lem, a number of proposals have surfaced aiming to fa-
cilitate the development of an automated distributed in-
frastructure of network monitors [2, 4, 22]. In these pro-
posals, each monitor collects traces of potentially mali-
cious traffic and exchanges information with the other
members of the infrastructure so that a broader view of
the attack can be created. The general thinking here has
been that an effective automated early warning strategy
could hopefully be used to leverage automatic contain-
ment solutions.
Unfortunately, while the recent interest in creating

distributed monitoring systems is indeed a positive de-
velopment, little is known about how such a system
should be deployed in the most effective way. Specifi-
cally, numerous questions arise regarding the size, num-
ber, and location of such monitors. Our focus in this pa-



per is to explore the feasibility of such an approach, and
investigate a number of criteria that impact the effective-
ness of a distributed monitoring architecture. Further-
more, we examine what would be the relative improve-
ment in the system’s detection time if the density of the
vulnerable host population was known. While we un-
derstand that knowing this distribution a priori is fairly
difficult, and some may argue infeasible, we contend
that the answer to this question is interesting nonethe-
less. For one, if given knowledge (or some approxima-
tion thereof) of the distribution of vulnerable hosts still
provides no substantial improvement in detection speed,
then monitors can be deployed anywhere in the IP ad-
dress space. On the other hand, if such knowledge pro-
vides substantial benefits, this may imply that network
operators will need to tackle ways to estimate this distri-
bution in order for a distributed monitoring system to be
of any practical significance.

To pursue our goals, we extend existing worm mod-
els to more accurately reflect the spreading behavior of
worms. While several models for worm propagation
have been proposed to date (e.g. [3, 10]), we believe
these models make assumptions that significantly dis-
tort the models’ view of the actual worm behavior. Most
notably, the previous models are lacking in that they
do not make use of the density of vulnerable hosts or
incorrectly assume that such hosts are uniformly dis-
tributed across the address space. By contrast, our ap-
proach takes into account the distribution of the vulner-
able population over the address space. Indeed, deriving
models that can take advantage of this knowledge is a
non-trivial task, particularly when studying the behav-
ior of non-uniform scanning worms such as Code Red
II and Nimda. In fact, deriving such a model has been
viewed as a challenging problem in its own right [18].

Using our extended model, we evaluate different as-
pects of distributed monitoring using simulations driven
by real data traces. Our primary data set, obtained from
DShield [6], is a collection of intrusion detection logs
from more than 1600 networks from around the globe.
The collected traces span a period of 3 months and
contain more than 1.5 billion malicious connection at-
tempts.

CONTRIBUTIONS: This paper makes three main contri-
butions: (1) we propose an extension to current worm
models that does not assume the distribution of vulner-
able hosts over the IP address space is uniform. As a
result, our model reflects the dynamics of non-uniform
scanning worms more accurately, (2) we derive a model
for the detection capability of distributed monitors, and
(3) we use this model to evaluate the relative perfor-
mance of different distributed monitor configurations.
These configurations differ in the number and size of

individual monitors as well as in their knowledge of the
vulnerable population distribution.
The rest of the paper is organized as follows: In Sec-

tion 2 we summarize previous work related to worm
modeling and detection. Section 3 presents the distri-
bution of vulnerable hosts derived from collected traces.
We present our extended model in Section 4 and pro-
vide metrics for evaluating the detection capability of a
distributed monitoring system in Section 5. We use this
observation model as a basis for the experiments in Sec-
tion 6. We conclude in Section 7 with some remarks and
future work.

2 Related Work

Worm Modeling Over the last few years, several ap-
proaches have been suggested for modeling the spread
of worms (e.g, [3, 18, 25, 26]). In [18] Staniford et
al. used the classic epidemic model [10] to model the
spreading behavior of the CodeRed worm [8]. How-
ever, the epidemic model is unable to capture the spread-
ing behavior of non-uniform scanning worms such as
Nimda [11] and Code Red II [14]. Moreover, as shown
by Chen et al. the epidemic model over-estimates the
infection speed as it does not consider the joint proba-
bility of a host being scanned by different sources at the
same time [3]. A more promising probabilistic model,
called the Analytical Active Worm Propagation model
(AAWP) was proposed in [3]. In this model the proba-
bility, P(m,n), that a vulnerable host will receivem scans
from a total of n sent by ni infected hosts at time tick i,
is modeled by a binomial random variable with proba-
bility of success p = 1/232 and number of trials (i.e.,
scans) n = sni where s is the average scanning rate of
a single infected host (The notation is given in Table 1).
Let Pi be the probability that a vulnerable host will be
infected at time tick i. Then, Pi is the probability that
the host will be scanned at least once by any infected
host, therefore:

Pi = 1 − P(0,n) = 1 −
(

1 − 1
232

)sni

(1)

From Eq. (1), the expected number of infected hosts
at time tick i + 1 can be expressed as:

ni+1 = ni + (V − ni)

[
1 −

(
1 − 1

232

)sni
]

(2)

Equation (2) models the behavior of uniform scan-
ning worms like Code Red, where all vulnerable hosts
have an equal probability of being scanned by an in-
fected host regardless of their location relative to that
infected host.



