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ED

PRThe analysis of fMRI data is challenging because they consist generally of a relatively modest signal contained
in a

^
high-dimensional space: a single scan can contain over 15 million voxel recordings over space and time.

We present a method for classification and discrimination among fMRI that is based on modeling the scans as
distance matrices, where each matrix measures the divergence of spatial network signals that fluctuate over
time. We used single-subject independent components analysis (ICA), decomposing an fMRI scan into a set
of statistically independent spatial networks, to extract spatial networks and time courses from each subject
that have unique relationship with the other components within that subject. Mathematical properties of
these relationships reveal information about the infrastructure of the brain by measuring the interaction
between and strength of the components. Our technique is unique, in that it does not require spatial
alignment of the scans across subjects. Instead, the classifications are made solely on the temporal activity
taken by the subject's unique ICs. Multiple scans are not required and multivariate classification is
implementable, and the algorithm is effectively blind to the subject-uniform underlying task paradigm.
Classification accuracy of up to 90% was realized on a resting-scanned schizophrenia/normal dataset and a
tasked multivariate Alzheimer's/old/young dataset. We propose that the ICs represent a plausible set of
imaging basis functions consistent with network-driven theories of neural activity in which the observed
signal is an aggregate of independent spatial networks having possibly dependent temporal activity.

© 2009 Elsevier Inc. All rights reserved.
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Existing neuroimaging classification methods for functional
magnetic resonance imaging (fMRI) data have shown much promise
in discriminating among cerebral scans, but are limited in the types of
data they can handle, and in the numbers of outcomes they can
predict (Ford et al., 2003; Zhang and Samaras, 2005). In general, fMRI
discrimination methods require preprocessing steps such as spatial
alignment of the scans and are only infrequently suitable for
multivariate classification problems (Calhoun et al., 2007) because
of their utilization of bivariate classifiers. Spatial alignment algorithms
often are constructed assuming a subject has a normal brain, and
therefore may be less accurate when warping scans of patients with
physical anomalies. Existing classification methods typically require
78
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et al., Classification of spa
knowledge of the task paradigm thereby limiting their application to
subjects who are able and willing to perform such tasks. Here we
introduce a procedure called spectral classification that is capable of
multivariate discrimination among single-session fMRI scans taken
during both a tasked and “mind-wandering” (task-free) state. The
methods classify based on the temporal structure of the data rather
than the spatial structure, thereby bypassing the need for spatial
alignment of the scans. We call this method spectral classification
because of its usage of spectral graph-theory measurements for
discrimination. We demonstrate here a non-spatial method of
classification having cross-validation accuracy rates as high as 90%
for bivariate classification. Mathematically we introduce a method for
comparing and classifying objects represented by distance matrices.
In this paper an entire matrix describes an fMRI scan where the
entries contain the “distances” between the activity of two compo-
nents' timeseries; however these methods are generally applicable to
any problem in which the elements are described as matrices rather
than isolated points and discrimination is desired among these
objects.
tially unaligned fMRI scans, NeuroImage (2009), doi:10.1016/j.
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Temporally recorded neuroimaging data pose a unique challenge
to classification because of the high-dimensional structure of the data
sets. One scan can contain more than 120,000 recordings that often
are highly correlated both in only four effective dimensions consisting
of space and time. Because of this, practical classification procedures
require an initial dimension-reduction stage where discriminating
signal is extracted from the noisy data. In spatial-based discrimination
methods, localized summaries of the temporal signal are used to
compress the temporal dimension into a single point at every spatial
location. The spatial regions containing discriminating summary
statistics are extracted and used to create a classification machine.
(Zhang and Samaras, 2005; Ford et al., 2003).

The summary statistics used for describing temporal activity
include mean signal intensities or p-values measuring association
with a known task-paradigm. These regional summary statistics are
compared across subjects when training the classifier, requiring the
scans be spatially aligned to a common atlas space. The most often
used alignment algorithms (Woods et al., 1998) are 12-parameter
affine transformations that warp a subject's brain to a common atlas
space. Alignment precision is limited with normal patients by the low
geometric flexibility of the algorithms, and is potentiallymore difficult
to achieve with subjects having structural inconsistencies associated
with mental disorders. For example, it is known that people with
schizophrenia have significantly larger ventricles (Shenton et al.,
2001) and that Alzheimer's sufferers show brain atrophy (Ridha et al.,
2006); standard structural alignment tools cannot take into account
the unique differences existing in these patients. Thus, spatially

^
based

discrimination methods may fail in classifications across individuals
due simply to poor spatial alignment.

