
Fast and Evasive Attacks:

Highlighting the challenges ahead

Moheeb Abu Rajab Fabian Monrose Andreas Terzis

Johns Hopkins University
Baltimore MD 21218, USA,

moheeb, fabian, terzis@cs.jhu.edu

Abstract. Passive network monitors, known as telescopes or darknets,
have been invaluable in detecting and characterizing malware outbreaks.
However, as the use of such monitors becomes commonplace, it is likely
that malware will evolve to actively detect and evade them. This paper
highlights the threat of simple, yet effective, evasive attacks that under-
mine the usefulness of passive monitors. Our results raise an alarm to the
research and operational communities to take proactive countermeasures
before we are forced to defend against similar attacks appearing in the
wild. Specifically, we show how lightweight, coordinated sampling of the
IP address space can be used to successfully detect and evade passive
network monitors. Equally troubling is the fact that in doing so attack-
ers can locate the “live” IP space clusters and divert malware scanning
solely toward active networks. We show that evasive attacks exploiting
this knowledge are also extremely fast, overtaking the entire vulnerable
population within seconds.

Index Terms—Keywords: Network Monitoring, Network Worms,

Invasive Software, Network Security.

1 Introduction

Passive network monitors (or so-called network telescopes [17]) have provided
a wealth of information in recent years about active scanning malware (e.g., [18,
30]). The relative ease of deploying passive monitors has made them instrumental
in a number of malware centric proposals, especially for early detection of global
outbreaks (e.g.,[36]), containment and quarantine (e.g., [15, 19, 22]), and forensic
analysis [28, 30]. However, much of this work—including our own—has only been
possible because the attacks observed thus far have been rather crude in nature.
Arguably, the lack of sophistication in recent outbreaks has been justifiable, as
thus far, there has been little reason to do otherwise.

It is clear however, that attackers will naturally become more savvy as more
elaborate defenses are deployed. Indeed, since passive network monitors were
introduced, a number of Internet malware outbreaks have applied non-uniform
scanning to find victims and in doing so, limit the activity observed by central-
ized monitors (e.g., CAIDA’s network telescope [17]). In response, the research
community has advocated the use of distributed telescopes (e.g., [1, 36]) as a

2 M. Rajab, F. Monrose and A. Terzis

way to increase detection speed by synthesizing multiple views of the infection
as seen from various vantage points [27]. Furthermore, active responders (e.g.,
honeynets) are now widely used to lure attackers, and capture the attacks’ pay-
loads to generate malware signatures [11, 16] in near real-time. Unfortunately,
even the most sophisticated techniques for analyzing the data captured by net-
work monitors are vulnerable to evasive tactics that refrain from scanning these
monitors in the first place. In fact, recent evidence indicates that certain classes of
malware already avoid well-known monitors (e.g., Agobot [37]), and completely
avoid prefixes of certain agencies 1.

In this paper we demonstrate the impending threat to network monitors by
presenting a simple technique that can dynamically evade such monitors. The
outlined approach raises a number of challenges for the research community
because unlike previous techniques that use static “do-not-scan” lists, this ap-
proach can produce agile evasive malware that proceeds in an online fashion and
completely undermines the utility of passive monitors. Specifically, the proposed
technique employs lightweight sampling of the IP space to identify live prefixes,
that is, prefixes that contain live networks, and isolates empty prefixes that
are either unused or dedicated to passive monitoring. Sampling simply involves
sending a small number of probes (e.g. TCP SYN packets) to random addresses
within each target prefix. A single response from any address indicates that the
prefix contains live hosts and is therefore classified as live. Otherwise, the prefix
is identified as empty. Our results show that this technique successfully isolates
large collections of distributed monitors and discovers 96% of the vulnerable
population by probing less than 5% of the entire IP space. While the main focus
of this paper is showing that sampling effectively evades passive network moni-
tors, the proposed technique can be easily extended to evade active responders;
if not designed correctly, active responders generate distinctive behaviors that
are detectable by the same sampling mechanism.

To further illustrate this threat, we present malware infection strategies that
use knowledge assembled from offline or online sampling to divert the infection
towards live prefixes. We show that malware exploiting these strategies can in-
fect more than 95% of the vulnerable population in tens of seconds while still
successfully evading large collections of distributed passive monitors.

The rest of the paper is organized as follows. The sampling process, a core
component of the proposed evasive techniques, is described in Section 2 and
evaluated in Section 3. In Section 4 we provide examples of practical malware
spreading strategies that employ such evasive techniques. Rather than provid-
ing guidelines for attackers, our goal is to highlight the challenges that network
monitors must overcome. In that regard, in Section 5 we discuss a number of
promising directions that can address these challenges. We highlight the differ-
ences between our work and related previous proposals in Section 6 and close in
Section 7 with concluding remarks.

1 For example, we have seen botmasters educating each other to avoid scanning
prefixes listed at http://professionalsecuritytester.com/modules.php?name=

News&file=article&sid=70.

Fast and Evasive Attacks 3

2 Discovering the Live Population via Sampling

Our sampling technique takes advantage of the highly clustered nature of
the allocated and live IP space [2, 13] in order to efficiently detect prefixes that
contain live hosts. Specifically, we use a hierarchical sampling technique (shown
pictorially in Figure 1) that follows a depth-first search strategy that, at first,
probes addresses selected at random from each of the /8 prefixes. These probes
can take many forms, and might be a TCP SYN packet, an ICMP packet, or
an ACK packet with a popular source port (specially crafted to bypass stateless
firewalls). If at least one response is received, the corresponding /8 prefix is then
marked as live and the sampling process proceeds to send probes to the /16
prefixes within that /8. If no response is received, then the prefix is marked as
empty and no further probes are sent to that prefix. For each live /16 prefix, the
process continues in search of any live /24 prefixes.

live

emptylive

empty
/8 Prefixes Layer

/16 Prefixes Layer

/24 Prefixes Layer
empty

liveempty empty

Fig. 1. Diagram illustrating the proposed hierarchical sampling process.