V Total number of vulnerable hosts
ni Number of infected nodes at tick i

P(m,n) The probability that a vulnerable host
receivesm out of n total scans

Pi The probability that a vulnerable host
is infected at time tick i

s Average scan rate (scans/time tick)
per infected node

p0 Probability that a worm instance scans a random address
p8 Probability that a worm instance scans an address

within the same /8 prefix
p16 Probability that a worm instance scans an address

with the same /16 prefix
vj Number of vulnerable machines in the j-th /16 subnet
bj
i Number of infected nodes in the j-th /16 subnet

at time ti
kj

i Aggregate number of scans within the j-th /16
subnet at time ti

b
(/8)
i Number of infected hosts in the common

/8 subnet as the victim host.

Table 1. Worm Model Notation.

For non-uniform scanning worms, Chen et al [3] pro-
posed an extension to the above model by considering
the preferential scanning strategy of non-uniformworms
towards local /16 and /8 subnets. However, as is the case
with most previous work, the authors assume that the
vulnerable population is uniformly distributed over the
IP space—which, as we show later, is not a valid as-
sumption. Recently, Gu et. al. [9] acknowledge that
the earlier assumption in [3] is problematic, and at-
tempt to address this by instead assuming that vulner-
able hosts are uniformly distributed only in the assigned
IPv4 space (i.e., about 1/4 of the IPv4 space according
to [21, 24]). However, this also is an over-simplification,
as there is no reason to believe that the density of hosts
within the allocated address space is uniform. In fact, as
we show in Section (3), our empirical data suggests that
host density diverts significantly from the uniform distri-
bution. Therefore, we believe that completely relaxing
this assumption makes the most sense at this point, as
the actual distribution of vulnerable hosts has significant
implications on the model’s accuracy. In this work, we
propose an improvement to prior models by incorporat-
ing the distribution of the vulnerable population over the
address space, and we show the profound implications
of this factor on the spreading behavior of non-uniform
scanning worms.

Monitoring For the last few years researchers at
CAIDA [13] have used traffic monitors over unused ad-
dress space (also called telescopes or traffic sinks) to
monitor large scale network security events and pro-
vide forensic analysis of such outbreaks. Unfortunately,
while valiant in their efforts, for non-uniform scanning
worms (e.g, CodeRed-II), CAIDA’s telescope remains

unable to glean reliable information about the worm ac-
tivity as the telescope only observes part of the address
space being preferentially scanned by such worms (e.g,
the 1/8 scanning component for the case of CodeRed-
II [14]).
In [2, 4] Bailey, Cooke, et. al. propose a distributed

monitoring system using a set of monitors of varying
sizes provided by a collection of ISPs and academic in-
stitutions. In that work, a central aggregator is used
to combine information from different monitors and to
provide relevant summaries of any outstanding security
event. Though that work embodies an important first
step towards achieving a realistic distributed monitoring
infrastructure, the interplay between size, number, and
deployment of monitors and its effect on detection capa-
bility was not addressed. The work presented here will
hopefully shed light on these issues and better assist de-
ployment strategies for use in [2].
Our work is also distantly related to that of the

DOMINO system [22] where the benefits of combin-
ing reports from different intrusion detection systems
were explored. However, our work differs significantly
in its goal and scope from DOMINO—for one, while
DOMINO’s evaluation is primarily based on combin-
ing intrusion detection logs from different operational
networks, our work is focused on evaluating the bene-
fit (and feasibility) of collectively monitoring unused IP
space distributed throughout the Internet. Moreover, un-
like [22], we explore the effect of size and placement of
distributed monitors on improving the system’s overall
detection time.

3 Population Distribution

A central thesis of this paper is evaluating whether a
priori knowledge of the distribution of vulnerable hosts
can improve the overall rate at which an outbreak is de-
tected. As mentioned earlier, prior models, including the
AAWP model [3] and its extensions, make the simpli-
fying assumption that the vulnerable population is uni-
formly distributed over the (used) IP space. Here, we
question the validity of this assumption based on col-
lected data.

Data: Our data consists of three months worth of IDS
logs collected by DShield [6]. The logs were volun-
teered by more than 1600 Intrusion Detection Systems
distributed around the globe, and contain more than
1.5 billion connection attempts from nearly 32 million
unique sources. Table 2 contains a summary of the rele-
vant information.
Since our traffic logs are obtained from IDS reports,

it is safe to assume that they represent unwanted traffic.