A known task
^
function is often correlated regionally with

timeseries to identify regions closely associated with a task. Improved
alignment methods notwithstanding, localized low-order summary
statistics of the regional BOLD signal may not capture higher-order
discriminating information contained in the temporal domain. If
functional anatomy is similar among patient groups, then the
temporal information of the scans offer a new dimension with
potentially discriminative information. If the group differences exist
not in the spatially localized signal summary but in the native
temporal activity taken by the brain, classificationmethods relying on
summary statistics could fail to distinguish between groups. Amethod
that instead reduced the often-redundant spatial dimension while
keeping intact the temporal structure would capitalize on signal
differences existing in the temporal domain rather than spatial. The
method proposed here is agnostic to the task function and yields
similar accuracy results discriminating among identically tasked scans
and untasked scans in two datasets tested here.

Because of the limitations of spatial discrimination methods, there
is a need for a classification method that is both insensitive to spatial
alignment and independent of low order statistical summaries. Using
unaligned scans our method classifies on temporal activity patterns
between independent components within a subject. The blind source
separation method of independent components analysis (ICA) is
capable of decomposing a sequence of

^
three-dimensional images into

sources consisting of statistically independent spatial maps acting
over time according to possibly dependent activity patterns. When
applied to fMRI data, ICA decomposes a four-dimensional single fMRI
scan into a set of statistically independent spatial components
(Hyvärinen and Oja, 2000). These spatially independent components
have corresponding time courses that show statistical dependence
with the time courses of other components. The strength of the
relationship between components is indicated by coupling, or
correlated intensities over time.

It is not known which if any of the spatial components identified
by ICA represent functional neural networks, however it has
previously been shown that ICA-methods yield identifiable stable
neurological patterns. Damoiseaux et al. (2006) were able to identify
Please cite this article as: Anderson, A., et al., Classification of spa
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10 consistent resting state networks common across their population
that appear to correspond to identifiable phenomena such as motor
function, visual processing, executive functioning, auditory proces-
sing, memory, and even the default-mode network, however the
identification of these components is not required with our approach
to classification yet remains a hidden layer that might be useful for
neuroscientific interpretation. The general goal of our work is to
develop a classification method that is independent of any trained
user interaction making the tool more practically applicable and less
sensitive to experimenter bias. One consequence of this, as imple-
mented here, is that the classification itself may be based on signals
that are not directly interpretable as neural in nature. For example, it
is possible that group specific artifacts, such as head motion, might be
contributing to the classifier. For the moment, we note that even in
the face of this potential limitation, the classifier appears quite robust.
In the future, we intend to use automated means to detect and reject
identifiable artifacts (such as motion

^
). Because the time courses alone

are used for discrimination our method does not require us to
associate the spatial components with a known biological process to
classify a scan; rather, we are concerned with the temporal structure
that these components take, how similar they are with other
components in that subject, and how this dependency varies across
subjects and groups.

In the classification method described here, inter-subject com-
ponent comparisons do not require multiple scans or knowledge of
the underlying task paradigm. We describe here the application of
our methods using two separate datasets. The first consists of
blocked-task designed scans from normal old, normal young, and
Alzheimer's patients, while the second dataset consists of resting-
state scans of Schizophrenia subjects and n

^
ormal controls. We

estimated the classification testing accuracy using cross-validation
(C.V.) and the out-of-bag error from the random forests (R.F.)
(Breiman, 2001) classifier, where the accuracy is an estimate of how
well the classifier would do if given a new scan from a previously
unseen subject.

Random forests is a decision-tree machine learning method that
creates many classification trees by resampling from both the
observations and classifiers at each node and subsequently making
decision rules to minimize the misclassification rate of the sampled
data within each tree. Many decision trees are constructed and
combined to create a “forest” that decides an observation's class by
voting over the decisions made by each tree. The tree is then tested on
observations that weren't selected in the initial sampling, to give the
“out-of-bag” error which is usually an unbiased estimate of the testing
error.
Materials and methods

Overview

The first step in spectral classification is to perform ICA
individually on the scans to reduce the dimensions of the data and
extract the time courses of the components. We then create distance
matrices that capture the relationship between the temporal signals
within a subject, and extract features from these similarity matrices
using the principal (largest) eigenvalues. Finally, we train a random
forests classifier on the extracted features and evaluate the out-of-bag
and cross-validation errors as measures.

