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ABSTRACT

While malware models have become increasingly accurate ove
the past few years, none of the existing proposals accoanthé
use of Network Address Translation (NAT). This oversighpiisb-
lematic since many network customers use NAT in their loedt n
works. In fact, measurements we collected from a distrithiien-
eynet show that approximately 19% of the infected hostslecisi
NATted domains. To account for this fact, we present a mdul t
can be used to understand the impact of varying levels of N&AT d
ployment on malware that spread by preferentially scanttiedP
space. Using this model, we show that NATting impedes mawar
propagation in several ways and can have a significant imgract
non-uniform scanning worms as it invalidates the implisis@amp-
tion that vulnerable hosts reside in densely populatedetsbn
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D.4.6 [Operating System$: Security and Protection+avasive Soft-
ware
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1. INTRODUCTION

However, all of the models that have been presented thusfar a
sume that the infection views on both sides of a network bagnd
are identical. Unfortunately, the widespread deploymédrfire-
walls coupled with the use of Network Address TranslatioATN
severely distort these two views, and can lead to inaccunatgel
predictions. In this paper, we explore the influence of NATto&
spreading of malware that use non-uniform and localizedsiog
to spread. Our exposition is based on a refined model that-inco
porates the fact that many vulnerable hosts are deployedviate
address spaces.

To gauge the impact of address translation, we first estithate
number of infected sources located in private address spiage
analyzing traces collected from a conglomeration of nekwele-
scopes. As we show, dynamic addressing is a fairly commoa pra
tice — approximatelyl9% of the sources in our trace reside in
NATted domains. The model we develop shows that, at thid leve
of usage, address translation techniques introduce signifskew
in the prediction capabilities of existing malware spreadnod-
els. These predictions will increasingly depart from rigadis NAT
usage grows.

The rest of the paper is organized as follows: In Section 2 we
elaborate on the impact of NAT on malware infections and tre-c
lenges it creates for accurate forensic analysis. Sectjore8ents
our data collection efforts and the methodology we use teritife
prevalence of NATted sources. In Section 4 we provide the ana
lytical model and use it to examine the impact of varying le\a
NAT deployment on malware spreading in Section 5. We present
related work in Section 6 and conclude in Section 7.

2. OVERVIEW

The research community has been on a quest over the past sev-

eral years to discover ways to accurately capture the siprg &e-
havior of malware on the Internet. Understanding the iaties of
such behavior continues to be an important problem bechese1
sulting insights are invaluable when designing and evalgahal-
ware countermeasures. Indeed, analysis of past outbreaksdud

to a deeper understanding of malware dynamics and the fiading
have already been incorporated in a number of analyticaletsod
(eg., [8, 15, 20]).
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It should come as no surprise that the use of private addpeses
and network address translation techniques influences halw m
ware spreads. First, NAT devices reduce the percentagelioéru
able hosts that are globally reachable. The reason is thagéttie-
vices block connection attempts that originate from thesiolat by
default, thus protecting internal vulnerable hosts frorremal in-
fections. Even when port forwarding is enabled — usuallylima
specific services to be accessible from the global Interneinhy
a subset of the potentially vulnerable hosts is visible ttemmal
malware scans. Second, when a new host inside a privatessddre
space is compromised, NATting affects how efficiently thasttan
find other vulnerable hosts. This is especially true for nzanthat
spread through preferential scanning, includiag-uniform scan-
ning (e.g., CodeRed-II [6], Nimda [7], and MSBlaster [11]) and
localized scanning, in which infected hosts (predominantly) scan
their local address prefix. Recently, Rajethal. [17] showed that
localized scanning is widely used by botnets, and hence Initu
capture localized behavior may become increasingly ingodrin
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Figure 1: A Multi-stage Malware infection.

the near term.