Since the main goal of the sampling process is to detect passive network
monitors, it is important that the process itself evades detection. Therefore, to
stay undetected, the sampling process must send as few probes as possible to
each prefix and, at the same time, detect the live and empty prefixes with high
accuracy. Additionally, the probing mechanism must be chosen in such a way
that complicates the detection of probes and makes it difficult to correlate the
probing activity itself. In this way, generating any useful signature for detecting
this activity quickly, becomes a complex task. These evasive measures can be
achieved, for example, by selecting popular target ports (e.g., port 80) that
easily “blend” the sampling probes within large volumes of innocuous traffic.

2.1 Sample Size Estimation

As stated earlier, the goal of the sampling process is to detect all live prefixes
while sending as few probes as possible. In what follows, we derive the maximum
number of samples n necessary to classify prefixes with high confidence. While
applicable to all levels of the sampling hierarchy, the discussion that follows
describes how to derive the number of samples n for the /16 prefix layer. We do
so because the address allocation at the /8 prefixes is publicly available (e.g.,

4 M. Rajab, F. Monrose and A. Terzis

P (g) Distribution of live hosts at the /16 prefixes layer
p∗(g) Marginal distribution of live hosts at the /8 prefixes layer
pl,g The probability of probing a live host in group g

β Threshold probability of liveliness for a certain prefix
N The total live population size
n Maximum number of probes required to classify a prefix as live or empty
α Confidence level of the sampling classification decision
V Total number of vulnerable hosts
It Number of infected hosts at time step t

s Average scan rate (scans/time step) per infected host
p Probability of contacting an address in the live IP space

Table 1. Notation used throughout the paper.

IANA [9] and ISC [10]) so one can easily preclude all unallocated /8 prefixes.
Moreover, Zeiton et. al. [38] showed (in a study that applies only to /24 prefixes)
that by exploiting common network administration practices 2 it is possible to
use n = 11 probes and still detect more than 90% of the live /24 prefixes.

Sampling Model Let pl,g be the probability of probing a live host in prefix g.
Then given n samples, the probability α of receiving at least one response from
prefix g is:

α = 1 − (1 − pl,g)
n

(1)

Our objective is to find the number of samples n necessary to contact at least
one live host within a certain prefix with probability α. Therefore, n is given by:

n =
log (1 − α)

log (1 − pl,g)
(2)

Ideally, n should be large enough to detect live /16 prefixes containing a
single live host. This, however, would require a prohibitively large number of
probes (e.g., approximately 301,000 probes for confidence α = 0.99). Fortunately,
it is unlikely that such /16 prefixes are in use today—in reality, live prefixes
contain significantly more live hosts. Therefore, from a practical standpoint, the
goal is to detect the /16 prefixes that contain the majority of live hosts and
exclude the empty or sparsely populated prefixes. With this in mind, we amend
the definition of an empty prefix to include prefixes with live host occupancy
(pl,g) below a certain threshold β. Accordingly, the maximum number of probes
necessary to detect a non-empty prefix can be calculated by replacing pl,g with
β in Equation 2.

Notice that as the threshold β increases in the denominator of Equation 2,
the number of required samples, n, decreases. On the other hand, if β is too
large, a significant number of live prefixes could be potentially misclassified as
empty. Therefore, the goal is to determine a value for β such that the sampling

2 Namely, probing addresses commonly assigned by network administrators (e.g.,
a.b.c.1, a.b.c.129, etc.)

Fast and Evasive Attacks 5

 1e−05

 1e−04

 0.001

 0.01

 0.1

 1 10 100

P
D

F

Prefix rank

P0.99

Fig. 2. Illustrative figure showing the marginal distribution of the Internet live hosts
p∗(g) that is used to estimate P (g). The unshaded area represents the 99% of the live
population contained in densely populated prefixes, each with a fraction of the total
Internet population greater than the cutoff P0.99.

process detects the live prefixes that contain the majority of the live population.
In more specific terms, we define β as the threshold value of live host occupancy
(pl,g) at which the sampling process—with high probability—detects the set
of live prefixes that contain 99% of the total Internet live population. Clearly,
finding this set of live prefixes requires knowledge of the distribution of live hosts
over the /16 address prefixes. We term this distribution as P (g), which denotes
the fraction of the overall Internet live population residing in the /16 prefix g.
Assuming that P (g) is known, pl,g can then be expressed as:

pl,g =
P (g) · N

216
(3)

where N is the total number of live hosts in the Internet. The numerator in the
expression above is the expected number of live hosts in /16 prefix g, while the
denominator is the size of a /16 prefix.

As illustrated in Figure 2, 99% of the live population (the unshaded area)
is contained in the most densely populated live prefixes with P (g) greater than
a cutoff probability termed P0.99. Therefore to detect these live prefixes we set
(P (g) = P0.99) in Equation 3. Calculating pl,g in Equation 3 at the point corre-
sponding to (P (g) = P0.99) yields the minimum threshold occupancy β required
to calculate the maximum number of samples n.

Unfortunately, P0.99 cannot be directly determined since the distribution
P (g) is unknown. Indeed, if this distribution was known the entire sampling
process would be superfluous. While P (g) can be reliably estimated using a pilot
Monte Carlo study, this would require a large sample size. Instead, we consider
how P (g) can be estimated using a small learning set of live IP addresses that
can be easily obtained from various sources (e.g., a pilot limited-scale random
probing, historic logs, or traces of traffic arriving at unused IP space). Using

6 M. Rajab, F. Monrose and A. Terzis

this dataset, we estimate p∗(g), the marginal distribution of P (g), defined as the
distribution of live hosts at the /8 prefix level. We derive p∗(g) by aggregating
the IP addresses from the learning set to their common /8 prefixes. Due to space
constraints, the discussion about the quality of this estimator is presented in the
extended version of this paper [26] in which we derive a theoretical error bound
for this estimator. Our results show that with a small learning dataset of only
20, 000 live IP addresses one can estimate distribution p∗(g) with an empirical
estimation error of e = 4.3 × 10−5.