Total Unique sources 31,864,871
Total number of connections 1,509,619,146

Most attacked ports
Port unique sources

Port 445 11,889,416
Port 135 5,139,751
Port 80 632,472

Table 2. Summary of the DShield data

This traffic originates either from compromised hosts or
active scanners.1 We further filter the data by consid-
ering only sources attempting connections to ports 80,
135, and 445. We chose these ports because they are
targeted by many well-known worms (e.g. CodeRed,
Nimda, and MS Blaster). We assume that all connection
attempts to these ports originate from previously com-
promised hosts attempting to transfer the infection to
other hosts by scanning the address space. Therefore, we
assume that the collected set of source IP addresses at-
tempting connections to one of the above specified ports,
is the set of hosts that were originally vulnerable to (and
subsequently infected by) a worm instance. There is a
caveat, however, with identifying hosts based solely on
their IP addresses: because DHCP is heavily used, hosts
may be assigned different addresses over time. Indeed,
Moore et. al. [14] argue that IP addresses are not an ac-
curate measure of the spread of a worm on time-scales
longer than 24 hours. Unfortunately, without a better no-
tion at hand, we proceed to use IP addresses to identify
hosts, but keep this observation in mind.
We group the IP addresses in each of the three sets

according to two granularities: (i) in /16 prefixes, and
(ii) in /8 prefixes. We chose these two groupings be-
cause they are important from the perspective of worm
spreading behavior. Specifically, it is known that many
examples of popular worms (e.g. [5, 7, 11]) use local-
ized target selection algorithms targeting hosts with dif-
ferent scanning probabilities applied on the /16 and /8
prefix boundaries.
The rank plots in Figures 1 and 2 show the percentage

of malicious sources in each /16 and /8 prefix over the
total number of sources. It is clear that in both cases
the population distribution is far from being uniform.
This result can be interpreted intuitively by the fact that
the utilization of the address space is not uniform—
some portions of the space are unallocated, large pre-
fixes are owned by corporations with small number of
hosts, while others (belonging to edge ISPs, for exam-
ple) may contain a large number of less protected client

1We also detect and filter out vertical scanning sessions (scans from
a single source targeting multiple ports on the same destination host),
so only horizontal scanning activity (analogous to worms behavior) is
used in our analysis.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

 1  10  100  1000  10000  100000

F
ra

ct
io

n 
of

 v
ul

ne
ra

bl
e 

ho
st

s 
in

 /1
6 

pr
ef

ix

Prefix rank

Distribution of sources over /16 prefixes

port 80
port 445
port 135

Figure 1. Percentage of malicious sources per
/16 prefix

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

 1  10  100  1000

F
ra

ct
io

n 
of

 v
ul

ne
ra

bl
e 

ho
st

s 
in

 /8
 p

re
fix

Prefix rank

Distribution of sources over /8 prefixes

port-80
port-445 
port-135

Figure 2. Percentage of malicious sources per
/8 prefix

machines.
In fact, the relatively straight lines in these log-log

plots indicate that the distributions of vulnerable hosts
among prefixes follow a power law. To better explore
this conjecture, we fit the curve representing sources at-
tempting connections to port 80 to well known power-
law probability distributions. Figure 3 shows the result
of this fitting. As the graph shows the source distribu-
tion best fits a Log-normal with parameters (s = 2.7)
and (m = 7.5) 2.
To further validate this observation we performed a

similar evaluation on a traffic log of the Witty worm
[17] obtained from CAIDA [20]. We applied the same

2The PDF of the Log-Normal distribution is given by:

P (x) = e−(ln x−m)2/2s2

s
√

2πx
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Figure 3. Fit of vulnerable host population prob-
ability density function to known probability
distributions

aggregation methodology described above on the set of
unique sources of scans detected by CAIDA’s /8 net-
work telescope. These sources are, without any doubt,
infected hosts attempting to spread the worm infection
to other potential victims. Figure 4 shows that the heavy
tailed tendency in the infected population distribution
is even more pronounced. Again, the trend appears to
closely fit a Log-normal distribution with parameters
(s = 2.67) and (m = 6.1).
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These results provide clear evidence that the vulner-
able population distribution is far from being uniformly
distributed. In the next sections we develop an extended
worm model that incorporates this observation and then

use this model to evaluate various aspects of distributed
monitoring. Our subsequent analyzes are based on the
DShield data set as it is not tied to any particular event
and it is therefore more general.