The mere fact that NATted hosts are usually located in ladie a
dress space=.,10/8, 192.168/16) causes preferential scanning
malware to divert the majority of its scans towards the NATte
space rather than the globally routable IP space. Whilenteeted
machine can still contaminate other vulnerable hosts witte pri-
vate address space, locating these hosts can take a pixafybit
long time. This slowdown in infection speed arises becahse t
density of active hosts within private address spaces isrsrdf
magnitude lower than the host density in the global addneases
This is certainly the case when a private /8 address prefix, (
10/8) is used. Networks that use /16 private address spadaesé
another interesting behavior; preferential scans froradteéd hosts
in those networks will not only target the NATted space, Haba
contact the encompassing routable /8 prefix. The net effettiat
these parts of the IP space will receive a disproportionategnt-
age of scans by several kinds of malwarewhile this creates an
attractive measurement hot-spot as reported in [4, 9] ntbeased
traffic is an annoyance to the networks operating in thatxrefi

The use of NAT poses another obstacle to malware that employ
a multi-stage infection process. This multi-stage infatiprocess,
shown in Figure 1, is a common occurrence in botnets [17]hén t
first stage, a vulnerability that is remotely exploitableused to
transfer a shellcode that instructs the victim to initiaanection
back to the infector’'s IP address to download the actual @uaw
binary. The download constitutes the second stage of thkiexp
and usually occurs through a file transfer protocol such a&PTH
however the infector is located behind a NAT device then ttoe p
vided address points to a globally unreachable IP addriessslty
causing the second-stage transfer to fail.

Aside from slowing the spread of malware, NATting poses sev-
eral challenges to forensic analysis of malware [13, 16].esEh
challenges are related to the difficulty of uniquely ideyitify NAT-
ted hosts in the absence of explicit informatiemy(, [3, 4]). On one
hand, a group of infected hosts behind a NAT device with alsing
public address will appear at a network monitor as a sindecied
host thereby under-estimating the number of infected hdsts-
versely, few hosts behind a NAT device with a large number of
external addresses can inflate the estimation becausegsignse
scans from the same infected host will most likely be mapped t
several source addresses as they are re-written by the NAGede
Shannoret al. conjectured that this was indeed the case for a set of
addresses observed in the Witty worm outbreak [18].

In the next section we derive an initial estimate of the piavee
of NAT in malware traces. In Section 4 we quantitatively gzal
the impact of NAT on the spreading of different classes ofmaad.

'For exampleall locally addressed Code Red Il victims that use
192.168/16 addresses send half of their scans to the 192fi&.pr

3. ON THE EXTENT OF NAT USAGE

Estimating the prevalence of malicious (or infected) searhat
use NAT is a challenging task in its own right. Fortunatety, i
ferring whether or not an infected source uses addresslataTs
can be relatively easy for certain types of malware. As a aase
point, Casadet al. [4] showed that one can detect NAT usage by
leveraging the information from malicious traffic tracepttaed
at carefully located distributed monitors. The authorscéfmally
exploited the scanning behavior of CodeRed Il to detectciefd
hosts residing behind NAT devices that use the 192.168/&fixpr
Based on the observation that CodeRed Il sources send 50#iof t
scans to the encompassing 192/8 prefix. Casadb inferred that
more than 60% of the sources, in their 48-hour darknet tracese
NATted.

Similarly, by exploiting the fact that the Witty worm [10] ed a
fixed source port (4000) to send its packets, it is fairlyigtrdor-
ward to detect Witty victims residing behind NAT devices lasse
devices rewrite the packets’ source port [18]. Using theyitorm
packet traces obtained from CAIDA [5], we extracted all sesr
that sent Witty packets with source ports other than (400@) ob-
served that from roughly 60,000 unique Witty source IP asisks,
4,643 & 7%) had their source ports re-written.

While these results indicate that the use of NAT is fairly eom
mon, neither the result of Casadbal. [4] nor that derived from
the Witty dataset can be used to reliably infer a global estm
of NAT usagé. Doing so would require both longer monitoring
period and more diverse vantage points (especially as CeddIR
used a non-uniform scanning strategy). More importarttiy tech-
nique used to gauge the prevalence of NAT usage should nigitbe t
to any specific vulnerability.

In what follows, we provide another estimate of NAT usage by
examining malware collection logs captured at a distriduten-
eynet platform. While we make no claim that our approachdead
to a closer approximation of the global ratio of NAT usage,hee
lieve our preliminary results are more general than thossqumted
elsewhere as they do not suffer from the previously outlisieatt-
comings.