Given p∗(g), we can determine the cutoff probability P0.99. Then, using an
estimate N of the number of lives host in the Internet we find the number of live
hosts in the /8 prefix corresponding to P0.99. Assuming that hosts within that
particular /8 prefix are uniformly distributed across all of its /16 siblings 3 (i.e.,
P (g) = P0.99/256), then from Equation 3, β = P0.99·N

256 . 216 . Finally, n can now be
calculated by substituting pl,g with β in Equation 2.

3 Sampling Process Evaluation

First, we illustrate the sampling process by using two distributions of live
hosts derived from two independent datasets. The first dataset was obtained from
DShield [6] and consists of intrusion logs from over 1,600 intrusions detection
systems distributed around the globe. The second dataset was collected at a
local darknet covering a large number of /24 prefixes. Table 2 summarizes the
statistics for both datasets. From each dataset, we independently derive two
distributions: one for live hosts at the /16 level and another at the /8 level.
Although collected from two distinct sources, the distributions at the /8 level are
strikingly similar (see Figure 3) 4. The reason behind this similarity is due to the
fact that vulnerable hosts in both cases are selected from the same underlying
distribution of live hosts which confirms a similar observation recently made
in [2]. In what follows, we use these distributions as representatives of the live
host distribution over the whole Internet.

DShield dataset

Data Collection Period three months (Oct. to Dec., 2004)
Total Unique sources 31,864,871
Sources attacking port 80 632,472

Darknet dataset

Data Collection Period one month (Oct., 2005)
Total Unique sources 1,153,599

Table 2. Summary of the data-set

3 While this is not the case in practice, this assumption does not skew our calculations
significantly since it is only applied to the sparsely populated /8 prefix with density
≤ P0.99.

4 A similar relation was observed for the /16 distributions but is not shown due to
space constraints.

Fast and Evasive Attacks 7

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1 10 100 1000

P
D

F

Prefix Rank

darknet dataset
DShield dataset

Fig. 3. Fraction of live addresses per /8 prefix for the DShield dataset compared to
the darknet dataset.

Following the process described earlier, we first estimate the marginal live
host distribution over the /8 prefixes (p∗(g)) using a small learning dataset of
live IP addresses. A uniform random sample of 20,000 source IP addresses taken
from the darknet dataset is used as the initial learning set. From p∗(g) we find
the cutoff live population density P0.99. In this case P0.99 = 0.00065. Assuming a
population of approximately 300 million live hosts [10], the estimated number of
hosts in the /8 prefix with density P0.99 is 180,000. Assuming that these hosts are
uniformly distributed among its constituent /16 prefixes, we find that β = 0.012.
This corresponds to /16 prefixes that contain as few as (0.012 × 216 = 760) live
hosts. Finally, substituting β in Equation 2 we find that n = 400 samples. This
means that using a maximum of 400 probes per /16 prefix it is possible, with
high probability (α = 0.99), to detect the /16 prefixes that contain 99% of the
overall Internet live population.

To validate the above result, we simulated the sampling process over a syn-
thetic population of 300 million live host, distributed according to the DShield
dataset. The simulated sampling process simply generates up to 400 random IP
addresses from each /16 prefix. If at least one IP address exists in the hypothet-
ical live host set we mark that prefix as live. Our results show that the sampling
process successfully detected live prefixes containing 98% of the live population
and isolated all empty and sparsely populated ones.

However, an attacker’s ultimate purpose is to find the vulnerable popula-
tion (i.e., the subset of the live population that is susceptible to the attack).
Therefore, a pertinent question is what percentage of the vulnerable population
is contained in the live prefixes detected by the sampling process. To answer
this question, we generated a hypothetical vulnerable population by extracting
all the sources from the DShield dataset that contacted port 80 and mapped

8 M. Rajab, F. Monrose and A. Terzis

each source to its corresponding /16 prefix. Our results show that 96% of the
addresses from the vulnerable population are contained in detected live prefixes.
This result shows that the sampling process accurately detects live prefixes with-
out undue loss of the vulnerable population.

That said, the above trace-driven simulation implicitly assumes that all live
networks are reachable and so responses (or lack thereof) to the sampling probes
are indicative of network liveliness. In practice, perimeter security defenses such
as firewalls that silently drop probes, can decrease the reachability of the live
address space, negatively impacting the accuracy of the sampling process. In the
next section, we evaluate the impact of such defenses on the effectiveness of the
sampling process through a large scale IP space probing experiment.

3.1 Results from the wild

We further explored the effectiveness of this approach by conducting a large
scale probing experiment based on the methodology presented in Section 2. The
set of /8 prefixes sampled in this experiment was selected from publicly available
information (e.g., IANA [9] and ISC [10]) and excludes all unallocated or reserved
/8 prefixes. We also excluded “sensitive” prefixes such as those used by certain
government agencies. The outcome of this selection process was a list of 69 /8
prefixes. These prefixes were then sampled using 256 nodes of the PlanetLab
distributed platform [21], each of which were assigned a set of /8 prefixes. Each
node selected a /16 prefix from its assigned set and sent a maximum of (n = 400)
SYN packets with destination port 80 to randomly generated IP addresses within
that prefix. Probes were sent at a rate of one probe every 5 seconds 5. Once the
first response was received from an IP address within the probed prefix, the prefix
was marked as live and outstanding probes to that prefix were terminated. If all
the 400 samples received no response, the prefix was marked as empty.