The implementation of the spectral classification procedure can be
summarized as follows:

• Step 1: Decompose a scan into spatial networks and timecourses
using independent components analysis (ICA).

• Step 2: Create a distance matrix describing temporal correlations
among spatial components within a subject.
tially unaligned fMRI scans, NeuroImage (2009), doi:10.1016/j.
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• Step 3: “Unwrap” the distance matrix by calculating the geodesic
distance among components and extract principal eigenvalues
from distance matrix to create feature vector.

• Step 4: Train a (multivariate) random forests classifier using
eigenvalues as features, and evaluate it by using cross-validation.
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Data characteristics

All subjects, both schizophrenia patients and healthy controls,
gave written informed consent and were recruited and studied under
a protocol approved by the UCLA and the Greater Los Angeles VA
Health Care System Institutional Review Boards. The schizophrenia/
normal dataset consists of 14 clinically stable schizophrenia out-
patients (diagnosed according to DSM-IV-R criteria using a structured
clinical interview) and 6 healthy controls, matched to the affected
individuals for age, gender, race, handedness and parental education
level. Subjects were scanned at rest on a Siemens Allegra 3T scanner
(Erlangen, Germany) in supine position, wearing acoustic noise
protectors. To facilitate later coordinate alignments, we collected a
high-resolution three-dimensional

^
MPRAGE data set. (Scan para-

meters: TR/TE/TI/Matrix size/Flip Angle/FOV/Thickness=2300/
2.9/1100/160×192×192/20/256×256/1 mm). We then collected
a set of T2-weighted EPI images (TR/TE/Matrix size/Flip Angle/FOV/
Thickness=5000/33/128×128×30/90/200×200/4.

^
0 mm) with

bandwidth matched to the later BOLD studies, covering 30 horizontal
slices in the same plane of section used for activation studies. These
data are inherently in register with the subsequently collected
functional series as they share the same metric distortions. For the
latter, multi-slice echo-planar imaging (EPI) was used to measure
blood oxygenation level dependent (BOLD)-based signals (TR/TE/
Matrix size/Flip Angle/ FOV/Thickness=2500/45/64×64×30/90/
200×200/4.

^
0 mm) The fMRI procedure detects signal changes that

indicate neuronal signaling indirectly through changes in signal
intensity that reflect relative blood oxygenation and thus metabolic
demands. We preprocessed the scans using motion correction
(MCFLIRT in FSL) and then performed skull-stripping using FSL's
BETALL (Smith et al., 2004).

The Alzheimer's young/old dataset was obtained from the fMRI
Data Repository Center, collected originally by Randy Buckner
(Buckner et al., 2000). A history of neurological or visual illness
served as exclusion criteria for all potential subjects. Furthermore,
older adults were excluded if they had neurologic, psychiatric or
mental illness that could cause dementia. A total of 41 participants (14
young adults, 14 nondemented older adults, and 13 demented older
adults) were included in the dataset. The task paradigm used an
event-related design consisting of presentation of a 1.

^
5-s

^
visual

stimulus. Subjects pressed a key with their right index fingers upon
stimulus onset. The visual stimulus was an 8-Hz counterphase
flickering (black to white) checkerboard subtending approximately
12 of visual angle (

^
six in each visual field). Stimulus onset was

triggered at the beginning of the image acquisition via the PsyScope
button box.

The methods presented in this paper were performed using tools
in FSL (Smith et al., 2004) and routines coded in R (R Development
Core Team, 2008).

Constructing an automatic classifier required us to reduce the
dimensionality of the data, construct activity manifolds on which to
calculate the geodesic distances (Tenenbaum et al., 2000), create
feature vectors using properties of these manifolds, and to perform
classification of the subjects.

Dimension reduction

As fMRI data is very high
^
dimensional it is necessary to first reduce

the data in a manner that preserves its temporal structure. When ICA
Please cite this article as: Anderson, A., et al., Classification of spa
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is performed on an fMRI scan, the data is broken down into a set of
spatial activation maps and their associated time courses.