4 Extended Worm Propagation Model

First, we derive an extended model based off the
AAWP model given in [3]. Our extended model allows
us to account for the non-uniformity in the distribution
of the vulnerable population, and later we show how this
extension significantly impacts the predictions made by
previous models specifically for the case of non-uniform
scanning worms.
For a non-uniform scanning worm with a Nimda-like

scanning behavior, to compute the expected number of
infected hosts at time tick i + 1, we first compute the
expected number of incoming scans into each /16 prefix
at time tick i and use the result to predict the number
of infected hosts in each /16 subnet at time step i + 1.
Let kj

i denote the total number of incoming scans into
the jth /16 prefix at time tick i. Then kj

i is the sum of
the scans originating from infected hosts within the same
/16 prefix (each scanning with rate p16s, where p16 is the
probability that the worm scans hosts within the same
/16 prefix as the infected host), scans from infected hosts
within the encompassing /8 subnet (each scanning with a
rate p8s, where, p8 is the probability that the worm scans
hosts within the same /8 prefix as the infected host), and
scans originating from infected hosts from anywhere in
the address space (each scanning with rate p0s, where,
p0 is the probability the worm scans a host selected at
random from the whole IP space). Therefore, k j

i can be
expressed as follows:

kj
i = p16sb

j
i + p8sb

(/8)

i

216

224
+ p0sni

216

232 (3)

= p16sb
j
i +

p8sb
(/8)

i

28 +
p0sni

216 (4)

where s denotes the average scanning rate of the worm,
bj
i the number of infected hosts in the j th /16 aggregate

at time tick i, b
(/8)

i the number of infected hosts in all /16
subnets within the same /8 prefix. Then, using a similar
derivation as in Equation (2), the expected number of
infected hosts per /16 subnet at time tick i + 1 can be
expressed as:

bj
i+1 = bj

i + (vi − bj
i )

[
1 −

(
1 − 1

216

)kj
i

]
(5)

The expected total number of infected hosts by the
worm at time tick i+1 is simply the sum of the infected
hosts in all possible 216 /16 prefixes:



ni+1 =
2
16∑

j=1

bj
i+1 (6)
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Figure 5. Infection speed predicted by the ex-
tended model for a uniform and non-uniform
scanning worm when the vulnerable hosts are
uniformly distributed.

REMARK: We note that our decision to study a worm
with a Nimda-like target selection algorithm is for il-
lustrative purposes only. The analysis presented here
can be generalized to other classes of worms that apply
different scanning strategies on prefix boundaries other
than the /16 and /8 boundaries. However, preferentially
scanning at the /16 and /8 prefix boundaries is consid-
ered a successful strategy and a widely used practice by
most non-uniform scanning worms [5, 7, 11]; therefore
a Nimda-like worm behavior serves our purpose well.
To validate the extended model we compare it to the

original AAWP model, using the same set of assump-
tions and simulation parameters as those used in [3].
For completeness, we restate these parameters in Ta-
ble 3. We compare our model for both a uniform and
non-uniform scanning worm. Clearly, if our model is
correct we should arrive at an identical propagation evo-
lution as that in [3]. Figure 5 depicts the infection prop-
agation in both scenarios. Our results are identical to
those found in [3], and (we believe) lead to an incorrect
conclusion—that a uniform scanning worm propagates
faster than its non-uniform counterpart.
To see why this is not the case, we demonstrate the

impact of the vulnerable population distribution on the
results predicted by the model. We do so by using the
set of sources attempting suspicious connections to port
80 extracted from the DShield data set. Again, we ap-
ply the same simulation parameters from Table 3, but

Number of Vulnerable hosts 1,000,000
Scanning rate per infected hosts s 100 scans/tick
Size of initial Hit List 100 randomly distributed

over the populated IP space
Scanning probabilities p16 p8 p0

Nimda-Like 0.5 0.25 0.25
Uniform scanning 0 0 1

Table 3. Simulation Parameters

with 632,472 sources (i.e., the number of sources in the
DShield data) attempting connections to port 80. We use
this data set to drive our simulation model under two
different scenarios. In the first scenario we ignore the
actual locality of hosts and assume that they are evenly
distributed over the IP space, while in the latter we use
the actual distribution of sources per /16 prefix extracted
from the DShield data set.
The difference in propagation speed between these

two cases is dramatic; the leftmost line in Figure 6 de-
picts the infection evolution of the worm with an un-
derlying population distribution inferred from DShield
traces, while the rightmost line shows the evolution of
the infection based on the uniform population distribu-
tion assumption. The AAWP model would predict that
the non-uniform scanning worm would be able to in-
fect the whole population after 1000 time ticks from
the breakout. However, under the more realistic distri-
bution derived from the actual data set, we see that a
non-uniform worm would infect the whole vulnerable
population in less than 200 time ticks — 5 times faster
than the previous case. Clearly, the significant discrep-
ancy between the two predictions underscores the fact
that the underlying locality distribution of the vulnerable
population is an important factor that can not be over-
looked especially when modeling non-uniform scanning
worms.
Finally, we revisit the claim that a uniform scanning