The best way to validate the accuracy of the sampling process is to compare
the results to the actual address space usage. Unfortunately, that information
is not readily available, and so in lieu of that we resort to a simple heuristic
to indirectly assess the quality of the sampling results. Specifically, using BGP
snapshots from RouteViews [29], we examine the reachability of the prefixes
we probed. The intuition is that prefixes that were not advertised in the BGP
snapshots are unreachable and therefore should appear as empty in the sampling
results. Consequently, if the sampling process marks a non-advertised prefix as
empty, then the sampling decision is indeed correct. Note that the converse is
not true—prefixes that have no live hosts can still be reachable. For instance,
address space monitored by a network telescope is practically empty space but
it is advertised in order to receive the “unwanted” traffic.

Figure 4 visualizes the results of the probing experiment. The x-axis shows
the probed /8 prefixes. To preserve the privacy of these networks, we anonymized
the first octet of these prefixes and present them in a random order. The y-axis
shows the /16 prefix index within each /8. Each block in the map is colored ac-

5 The choice of the target port as well as the probing rate are specific to the conditions
of our experiment. In practice, faster and more sophisticated techniques can be used.

Fast and Evasive Attacks 9

Anonymized /8 Prefix

/1
6

P
re

fix

 0 10 20 30 40 50 60
 0

 50

 100

 150

 200

 250

empty/unreachable

empty/reachable

live

detected network monitor detected network monitor

Fig. 4. Summary of results from the probing experiment.

cording to the sampling result of the corresponding /16 prefix. The white blocks
in the figure show the empty and unreachable (non-advertised) prefixes. Overall,
63% of the empty prefixes were not advertised in the RouteViews dataset. The
gray blocks show empty, but reachable, prefixes. These prefixes correspond to
allocated but unused space or to passive network monitors. Interestingly, the
sampling process successfully detected two large network monitors belonging to
two different research institutions, which we verified using out-of-band informa-
tion. All the detected live prefixes, shown by the black clusters on the map,
were advertised in the RouteViews dataset. Finally, notice that the detected live
prefixes within each /8 are highly clustered, which is a direct result of common
prefix allocation practices.

The sampling process sent a total number of 3.3 million probes, which is
significantly less than the 2.43 billion probes used by Bethencourt et.al. [3] 6. In-
terestingly, the number of probes required to detect a live prefix follows a heavy
tailed distribution with a mean of only 50 probes. This is due to the underly-
ing live host distribution, and shows the effectiveness of the bound derived in
Section 2.

Next, we examine the percentage of the live population that resides in the
detected live prefixes. We do so using the two datasets mentioned earlier (see
Table 2). Of all the sources that reside in the probed /8 prefixes, 86% of the
DShield sources and 88% of the darknet sources belong to live prefixes detected
by our probing experiment. This result further proves the effectiveness of the

6 The total number of probes in [3] was actually ∼ 9 billion, but we scale it to the 69
/8 prefixes we targeted.

10 M. Rajab, F. Monrose and A. Terzis

probing process in locating the majority of the live population. Moreover, it
shows the minimal impact that current network perimeter defenses have in hiding
the live address space.

While the previous experiment tested the accuracy of the sampling process
at the /16 prefix level, we also examined its effectiveness at the /24 level. To
do so, we selected two /8 prefixes belonging to two different major ISPs and
applied the sampling process to detect live /16 and /24 prefixes. We found that
the sampling process was equally effective in detecting these prefixes, requiring
only 5 probes, on average, per /24 prefix.

4 Evasive Malware Attacks

Without question, the sampling mechanism presented in Section 2 can po-
tentially be abused for nefarious purposes. For example, information about the
location of live hosts could be exploited to launch targeted attacks against se-
lected prefixes—a behavior widely exhibited by botnets. More importantly, mal-
ware strains that incorporate knowledge about the location of empty prefixes to
guide their scans could potentially evade detection by passive network monitors.
We demonstrate the practicality of this threat through two sample infection
strategies outlined in the sections that follow. Later, we turn our attention to
ways in which this threat can be mitigated.

4.1 Worm Spreading using off-line sampling knowledge

We first consider a scenario where the attacker samples the address space
prior to launching the actual attack. The knowledge from the sampling process is
encoded and shared as a hierarchical bitmap (similar to that shown in Figure 5.a)
representing the live prefixes at each layer of the hierarchy.

1 1 11

 256 bits 256 bits

Live /16s

a. Off-line Samplimg b. Online

Completed /16s
Sampling Results

Live /24s

Fig. 5. Part (a) shows the information collected during offline sampling for a given /8;
the index of the bitmap represents the prefix ID. Live prefixes are encoded as “1” in
the bitmap and only live prefixes are expanded. Part (b) shows the online case where
nodes only share progress information.

The infection phase begins by targeting an initial hit-list to which the attacker
disseminates the constructed bitmap. Each infected node from the hit-list then
starts scanning the IP space uniformly, but only sends scans to IP addresses

Fast and Evasive Attacks 11

Number of Vulnerable hosts 630,000
Average scanning rate per infected host (s) 350 scans/sec
Size of initial Hit List 256
Scanning Algorithm Uniform with evasion
Monitors configuration 256 /16 (randomly deployed)
Network Delay µ = 50 ms , σ = 20 ms
Sampling Interval per /16 prefix 3 sec
Sampling Interval per /24 prefix 1 sec
Number of delegated /8 prefixes per host 1
(for the on-line case)

Table 3. Worm Simulation Parameters.

within live prefixes. Furthermore, each new victim receives a copy of the bitmap
along with the malware payload.