3.1 Inferring NAT usage

Our approach is based on inferring the presence of NATtetshos
from malware traces captured at a number of distributedecé-
sponders. In particular, we deployed a modified version ef th
Nepenthes malware collection tool [2] to a /24 prefix in ouwr in
stitution and 14 smaller monitors running on PlanetLab sddé]
with access to darknet space (covering from 4 to 12 IP adesgss
Nepenthes emulates a number of vulnerable services arettll
exploits sent via these services.

As noted earlier, the initial exploit in multi-stage infexts is
likely some form of MS-Windows shellcode containing a URhtth
hosts the malware binary. In most cases, this URL points back
the source that sent the exploit in the first stage. We carefiwer
determine which sources are located behind NAT devices ks pa
ing the log of collected URLs and extracting those sourcasuke
local IP addresses in the URL sent to the victim. Over a period
of one month, we observed a total of 14,651 unique sourcés tha
initiated first stage exploits in the local /24 network. Angahem,
2,782 & 19%) were NATted. Furthermore, the distributed nodes
observed 3,850 malicious sources during a monitoring peoid
one week, 7104 18.5%) of which used local addressing. These
results provide further evidence that NAT usage is fairlynoaon.

2Casadoet al. themselves acknowledged that the inferred NAT
ratio did not include hosts that use 10 /8 and 172.16 /12 addse
and is not generalizable to the overall NAT usage on the theter




4. ANALYSIS OF THE IMPACT OF 'NAT’
ON MALWARE PROPAGATION

We present a model that predicts the evolution of malwascinf
tions, accounting for the effect of NAT deployment in theelmiet.
The proposal is an extension to a model we previously deeel tp
study the impact of vulnerable population distributionsloternet
infections [15]. We consider the general case in which medvira
stances apply preferential scanning, using different hbdlies to
locate and exploit victims in their surrounding /16 and /8fixes
as well as random scanning to find victims in the global Irgern

We account for the effect of NATting by dividing the vulnetab
population into two categoriegi) the publicly reachable vulnera-
ble population including vulnerable hosts with public IRIezbses
in addition to NATted vulnerable hosts which are howeverljaljp
reachabledg., due to port forwarding), andi) the vulnerable pop-
ulation that resides behind NAT devices and is inaccess$ibla
the public Internet.
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Figure 2: The incoming scanning activity to a single /16 pref
with NATted domains.

Figure 2 illustrates the malware preferential scanningvigt

that reaches a routable /16 prefix containing a number of BATt
domains. The number of incoming scans in this case is sinmgly t

I, | Total number of infected hosts at time

s | Average scan rate per infected host

Py, | Probability of scanning a random address
Ps | Probability of scanning an address within the same
/8 prefix as the infectee
Pys | Probability of scanning an address within the same
/16 prefix as the infectee
V; | Initial number of vulnerable and reachable hosts
in the ;" /16 prefix

.7 | No. of infected hosts in thg™ /16 prefix at timei
C;.; | Total number of incoming scans into thé' /16
prefix at time;

Ty | Total number of NATted networks within thg"
routable /16 prefix

L; | Total number of scans within a particular NATted
network at timei.

f Initial number of vulnerable hosts in a particular
NATted network

d; Number of infected hosts in a particular NATted

network at time;

Table 1: Infection Model Notation.

The C;,; scans will infect members of the first population cate-
gory. The expected number of infected hosts in tHe/16 prefix
at timei + 1 is then equal to the number of infected hosts in the
previous interval plus the new infections due to scans thathed
vulnerable hosts This is expressed as:

1 \C%ij
Livi=1i; +(V; — L) [1 - (1 - 27) ]} 2

in which, Vj is the initial number of vulnerable hosts in ty‘]@ /16
prefix.
In addition to the infections due to the scanning activitythie

sum of the scanning components from infected hosts withéi th  public IP space, infected hosts within NATted domains wifeict

prefix (indicated ag” 6 in Figure 2), from infected hosts within the
encompassing /8 prefix (indicated &s), and from the entire in-

other vulnerable hosts within the same private space, diratvul-
nerable hosts from the second population categagy ublicly in-

fected population (thé% component). Observe that in the case of accessible vulnerable hosts)— assuming, of course, thatemal

the NATted infectees, the encompassing prefixes will beetads
the private address rather than their external routableespas a
result, preferential scans from these hosts will be divkettsvards
private (un-routable) space. For this reason, the numbigrcoin-
ing scans into each routable /16 prefix excludes any prefieien
scanning activity originating from NATted hosts. Using theta-
tion from Table 1, the sum of the three scanning componerugeab
can be written as:

Cij = Pgs(li; —Nij) +

/8) (/8)
PgS(Ii(,js _/\[i,js ) I P,sl;

28 216

@)

in this case P4, P, P, are the probabilities that an infected host
will send a scan to the encompassing /16, /8 prefix, and the en-

tire Internet, respectively. I ; is the number of infected hosts

within the j*" /16 prefix at timei; Ii(’/js) is defined similarly for the
surrounding /8 prefix.\; ; is the total number of infected NAT-
ted hosts that are publicly reachable within i#i& /16 prefix, and

N;és) is the total number of infected NATted and reachable hosts 2

in the /8 prefix surrounding thg” /16 prefix.

countermeasures, such as “hard-LANs” [19], are locallylolggd.

If we consider NATted domains that use /8 private addrésses
and assume, for simplicity, that hosts in these privateepace co-
located in the same /16 private address prefix, then the nuaibe
scans within that network domain can be written as:

P, P
L; = sdi<Pw+2—§+2T"6)

in which, d; is the number of infected hosts within a given NATted
network. Therefore, the number of additional infectionshivi a

single private address space can be expressed as:

di+1—di+(f—di)[1— (1_2%)%] ®)

in which, f is the initial number of vulnerable hosts in a given

NATted network.
Then, the total expected number of infected hosts at tine ste

i+ 1is simply the sum of the infected hosts in 21 /16 prefixes,

To isolate the impact of NAT we do not consider the node rerhova

rate due to patching or failure.

5As we show in Section 5, using NAT with /16 address spaag (
3For example, in the case of a host infected with Code Red I, 192.168 /16) causes the, scan component frorall NATted in-
P,; =0.375, P, =0.5andP, = 0.125. fected hosts to target a single prefeq, 192 /8).




Number of Vulnerable hosts
Average scanning rate)
per infected host

632,472
10 scans/sec

Size of initial Hit List 100
Local domain size 124
Number of publicly accessible 1

hosts per NATted domain
Number of runs

10 per experimen

Table 2: Analysis parameters.

including the infections that occur within all NATted netike that
are part of each /16 prefix:

16
2

Iiy1 = Z

Jj=1

T
[i+17j +Zdi+l,l (4)
=1

in which T is the number of NAT domains in thg" /16 prefix.
Notice that the private space is usually sparsely popukstete in-
fection rate within that space is substantially slower ttrenglobal
infection rate. In the next section, we show that this effeduces
the overall propagation speed of malware and could have sidon
erable impact as NAT deployment increases.

Finally, the observant reader will note that for malwaret thai-
formly scans the entire IP space, the address of any patiou
fected machine does not impact its scanning behavior. The on
impact of NATting in this case is that it decreases the rebleha
vulnerable population. Therefore, for the remainder of plaper
we only evaluate the impact of address translation on theigen
of malware that use preferential scanning.

5. EVALUATION

We now make use of the model presented in Section 4 to eval-
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Figure 3: Non-uniform scanning worm spreading when no
NATting is used and when 50% of vulnerable hosts are located
in private address spaces.

by external scans and can therefore only be contaminatedanss
from infected hosts within the private network. We consideiy-
ing degrees of NAT deployment by assuming different peiages
of domains that use private NAT spaces.