worm propagates faster than its non-uniform counter-
part. We do so by comparing the propagation behav-
ior of a uniform scanning worm to a non-uniform scan-
ning worm but with vulnerable population distribution
derived from the DShield traces. As Figure 7 illustrates,
a non-uniform scanning worm can spread significantly
faster than a uniform scanning worm with the same
average scanning rate and same vulnerable population
size. The results are enough to warrant restatement: that
a simply designed non-uniform scanning worm would
reach saturation much faster than one with uniform scan-
ning characteristics. Intuitively, worm instances within
heavily populated subnets, quickly infect all vulnerable
hosts within these subnets by applying a biased target
selection algorithm towards these hosts; recall that a
Nimda worm instance sends 75% of its scans to hosts
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Figure 6. Impact of population distribution on
non-uniform worm propagation.

within the same /16 prefix and same /8 prefix. This be-
havior exploits the power law distribution shown in Fig-
ure 1, where the majority of hosts are in a relatively low
number of heavily populated prefixes. Therefore, even
a single infected host within such prefixes is enough
to spread the infection to a large number of vulnerable
hosts in a very short time. This explains the sharp initial
increase in the number of infections for the non-uniform
scanning worm.
These above observations support Staniford et. al.’s

earlier conjecture that a non-uniform scanning worm
would spread faster than its uniform counterpart [18].
Also, as we show later, this leads to a set of important
design considerations for a distributed worm monitoring
system, especially as it relates to the location, number,
and size of the monitors.
In the following sections we use this extended model

to estimate the detection time of different distributed
monitor configurations.

5 Evaluating Distributed Worm
Monitoring

Over the last few years, a number of research projects
have proposed the use of network monitors (also called
telescopes [13] or traffic sinks) for forensic analysis of
worms, as well as for estimating the prevalence of se-
curity events such as DDoS attacks [12, 21, 23]. How-
ever, several questions regarding the practicality of dis-
tributed monitoring and its pertinent design considera-
tions such as required number, size and deployment con-
siderations have been left unanswered. To answer such
questions, we introduce an observation model that mea-
sures the detection capability of a distributed monitor-
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Figure 7. Extended Model: Number of infected
nodes vs. time for uniform and non-uniform
scanning worms. The vulnerable host distribu-
tion is derived from DShield data.

ing system. Specifically, the model computes the prob-
ability, Pd, that an instance of the worm is observed by
any monitor in the system. We then use this probability
to derive a detection metric that computes the expected
time elapsed before the monitoring system detects (with
a certain confidence level) a worm instance.

5.1 A Distributed Monitoring Model

The notation we use is summarized in Table (4). To
facilitate computing Pd, we organize monitors into a
logical hierarchy. Each layer in the hierarchy can “see”
scans with a certain probability according to its loca-
tion in the address space (relative to an infected host)
and according to the worm preferential scanning strat-
egy. In the case of Nimda, the distributed monitoring
system can be logically divided into a three-tier hierar-
chy. Figure 8 shows an example of this logical hierarchy.
In our example there are three monitors: MA of size /9,
MB of size /22 and MC of size /24. MB and MC are
located in two different /16 subnets but have the same /8
prefix.

• The first layer (/16) includes monitors within the
local /16 subnets of infected hosts. If a moni-
tor exists in this layer, it will be scanned with the
worm’s “most specific” preferential scanning prob-
ability (i.e. p16). The size S(/16) is the size of a
monitor within the /16 prefix as the infected host
(i.e. MB orMC in the above example).

• The second logical layer (/8) contains monitors
within the /8 prefix relative to infected hosts. Such



V Total number of vulnerable hosts
s Average scan rate (scans/time tick)

per infected node
S The total size of address space covered by monitors
Sc The IP space size scanned by an infected node

at different layers of the hierarchy
Sl The monitor size in layer l relative to

an infected host
S(/16) Monitor size within the same /16 subnet as an

infected host
S(/8) Monitor size within the same /8 subnet as an

infected host
Pd The probability that a certain scanner is detected by the

distributed monitoring system
Pr The probability that a certain scanner is detected by the

distributed monitoring system up to a detection time td
pl The preferential worm scanning probability applied

to the common space Sc

P l
e The probability that a monitor exists in the

logical layer l relative to an infected host
P (/16)

e The probability that a monitor exists within the
/16 subnet of an infected host

P
(/8)
e The probability that a monitor exists within the

/8 subnet as an infected host

Table 4. Monitor modeling parameters.

/8

MA

The whole IP space (Scanned with P0)

/16
MB MC

MC

/8 Logical Layer

/16

(Scanned with P8 )

/16 Logical Layer

MB

(Scanned withP16)

Figure 8. Monitoring System Logical Layer Hi-
erarchy.

monitors will be scanned with probability p8. The
size of a monitor in this layer S (/8) is the sum of all
monitor sizes having the same /8 prefix. The exam-
ple in Figure 8 has two logical monitors – one with
size equal to the sum of MB and MC (/22 + /24)
and another with sizeMA (/9).