Propagation Model: This infection strategy can be modeled by extending
the worm spreading models presented in [4, 27]. The worm search space in this
case is reduced from the entire 232 IP address space to the sum of the space
covered by all the detected live prefixes. Therefore, the probability of contacting
a certain host is equal to the probability (p) of contacting a host in the live
space. Given p, the expected number of infected hosts It+1 at time t+1 is given
by:

It+1 = It + (Vt − It)
[

1 − (1 − p)
sIt

]

(4)

where Vt is the total number of vulnerable hosts and sIt is the total number
of scans generated by all currently infected hosts It, each scanning at a rate
of s scans/time step. Since p > 1

232 the infection speed is higher than that of
a uniform scanning worm. Moreover, since p increases as the live portion of
the address space decreases, worm speed increases proportionally to the size
of the un-scanned (empty) space. Therefore, sampling not only improves the
stealthiness of the worm but increase its spreading speed as well.

We evaluate malware spreading in this case via simulation and compare it to
a conventional uniform scanning worm outbreak. The simulation parameters we
used are shown in Table 3. Network monitors in our simulation are abstracted
as IP prefixes that record the source IP address of each connection attempt.

The sampling process is simulated first, as described in Section 3. In addition
to detecting the live prefixes that contain 96% of the target vulnerable popula-
tion, sampling classified all the 256 /16 monitor prefixes as empty after sending
only 400 probes to each monitor. In practice, this small number of scans has a
very low likelihood of triggering alarms given the sheer amount of background
“radiation” that is continuously received at network telescopes [20]. Once the
sampling process ends, we simulate the worm spreading over the detected live
prefixes. Figure 6 illustrates the infected fraction of vulnerable hosts versus time
compared to a uniform scanning worm. First, notice that since the uniform scan-
ning worm scans the entire IP space each infected host will send at least one scan
to the distributed network monitors at some point in the infection cycle. These

12 M. Rajab, F. Monrose and A. Terzis

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

In
fe

ct
ed

 fr
ac

tio
n

of
 h

os
ts

Time (sec)

sampling w/ global knowledge
uniform (actual)

monitors view

Fig. 6. Fraction of hosts infected over time for an evasive worm compared to ordinary
uniform scanning worm with the same parameters.

contacts are recorded by each network monitor generating the combined moni-
tors’ view also shown in Figure 6. While the 256 /16 monitors accurately track
the evolution of the uniform worm (in fact, the two lines overlap in the figure),
the worm that exploits the knowledge from sampling remains invisible. More-
over, since the sampling worm targets only live prefixes it spreads significantly
faster than its uniform counterpart.

Including the hierarchical bitmap in the worm payload results in a relatively
large footprint; nearly 568 KB based on the evaluation in Section 3. This short-
coming can be easily alleviated by applying other mechanisms to disseminate
sampling information among the infected hosts. A simple alternative is to incre-
mentally cover the address space by exchanging bitmaps that cover a single /8
prefix bitmap at a time. In the next section, we illustrate a strategy that incor-
porates the sampling process in the actual infection. Unlike the offline case, this
strategy is immune to short term changes in the address space usage. Moreover,
as we show next, the worm payload is significantly reduced in this case.

4.2 Online Worm Spreading Strategy

The online worm variant incorporates the sampling process into the actual
infection. As before, we assume that the attacker starts with an initial hit-list of
vulnerable hosts. Each host in the hit-list is delegated a number of /8 prefixes.
Once infected, the infectee selects a random /8 prefix from the group of delegated
prefixes and starts sampling it using the hierarchical sampling process to detect
the live /16 and /24 prefixes. Once the first response from a live /24 prefix
is received, the worm activates its scanning vector and attempts to infect any
vulnerable hosts in that /24 prefix.

To avoid re-sampling, each worm instance maintains a bitmap (see Figure 5.b)
that tracks the already sampled /16 prefixes within the delegated /8 prefixes.

Fast and Evasive Attacks 13

merged bitmap

merged bitmap

backward information

merged bitmap

reinfection

new infection

n2

n3n4

n1

Fig. 7. Example of backward information sharing as a result of re-infection. Here, n1

re-infects n3 which in turn transmits its progress to n1 when both nodes merge their
bitmaps. n1 can now disseminate this updated information to subsequent infectees
(e.g., n4).

Nonetheless, this mechanism by itself cannot eliminate re-sampling across dif-
ferent worm instances. Doing so requires some form of continuous information
exchange among worm instances. However, this can be easily accomplished by
taking advantage of the inherent communication channel provided by the infec-
tion process. In particular, the worm instance can simply transfer a bitmap that
represents its current progress to each new infectee. In this way, the infectee
does not re-sample or re-scan prefixes already scanned by its infector. Addition-
ally, as Figure 7 illustrates, infected hosts can exploit the re-infection process
to continuously update their bitmaps. Notice that in this case the information
exchanged, as well as the size of the worm payload, is significantly reduced com-
pared to the offline case—now, only 256 bits are required to track the sampling
progress within an entire /8 prefix.

As before, we evaluate the online infection strategy using the simulation pa-
rameters from Table 3. The left line in Figure 8 represents the evolution of the
worm over time. Again, notice that the worm successfully evades detection with
fewer than 400 sources sending probes to any of the distributed monitors (out
of a total of 600,000 infected hosts). In addition, the worm’s infection speed is
not severely reduced by the overhead of the sampling process—it still reaches
saturation in under 500 seconds. It is also noteworthy that even without hav-
ing to continuously estimate the fraction of infected hosts (as required by Ma
et.al. [16]), the worm self-terminates its scans upon saturation after ∼1050 sec-
onds.

Finally, one would expect that infected nodes that fail or are immunized dur-
ing the worm outbreak would result in losing the parts of the IP space delegated
to the failed nodes. However, as the right line in Figure 8 illustrates, even with a
node failure rate 7 of 2% the worm still infects all the vulnerable population. This
is because we deliberately chose a sub-optimal redundancy reduction scheme in
which certain prefixes were scanned by more than one host—a tactic that can
be easily used by attackers.