5.1 Non-uniform Malware Spreading

We first present results for non-uniform scanning worms by-si
ulating a Code Red Il worm using the parameters shown in Table
Figure 3 illustrates the general impact of NAT on the spnegdi
of the worm. The graph compares the worm propagation when
there is no NATting versus when 50% of the domains are NATted.

uate the impact that NAT has on malware spreading. As we have As the graph indicates, NAT generally slows down worm pr@pag

previously shown in [15], analytical models must use réialigul-
nerable population distributions if they are to accuratalydel the
behavior of worm outbreaks. For this reason, we drive ouluava
tion with a vulnerable population distribution extractedr a real
dataset. In particular, the dataset is provided by DShitX and
contains intrusion traces collected over a period of thremtims
from over 1,600 intrusion detection systems distributexiad the
globe. Given that the logs were obtained from IDS reportss it
safe to assume that they represent unwanted traffic origmat-
ther from compromised hosts or active scanners. We corisdruc
vulnerable host set by extracting the sources that atteonptec-
tions to port 86. Overall, the data contains 632,472 such sources.

We emulate the impact of NAT by segmenting the set of vulnera-
ble hosts into different network domains. For simplicitg assume
that all domains reside in equal sized /24 public addresxpse
We acknowledge that this is not necessarily the case in tiee-In
net today and different domain sizes can alter the rate ofvaral
evolutior!. Incorporating more realistic domain size distributions
is part of our ongoing work.

tion. This slow down is primarily caused by the fact tiEt NAT
shrinks the overall vulnerable population exposed to dlamam
scans. This effect is evident in Figure 3, in which infectfoom
public scans reaches saturation before the worm is ableféatin
the entire vulnerable population, af@) NAT expands the effec-
tive search space of the worm within the perimeter of the ATt
network domain. Networks that employ private address space
more sparsely populated compared to the routable publmespad
so it takes longer to find and infect the next vulnerable hdttiva
private network. As shown in Figure 3, the overall addeddtits
resulting from the infected NATted hosts grows at a much stow
rate compared to the global infection rate.

Next, we gauge the impact of different levels of NAT deploy-
ments on the spreading of the worm. We consider several NAT de
ployments including the actual percentage observed inrages
(=~ 20%). For this spectrum of deployments, we examine two
cases: first, we assume that NATted domains use 10/8 pridate a
dresses and second, we consider NATted domains using thEGB92
/16 private address space. Figure 4 graphs the evolutioheof t

We assume that each NATted network has one vulnerable hOStW()rm for the first case under Varying degrees of NAT dep|ow:nen

that is publicly accessible. This reflects common networkiads-
tration practices in which a number of hosts behind a NAT ckevi
are made accessible so that certain serviegs (veb servers) are
publicly available. The remaining vulnerable hosts aresaohable

5We assume in this case that these sources are infected amgl try
to spread the infection using the same vulnerability.

"For example, malware local spreading will be faster withirger
and more densely populated NATted networks.

Taken together, these results show that NAT significanticas the
model’s predictions, and must be taken into account to reflex
behavior of the worm accurately. Moreover, these resultgicn
our intuition that the deployment of NAT acts as an impeditrien
malware spreading.

Our results for NATted domains that use /16 private addneases
(omitted due to space constraints) show very similar tréodsose
in Figure 4. Intuitively, one would expect that malware pgp-
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Figure 4. Non-uniform scanning worm spreading for different
levels of NAT deployment.
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Figure 5: Non-uniform scanning worm spreading in the 192/8
prefix in the case of zero and 50% NATted domains.

tion in this case would be somewhat faster, because the d®nan
scanning component will be released to the public Interkietwy-
ever, because all these scans will be directed at a singlesf& p
(namely, 192/8), the overall increase in the speed of themisr
minimal. That said, a disproportionate percentage of scaigs
nating from all NATted infected hosts will consequentlygetrthe
192/8 prefix. The resulting outcome is that the worm propegat
much faster in that prefix compared to the rate of spread vbder
in other parts of the IP address space (see Figure 5).

5.2 Localized Malware Spreading

As mentioned earlier, localized scanning, in which eachdtéd
host scans its local address prefix, represents an impanfaotion
vector in botnets [17]. Therefore, it is also important t@arstand
the impact of network address translation on the spreadexfeth
malware strains.