• The third layer (/0) represents the aggregate of all
monitors in the deployment. The size of this logi-
cal monitor S, is the sum of all individual monitor
sizes. This monitor will be scanned with probabil-
ity p0. Following our example, S = MA + MB +
MC .

To derive the detection probability Pd, we make the
simplifying assumption that a single scan is enough to
classify a source as malicious3. We also assume that

3In practice a more sophisticated anomaly detection scheme need
be applied to classify true malicious scans from benign hits.

any infected host is eventually detected (i.e: Pd∞ = 1).
Therefore, Pd is formally defined as the probability that
an infected host scans any monitor in the system at least
once. This probability is the complement of the prob-
ability that the scanning host evades detection by moni-
tors in all logical layers. Therefore, Pd can be expressed
as follows:

Pd = 1 −
[∏

l

(
1 − Sl

Sc

)pl s
]

(7)

where l is the index over the layers in the logical monitor
hierarchy (i.e. /8, /16, and /0). S l denotes the relevant
monitor size in layer l relative to this host, Sc is the IP
space scanned by the worm instance at that layer ( i.e.
/8, /16 or /0), and pl is the probability with which the
worm scans layer l.
Then, for a non-uniform scanning worm with pref-

erential scanning probabilities p16, p8, and p0, Equation
(7) can be rewritten as:

Pd = 1 −
[(

1 − S(/16)

216

)p16 s

·
(
1 − S(/8)

224

)p8 s

·

(
1 − S

232

)p0 s
]

For a uniform scanning worm which scans the whole
IP space with uniform probability (ie: p0 = 1, p8 = 0,
p16 = 0), Pd is simply expressed as:

Pd = 1 −
(
1 − S

232

)s

(8)

In the following section we use our observation
model to compute the expected detection time of a dis-
tributed monitoring system.

5.2 Detection Time

Arguably, the most critical indicator of the effective-
ness of a wormmonitoring system is its reaction time td.
td is the elapsed time from the instant an infected host
sends its first scan up to the point where at least one scan
from that host is detected (with a certain confidence) by
any monitor in the distributed monitor deployment [13].
Using Equation (7) we define Pr as the probability that
the distributed monitoring system has detected a new in-
fected host by time td. Equivalently, Pr is the probabil-
ity that any monitor in the system observes at least one
scan from that source by the detection time td. There-
fore, Pr can be expressed as:

Pr = 1 −
td∏

i=0

[∏
l

(
1 − Sl

Sc

)pl s
]

(9)



which can be simplified to:

Pr = 1 −
∏

l

(
1 − Sl

Sc

)pl std

(10)

The observant reader will note that Equation (10) as-
sumes that a monitor exists in all logical layers relative
to an infected host. However, in practice the deployment
of distributed monitors will not cover all such locations.
For example, if we select an infected host at random, the
probability that this host scans a monitored address us-
ing p16 depends on having a monitor placed within the
same /16 address space as the infected host (the same
applies for the other preferential scanning probabilities).
The probability that a monitor is placed near an in-

fected host, denoted P l
e, is solely defined by the dis-

tributed monitors’ deployment strategy and the IP space
coverage achieved by that deployment. To accommo-
date for this probability, we can rewrite Eq. (10) as:

Pr = 1 −
∏

l

(
1 − SlP l

e

Sc

)pl std

(11)

For the case of a non-uniform scanning worm with pref-
erential scanning probabilities p16, p8, and p0, Pr is then
given by:

Pr = 1 −
[(

1 − S(/16) P (/16)
e

216

)p16 std ·

(
1 − S(/8) P (/8)

e

224

)p8 std ·
(
1 − S

232

)p0 std

]

where, P (/16)
e is the probability that a monitor exists in

the /16 subnet of an infected host. Similarly, P (/8)
e is the

probability of having a monitor within the /8 subnet of
an infected host.
Our goal is to determine the expected time, td, at

which the probability of detection is at a particular con-
fidence level (e.g: 95%). Solving Eq.(11) for td gives:

td =
log

(
1 − Pr

)
∑

l pl s log
(
1 − SlP l

e

Sc

) (12)

Now that we have an observation model and accom-
panying detection metric, we proceed to evaluate the pa-
rameters and design alternatives that directly affect the
detection time of distributed monitoring systems.

6 Evaluation

Our focus here is to use the model presented in Sec-
tion 5 to evaluate the effectiveness of distributed mon-
itoring. In particular, we try to evaluate to what extent

does size, monitor placement, and more importantly, the
number of deployed monitors impact the expected de-
tection time.