7 We define the failure rate as the percentage of infected nodes per second that simply
stop scanning either because they are treated or because they fail.

14 M. Rajab, F. Monrose and A. Terzis

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

In
fe

ct
ed

 fr
ac

tio
n

of
 h

os
ts

Time (sec)

sampling worm (actual)
2% failure rate

Fig. 8. Fraction of hosts infected over time for an online sample-and-spread strategy.

5 Countermeasures and Challenges

To maintain their future value, current passive malware monitoring practices
must evolve to face the threats posed by evasive attacks. In what follows, we
discuss a number of promising research directions and the pertinent challenges
that need to be addressed in order to counter this emerging threat.

Increased Network Surveillance. Given the proliferation of malware on the In-
ternet, it is fair to assume that more resources will be allocated to build early
warning systems. To better understand the ability of such distributed warn-
ing systems to detect an on-line evasive worm, we consider the case in which
a distributed monitoring system comprises a heterogeneous mix of a single /8
monitor, 256 /16 monitors, and a collection of 1024 /24 monitors. The /24 mon-
itors are deployed within heavily populated prefixes as recommended in [27],
while the rest are deployed randomly over the IP space.

Figure 9 depicts the actual onset of the worm compared to the collective
view of all monitors in the distributed system. Although the monitors’ view is
slightly enhanced compared to the results from the previous section, it is still
severely limited; the monitors only received probe traffic from 1% of the infected
population. To make things worse, these results assume an idealistic condition
where receiving a single probe from an infected host is enough for a monitor
to deduce that the host is indeed infected and instantaneously notify all other
monitors in the distributed system.

A promising protection against such evasion techniques is to use smaller mon-
itors. For example, Pouget et. al.[23] recently established a distributed monitor-
ing system using monitors of only three IP addresses deployed in more than
25 different countries. Such monitors are not easily detected by the proposed
sampling process as this would require extensive probing. However, in order to
be useful as an early warning system, coordination among a substantial number

Fast and Evasive Attacks 15

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200 250

In
fe

ct
ed

 fr
ac

tio
n

of
 h

os
ts

Time (sec)

sampling worm (actual)
distributed monitor view

Fig. 9. Onset of an evasive worm showing the actual evolution and the collective view
of a (/8 + 256 /16 + 1024 /24) distributed monitoring system.

of small (geographically dispersed) monitors will be required [27]. Implementing
such a distributed monitoring systems in a scalable manner is non-trivial and
remains an open research direction which deserves further investigation.

Active Responders. Another avenue that can offer pragmatic value lies in the
widespread adoption of virtual active responders (e.g., [1, 25, 37]). Of late, ac-
tive responders have become popular for automatically generating attack signa-
tures [11, 12, 14, 34]. If successful, these approaches would also mislead the sam-
pling process into marking the monitored space as live and subsequently scanning
it, thereby exposing the attack. That said, implementing deep-interaction active
responders (also known as honeynets) in a scalable and inconspicuous manner
is non-trivial [7, 37]. Recently, Vrable et. al. [35] proposed techniques based on
aggressive multiplexing of virtual machines (VMs) to achieve scalable honeynets
that improve the state-of-the-art by up to six orders of magnitude. However, it
is well known that several malware actively detect VM-based execution environ-
ments [8] and alter the malware behavior accordingly. Therefore, limiting the
detectable effects of VM-based honeynets remains an ongoing challenge.

In the context of evasive malware attacks, an equally difficult challenge is
masking any external side effects of the monitor’s presence. For example, a vir-
tual responder can not respond to all incoming connection attempts since this
would appear suspicious from the attackers’ stand-point given the low likelihood
of observing such a dense mass of live hosts. On the other hand, selectively
responding to incoming probes is not ideal either. For one, probabilistically re-
sponding to a fraction of the incoming traffic degrades the monitor’s fidelity
and can lead to loss of “interesting” malicious flows. Moreover, even probabilis-
tic responding is not immune to well crafted sampling probes. For example, a
monitor responding with an ACK to a probe sent to a non-popular or unknown
destination port will be equally suspicious as not responding at all.

16 M. Rajab, F. Monrose and A. Terzis

A promising trade-off is to have active responders intelligently mimic the sur-
rounding IP space in terms of the live host distribution and active services. Using
this persona, the monitor can decide which probes should be answered, thereby
increasing the difficulty of distinguish the monitored space from its immediate
surroundings. Again, to be useful, the probability of response must be signifi-
cantly greater than that of contacting a real vulnerable host in the operational
network. This is certainly feasible if the monitor space is substantially larger
than the network being protected. If not, the responder will offer little value
in protecting operational end-hosts. Exploring the potential of designing cam-
ouflaged responders in this manner is an area of research that requires further
investigation.

Finally, even if the above measures are implemented, the attackers will even-
tually locate monitors bound to static locations. Therefore, for these techniques
to be of long term value, they should be combined with periodic “rotation” of
the monitored address space. This can be achieved, for example, by having orga-
nizations actively rotate the operational portion of their address space used for
DHCP leases and deploy active responders within the remaining unused space.
This approach raises a number of practical challenges, but is a direction that
can have valuable impact in mitigating these threats and so warrants further
examination.

6 Related Work

The research community has only recently shown interest in techniques that
detect network monitors. Bethencourt et.al. [3] and Shinoda et.al. [31] showed
how so-called probe and response attacks can locate network monitors that is-
sue periodic reports of suspicious connection attempts. Although effective, these
approaches are slow and heavyweight since they require low-rate, exhaustive
probing of the address space. Furthermore, they are limited to network moni-
tors that issue public reports—a requirement that can be easily invalidated by
eliminating or anonymizing these reports. Moreover, these probe-response tech-
niques target predetermined list of locations in which the reports are published
(e.g., web-pages of certain repositories [6]) and therefore cannot detect moni-
tors that publish reports in public, yet unknown or untargeted locations. On the
other hand, the techniques in this paper detect network monitors through faster,
stealthy and lightweight sampling that does not require a pre-established set of
publishing locations.