Figure 6 represents the spreading behavior of botnets taat s
the encompassing /8 prefix of each infected host using threnpar
ters listed in Table 2. It is evident from the graph that thfedtion
spread is slower than the non-uniform case. This can be iexola
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Figure 6: Spreading behavior of malware using /8 prefix

localized-scanning under varying degrees of infected NAEd
hosts.

by the fact that unlike non-uniform scanning worms, the lizeal

scanning malware has no “island hopping” component thatsl|
the infection to move across different prefixes. As a resubi-

ware instances uselessly scan the same prefix after allliterable
hosts have been infected. More importantly, the impact dfesbs
translation is amplified in this case since NAT devices catghy

contain the scanning activity within the perimeter of tharsely
populated private networks.

Finally, for malware classes that spread via the multi-stag
fection process illustrated in Figure &.d., botnets), NAT poses
another obstacle; regardless of the scanning techniqukhysthe
malware, an infected host behind a NAT device will not sudcee
in transferring the malware binary to a new infectee outslue
network perimeter. Therefore, we conjecture that increadAT
deployment will impede botnets that spread by active seanni

6. RELATED WORK

Worm models have undergone a series of refinements over the
past few years, leading to increasingly accurate repratiens of
worm behavior in the wild. For example, Zat al. presented
a “two-factor” worm model that extended the classical epiie
model to account for the removal of infected hosts (due tolpat
ing or failure) and demonstrated how accounting for thatdiac
more accurately reflects the infection dynamics of Code R2ad]|
Chenet al. subsequently presented the “AAWP” model which was
the first attempt to model non-uniform scanning worms [8].r&1o
recently, Rajalet al. demonstrated the significance that the dis-
tribution of vulnerable hosts has on the spreading of naferm
scanning worms and presented an extended model that ascount
for this factor [15]. However, none of these models accoont f
the skew introduced by NAT and evaluate its impact on malware
spreading.

The development of techniques for reliably detecting hbsts
hind a NAT device remains an open problem. Bellovin [3] pre-
sented a technique to count the number of hosts behind a NAT de
vice by exploiting the evolution sequence of the_l Dfield in the
outbound packets. Shannehal. pointed to the potential skew
introduced by NAT and DHCP and its subtle implications in the
analysis of the spreading behavior of the Witty worm [18]. riglo
recently, Casadet al. suggested the possibility of using unwanted



traffic to measure important Internet-wide characterssfij. The
authors showed that one can infer NAT usage by studying #ie-sc
ning behavior of Code Red Il sources captured by carefuttptied
distributed network monitors. Similar insights were alsded by
Cookeet al. who showed that the non-uniformity in the scanning
behavior of infected hosts, due in this case to flaws in thewsr
random number generator and side-effects of NATting, c&a cr
ate worm “hot-spots” [9]. Our work complements these effdny
exploring another avenue for estimating NAT usage by examgin
malicious traces and studying the failed-connection r&teati-
stage infections.

Finally, some distantly related work is that of Antonatisal.
that illustrated the potential of address space randomiz#b pro-
tect against hit-list worms by continuously changing theald?
dresses of active hosts [1]. Our work, on the other hand dgged
on illustrating the overall impact of NATting as an impedim¢o
malware spreading, and we argue that it is an important faloss
must be considered in modeling non-uniform malware spreadi

7. SUMMARY

In this paper, we show that the widespread use of network ad-
dress translation has significant implications on how diffe fam-
ilies of malware spread on the Internet. Using analyticabeto
ing, we quantitatively show that NATting acts as an impedihte
the propagation of malware that spread by preferentialyneng
the Internet. This effect is due to the fact that NAT effeelyin-
creases the address space that active scanners must exftoes
over, NATting decreases the density of the vulnerable hopup
lation residing in network domains that use private addsgexce
and in doing so, negates the advantage that non-uniforrmsan
provides. Finally, we note that the use of NAT causes mtetiys
infections to fail at a high rate since the URLs transmittethiese
infections hold private network addresses that are unaaelrom
the public Internet.
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