6.1 Number and size of monitors

Moore et al. have previously highlighted that a /8
monitor has a very different view of a Code Red infec-
tion (i.e. uniform scanning worm) compared to a /16
monitor [13]. Specifically, the /8 monitor was able to
provide a timely view of the worm’s actual propagation,
while the view from the /16 monitor was significantly
delayed.
In the distributed case however, the number (and lo-

cation) of monitors may be more important than aggre-
gate size. In what follows, we compute the expected de-
tection time td, of different monitor sizes across various
combinations. To do so, we explore several deployment
scenarios ranging from a total monitored address space
of size /8 (224 addresses) down to a total size of /16 (216

addresses). For simplicity, each aggregate size is divided
into a different number of monitors of equal sizes 4.
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Figure 9. Detection time td of a single infected
host for different number of distributed moni-
tors deployed randomly over the IP space. (s =
10 scans/tick, Pr = 0.9999, minimum detec-
tion time is 230 time ticks)

First, we distribute monitors uniformly over the
whole IP space. In order to compute td in Eq. (12)
we first need to compute P l

e for the different layers in
the logical monitor hierarchy. Since we distribute moni-
tors uniformly, the probabilityP l

e that a monitor exists at
each layer, is simply equal to the total number of mon-

4The choice of unit sizes is somewhat arbitrary, but the main goal is
to cover a wide range of possibilities in order to depict the interaction
between number and size of monitors.



itors divided by all the possible locations (prefixes) that
these monitors can occupy.
Figure 9 shows the expected detection time td for dif-

ferent monitor configurations. It is clear from the graph
that there is a substantial improvement in detection time
associated with distributed monitoring configurations.
For example, while a single /8 monitor yields a detec-
tion time of 940 time ticks, a distributed deployment of
512 /17 monitors results in a detection time of 230 ticks.
During the additional detection time of 710 seconds, a
worm instance can generate roughly 7100 more scans,
thus infecting a larger number of vulnerable hosts before
being detected. Furthermore, Figure 9 shows that con-
figurations with a number of monitors of a certain size
perform equally well, or even better, than other configu-
rations with larger total size. For instance, a distributed
monitor deployment of 512 /18 monitors (i.e. /9 aggre-
gate size) provides lower detection time (471 time ticks)
than a single /8 monitor (940 time ticks).
Unfortunately, deploying monitors randomly over the

IP address space is still a resource consuming propo-
sition. The minimum detection time (230 time ticks)
comes at the cost of requiring an aggregate monitor size
of /8, a considerable amount of unused address space.
Next, we consider whether deploying monitors in a way
that takes into account the vulnerable population density
over the address space can substantially reduce detection
time, and if so, to what degree.

6.2 Placement of Monitors

In this section we investigate the effect of using the
vulnerable population density to guide the placement of
distributed monitors. To do so, we use the population
distribution of sources attempting connections to port
80 inferred from the DShield data set. We understand
that such information might not be available at a global
scale. However, our focus here is to understand to what
degree can detection time be improved given some level
of knowledge about the vulnerable population.
First, we assume that we have full knowledge of the

vulnerable population density over the address space and
so we can deploy monitors in the most populated pre-
fixes. In this scenario, the probability P l

e of having a
monitor at layer l of the hierarchy, is calculated in the
following way: LetC l be the number of vulnerable hosts
that have a monitor within their common prefix at layer
l. Then, P l

e is equal to C l/V , where V is the size of the
vulnerable population.
Given P l

e, for each size and number combination, we
can compute td directly from Equation (12). Figure 10
shows the detection time for the same set of configura-
tions used in the previously. It is evident that the pop-
ulation density aware deployment strategy can achieve
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Figure 10. Detection time td of a single infected
host for different number of distributed mon-
itors deployed in the top populated prefixes
from the DShield dataset. (s = 10 scans/tick,
Pr = 0.9999, minimum detection time is 9 time
ticks )

significantly lower detection time. Indeed, under this
scenario, a number of points are worthy of further dis-
cussion:

• The rapid decrease in detection time using indi-
vidual /17 monitors reflects the effect of captur-
ing the local preferential scanning probability for
hosts within the same /16 subnet as the infected
host. The minimum detection time for all aggregate
sizes happens at this point because the monitoring
system is able to capture the local preferential scan-
ning behavior of the worm.

• Detection time starts to increase when monitors
with individual size less than /17 are used even
though the aggregate monitor size remains con-
stant. This trend is due to the power-law distri-
bution of vulnerable hosts. Since most vulnerable
hosts are located in a relatively low number of pre-
fixes, the benefit from covering more prefixes with
a larger number of smaller monitors is overshad-
owed by the loss in detection capability of individ-
ual monitors.