Zeiton et.al. showed that it is possible to estimate the liveliness of /24 address
prefixes by selectively probing IP addresses based on common network admin-
istration practices (e.g., selecting addresses commonly used by router interfaces
such as a.b.c.1 and a.b.c.129). While the technique successfully detected live
prefixes in their study with more than 90% accuracy, it is only applicable to /24
prefixes. By contrast, the methodology we use provides an upper-bound on the
number of probes and is applicable to prefixes of any size.

Over the past few years a number of proposals have highlighted the threat
from fast worms that employ novel scanning techniques. At a high level, these

Fast and Evasive Attacks 17

techniques boost worm spreading using various forms of collaboration among
worm instances. For example, Staniford et.al. [33] outline a number of collabo-
rative scanning strategies, including permutation scanning in which the worm
maps the IP space into a large permutation and diversifies the starting point
of scanners to reduce redundant scanning. While this strategy allows worms to
spread much faster, the scanning activity is still visible to network monitors
because the worm still scans the entire IP space. Flash and topological worms
can be even faster, reaching saturation in a few seconds [32]. However, although
inherently evasive, these worms assume a priori knowledge of the vulnerable
population through an already existing large hit-list.

More recently, Chen et.al. presented an alternative strategy to disseminate
information about the vulnerable population distribution and divert worm scans
toward populated address groups [5]. However, as evasion was not a core objec-
tive, the proposed approach suffers various limitations from that perspective. For
one, the worm initially scans the IP space uniformly at random to find enough
vulnerable hosts to derive an accurate estimate of the vulnerable population
distribution. This activity is easily detected by distributed network monitors.
Second, the vulnerable population distribution is only estimated at the /8 prefix
level. Hence, the technique can limit worm scans toward monitors occupying
entire /8 address prefixes, but the worm is still detectable by distributed collec-
tions of small monitors deployed in heavily populated prefixes (as recommended
in [27]). More problematic is the fact that in order to learn the vulnerable popu-
lation distribution, each infected host must contact a centralized “worm-server”.
Such a server is both a single point of failure and an unnecessary bottleneck.

The coordination mechanism we propose exploits re-infections to dissemi-
nate updated knowledge about the vulnerable population across worm instances.
This idea was independently suggested by Ma et.al. for designing self-stopping

worms [16]. In that case, re-infection is used to share an estimate of the infected
population which is then used to decide when to stop scanning. Although such
worms can hide the infected population past worm saturation, they can still be
detected (and contained) during the spreading phase. In contrast, the exam-
ples we present conceals the worm activity during its spreading phase and is
inherently self-stopping.

Lastly, a number of measurement studies based on packet traces collected
from network monitors have already speculated that persistent port scanning
activities is being used to fingerprint vulnerable hosts (e.g., Pang et.al. [20],
Pouget et.al. [24]). In this paper, we show how such reconnaissance can be per-
formed in a dynamic, fast, and evasive manner.

7 Summary

The use of passive network monitors has played an important role in a myr-
iad of malware detection and containment studies to date. However, with the
increased use of passive monitoring techniques, it is prudent to expect that at-
tacks will soon evolve to minimize the practical benefits gained from such tech-
niques. In this paper, we highlight the challenges posed by evasive techniques

18 M. Rajab, F. Monrose and A. Terzis

that severely limit the view of the infection as recorded by collections of dis-
tributed network monitors. The techniques we present use lightweight sampling
to detect passive network monitors as well as clusters of live network prefixes.
We show the effectiveness of these evasive techniques through trace-based anal-
ysis and actual probing experiments conducted in the wild. Our experimental
results verify our assertion that with a reasonably small number of probes, it is
possible to accurately detect the locations of passive network monitors and to
identify live address clusters containing the majority of the vulnerable popula-
tion. We substantiate the threat from these techniques by outlining the design
of evasive malware capable of evading extensive collections of network monitors,
while saturating the vulnerable population in a matter of seconds. We hope
that our results will stimulate the research community to develop monitoring
infrastructures capable of countering these impending threats.

Acknowledgments

This work is supported in part by National Science Foundation grant SCI-
0334108. We thank DShield for graciously providing access to their IDS logs.
We also extend our gratitude to the reviewers for their insightful comments and
feedback.

References

1. Michael Bailey, Evan Cooke, Farnam Jahanian, Jose Nazario, and David Watson.
Internet motion sensor: A distributed blackhole monitoring system. In Proceedings
of the ISOC Network and Distributed System Security Symposium (NDSS), 2005.

2. Paul Barford, Rob Nowak, Rebecca Willet, and Vinod Yagneswaran. Toward a
Model for Source Address of Internet Background Radiation. In Proceedings of
Passive and Active Measurement Conference (PAM 2006), March 2006.

3. John Bethencourt, Jason Franklin, , and Mary Vernon. Mapping Internet Sen-
sors with Probe Response Attacks. In Proceedings of the 14th USENIX Security
Symposium, pages 193–212, August 2005.

4. Zesheng Chen, Lixin Gao, and Kevin Kwiat. Modeling the Spread of Active Worms.
In Proceedings of IEEE INFOCOMM, volume 3, pages 1890 – 1900, 2003.

5. Zesheng Chen and Chuanyi Ji. A Self-Learning Worm Using Importance Scanning.
In Proceedings of ACM Workshop On Rapid Malcode (WORM), November 2005.

6. The Distributed Intrusion Detection System (DShield). see http://www.dshield.

org/.
7. Xinwen Fu, Bryan Graham, Dan Cheng, Riccardo Bettati, and Wei Zhao. Camou-

flaging Virtual Honeypots. In Texas A&M University technical report #2005-7-3,
2005.