While it would be impractical to deploy /17 moni-
tors in the most densely populated /16 prefixes, we ar-
gue that there are a number of practical alternatives that
can achieve better detection with less resource require-
ments. For example, one such strategy might be to place
four /24 monitors, in each of the 512 most populated /16
prefixes. In this case, it is possible to achieve detection
time of 300 ticks compared to 7544 ticks for the same



number and size combination under the random deploy-
ment strategy.
To explore the practicality of the strategy above, we

calculate the number of Autonomous Systems (ASes)
whose participation would be required in such a system.
We use ASes since they represent the unit of adminis-
trative control in the Internet and therefore reflect the
number of administrative entities (e.g. ISPs and enter-
prises) that will need to be involved in the distributed
monitoring architecture. Clearly, the fewer the partici-
pants the easier it becomes to realize this architecture.
To find the required number of ASes we map each of the
512 prefixes to its origin AS using the Routeviews BGP
table snapshots [16]. Surprisingly, these prefixes belong
to only 130 ASes, 50% of which are among the top 200
ASes in terms of the size of the advertised IP space.
These results imply that a well-planned deployment

can achieve significantly lower detection time and at the
same time have lower resource requirements in terms of
monitored space. However, such a strategy can be prac-
tically viable only if major ISPs participate in the moni-
toring infrastructure.

6.3 Placement Assuming Partial Knowledge

Our analysis in the previous section assumed prefect
knowledge of the vulnerable population distribution —
a task that is arguably difficult to achieve, especially at
a global scale. For this reason, we investigate how ap-
proximate knowledge of the population density can be
useful in reducing detection time. To do so, we explore
a deployment strategy in which monitors are randomly
deployed within the top 5,000 (out of a total of 12,000)
/16 prefixes containing at least one host attempting con-
nections to port 80. The selected 5000 prefixes contain
90% of the total number of sources. Furthermore, un-
like previous cases where configurations with monitor
sizes equal to, or greater than /16 were deployed in the
top populated /8 prefixes, we deploy such monitors at
random throughout the IP space.
Intuitively, the coverage provided by this strategy is

reduced. For example, deploying 1024 /15 monitors
achieves only 20% coverage of the /16 logical layer as
opposed to 50% coverage when we assume full knowl-
edge of the population density. This reduced coverage
will potentially result in increased detection delay. The
reason behind this reduction is that the vulnerable popu-
lation distribution follows a power law and therefore the
majority of vulnerable hosts are concentrated in a small
number of prefixes.
Figure 11 shows the detection time for different size

and number configurations under this scenario. Ob-
serve that for deployments with monitor unit sizes less
than /16, the detection time is still significantly lower
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Figure 11. Detection time td of a single infected
host for different number of distributed mon-
itors deployed assuming partial knowledge of
the population distribution. (s = 10 scans/tick,
Pr = 0.9999, minimumdetection time is 33 time
ticks )

than equivalent deployments where random placement is
used (cf. Figure 9). Specifically, the minimum detection
time is 33 time ticks compared to 230 time ticks for ran-
dom deployments. Moreover, notice that the minimum
detection time is close to the minimum detection time (9
ticks) when perfect knowledge of the population density
is available. This is an encouraging result since it shows
that even with partial knowledge of the vulnerable pop-
ulation distribution, one still can significantly enhance
the detection capability of the monitoring infrastructure.

7 Conclusion and Future Work

Monitoring unused IP space is an attractive approach
for detecting security events such as active scanning
worms. Recently, a number of research proposals have
advocated the use of distributed network monitors to au-
tomatically detect worm outbreaks. Clearly, the effec-
tiveness of such a monitoring system depends heavily
on the monitors’ ability to quickly detect new worm out-
breaks. However, until now, a number of factors that
have direct implications on the detection speed of dis-
tributed monitoring systems were left unanswered.
In this paper, we focus on the effect of three impor-

tant factors, namely: (i) the aggregate size of the mon-
itored space, (ii) the number of monitors in the system,
and (iii) the location of the monitors in the IP address
space. Our results show that distributed monitors can
have detection times that are 4 to 100 times faster when
compared to single monitors of the same sizes. Addi-



tionally, we investigate whether information about the
density of the vulnerable population can be used to im-
prove detection speed, and our results show that even
given partial knowledge the impact on detection speed
is substantial; for some deployments the detection time
is seven times as fast compared to analogous monitor
configurations where monitors are deployed randomly
in the IP space. While precise knowledge about the vul-
nerable population distribution is probably unattainable,
particularly at a global scale, we contend that establish-
ing incremental knowledge of population density by ma-
jor service providers is not intractable.
As part of our future work, we plan to conduct a more

in-depth evaluation of the locality and stationary of the
vulnerable population, and how that impacts monitoring
practices. Moreover, we plan to explore other challenges
associated with distributed monitoring, particularly its
resilience to monitor failures and misinformation, effi-
cient strategies for information sharing, and appropriate
communication protocols to support this task.
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