8. Thorsten Holz and Frederic Raynal. Defeating Honeypots. Online article, see http:
//www.securityfocus.com/infocus/1826#ref3.

9. Internet Assigned Numbers Authority (IANA), see http://www.iana.org/.
10. Internet Systems Consortium (ISC), see http://www.isc.org.
11. Vinod Yegneswaran Jonathon T. Giffin Paul Barford Somesh Jha. An architecture

for generating semantic-aware signatures. In Proceedings of the 14th USENIX
Security Symposium, August 2005.

12. Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed worm
signature detection. In Proceedings of 13th USENIX Security Symposium, 2004.

Fast and Evasive Attacks 19

13. Eddie Kohler, Jinyang Li, Vern Paxson, and Scott Shenker. Observed Structure of
Addresses in IP Traffic. In Proceedings of ACM SIGCOMM Internet Measurement
Workshop, November 2002.

14. Christian Kreibich and Jon Crowcroft. Honeycomb—creating intrusion detection
signatures using honeypots. In Proceedings of 2nd Workshop on Hot Topics in
Networks (Hotnets-II), 2003.

15. Tom Liston, LaBrea Tarpit Project, see http://labrea.sourceforge.net/.
16. Justin Ma, Geoffrey Voelker, and Stefan Savage. Self-stopping worms. In Pro-

ceedings of ACM Workshop On Rapid Malcode (WORM), pages 12–21, November
2005.

17. David Moore. Network Telescopes: Observing Small or Distant Security Events.
In 11th USENIX Security Symposium, Invited Talk, August 2002.

18. David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford,
and Nicholas Weaver. Inside the Slammer Worm. IEEE Magazine of Security and
Privacy Magazine, pages 33–39, July 2003.

19. David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Internet
Quarantine: Requirements for Containing Self-Propagating Code. In Proceedings
of IEEE INFOCOM, 2003.

20. Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and Larry Pe-
terson. Characteristics of Internet Background Radiation. In Proceedings of ACM
IMC, October 2004.

21. Larry Peterson, Tom Anderson, and David Culler. A blueprint for introducing
disruptive technology into the internet. In First ACM Workshop on Hot Topics in
Networks (HotNets-I), October 2002.

22. Phillip Porras, Linda Briesemeister, Keith Skinner, Karl Levitt, Jeff Rowe, and
Yu-Cheng Allen Ting. A hybrid quarantine defense. In Proceedings of the Second
ACM Workshop on Rapid Malcode (WORM), November 2004.

23. Fabien Pouget, Marc Dacier, and Van Hau Pham. Lurre.com: On the Advantages
of Deploying a Large Scale Distributed Honeypot Platform. In Proceeding of the
E-Crime and Computer Conference ECCE, March 2005.

24. Fabien Pouget, Marc Dacier, Van Hau Pham, and Herve Deber. Honeynets: Foun-
dations for the development of early warning systems. In NATO Advanced Research
Workshop, 2004.

25. Neil Provos. A virtual honeypot framework. In Proceedings of the 13th USENIX
Security Symposium, August 2004.

26. Moheeb Abu Rajab, Fabian Monrose, and Andreas Terzis. Fast and Evasive At-
tacks: Highlighting the challenges ahead. In JHU Computer Science Technical
Report HiNRG-RMT-112205, November 2005.

27. Moheeb Abu Rajab, Fabian Monrose, and Andreas Terzis. On the Effectiveness
of Distributed Worm Monitoring. In Proceedings of the 14th USENIX Security
Symposium, pages 225–237, August 2005.

28. Moheeb Abu Rajab, Fabian Monrose, and Andreas Terzis. Worm Evolution Track-
ing via Timing Analysis. In Proceedings of ACM Workshop on Rapid Malware
(WORM), pages 52–59, November 2005.

29. David Meyer, University of Oregon RouteViews Project. http://www.routeviews.
org/.

30. Colleen Shannon and David Moore. The Spread of the Witty Worm. IEEE Security
and Privacy Magazine, 2(4):46–50, July 2004.

31. Yoichi Shinoda, Ko Ikai, and Motomu Itoh. Vulnerabilities of Passive Internet
Threat Monitors. In Proceedings of the 14th USENIX Security Symposium, pages
209–224, August 2005.

20 M. Rajab, F. Monrose and A. Terzis

32. Stuart Staniford, David Moore, Vern Paxson, and Nick Weaver. The Top Speed of
Flash Worms. In Proceedings of the ACM Workshop on Rapid Malcode (WORM),
pages 33–42, October 2004.

33. Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the internet in
your spare time. In Proceedings of the 11th USENIX Security Symposium, August
2002.

34. George Varghese Sumeet Singh, Cristian Estan and Stefan Savage. Automated
worm fingerprinting. In Proceedings of 6th Symposium on Operating System Design
and Implmentation (OSDI), 2004.

35. Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Sno-
eren, Geoffrey M. Voelker, and Stefan Savage. Scalability, Fidelity and Contain-
ment in the Potemkin Virtual Honeyfarm. Proceedings of ACM SIGOPS Operating
System Review, 39(5):148–162, 2005.

36. Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global intrusion detection in
the domino overlay system. In Proceedings of the ISOC Network and Distributed
Systems Security Symposium (NDSS), 2004.

37. Vinod Yegneswaran, Paul Barford, and David Plonka. On the Design and Use of
Internet Sinks for Network Abuse Monitoring. In Proceedings of the Symposium
on Recent Advances in Intrusion Detection (RAID), Sept. 2004.

38. Amgad Zeitoun and Sugih Jamin. Rapid Exploration of Internet Live Address
Space Using Optimal Discovery Path. In Proceedings of Globecomm, 2003.