A scan of time length T and spatial dimension S
^
and can be

expressed as a linear combination of N≤T components and the
corresponding timecourses:

Xts =
XN
μ=1

MtμCμs ð1Þ

Where Xts represents the raw scan intensity at timepoint t≤T and
spatial location s≤S,

^
Mtμ is the amplitude of component μ at time t,

and Cμs is the spatial magnitude for component μ at spatial location s.
In the ICA decomposition, the spatial components are assumed to

be statistically independent, however, there is no assumption of
independence for their time courses. ICA is run on each subject,
extracting all relevant components that are found within that subject.
The Laplacian a

^
pproximation to the model order is used to derive the

number of components existing in each subjects, as has been found
effective in estimating the underlying number of signal sources
(Minka, 2000). The consequences of using other methods to
determine the number of components are discussed in Sensitivity to
component number approximation method

^
.

The net result is that the dimensionality is reduced from an
initially four-dimensional dataset into a selection of time series and a
small number of spatial maps representing the spatial signatures of
the independent components within a subject. We use the time
series of the components for classification as they are not dependent
on proper spatial alignment over the population. In addition, the
time series represent a more compact description of the data than
the spatial maps because of the smaller dimensionality of a

^
one-

effective dimension timeseries compared to a
^
three-

^
effective dimen-

sion spatial map. This in turn allows for more flexibility in the
discrimination methods available because of computational
efficiency.

Manifold construction

Each independent component can be considered a node on an
unknown graph ormanifold unique to each subject, andwe canmodel
the connection between two nodes by measuring the similarity
between two components' timeseries. The metric of similarity
presented here is based on the measure of cross-correlation, but the
classification methods were tested successfully also with frequency
domain signal strength, fractal dimension, and standard statistical
correlation.

Graphically we want to measure the randomness taken by the
bivariate path of two components. Let Mα and Mβ be the timecourses
from two different independent components within a subject. The
bivariate plot of the first and second timecourse within two random
subjects is shown in Fig. 1, where the two timecourses are selected as
being those that explain the most variance out of all extracted
timecourses, and are unique within each subject. Wewish to see if the
patterns observed in the interactions of components are consistent
and strong enough to discriminate among patient groups.

To quantify the relatedness between pairs of temporal compo-
nents we compute a distance metric based on the cross-correlation
function, which is a linear measure of the similarity between two time
series and may be computed for a wide range of lags. Time s

^
eries

based measures have been used to explore directed influences
between neuronal populations in fMRI data (Roebroeck et al., 2005)
using Granger causality and have found increased correlation among
independent components in schizophrenia patients compared to
normal controls (Jafri et al., 2007) using the cross-correlation. We
used themaximal absolute correlation between two time series over a
range of lags as an indicator of the amount of information shared
tially unaligned fMRI scans, NeuroImage (2009), doi:10.1016/j.
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between them and how similarly they act over time.

CCF Mα ;Mβ ; l
� �

=
E mα;t + l − Mα

� �
mβ;t − Mβ

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E mα;t−Mα

� �2
� �

E mβ;t−Mβ

� �2
� �s ð2Þ

where mα,t+l is time-shifted version, mα,t, l is the time lag separating
the two timeseries Mα and Mβ, and Mα is the mean of the entire
timeseries Mα=(mα,1, mα,2,… , mα,T). The timeseries are calculated
at lags ranging from 0 to 20% of the timeseries length, as higher lags
results in fewer time points to calculate the correlation and a more
noisy estimate. The distance function is a transformation of the
maximal absolute cross-correlation between two timeseries.

d Mα ;Mβ

� �
=

1

maxlags jCCF Mα ;Mβ

� �
j

h i − 1 ð3Þ

To test the dependency of our method on a particular metric, we
compared the results of our chosen metric with three other distance
metrics derived from the raw correlation, fractal dimension, and a
measure of Fourier signal strength. Similar accuracy results were
obtained which are discussed further in Table 3.4.

Within a subject i calculating the distance between all Ni temporal
components yields a distance matrix ΦNi ×Ni . The dimensionality of
each subject's matrix corresponds to the number of independent
components initially extracted as shown in Fig. 2 and may therefore
differ. The darker intensity in Fig. 2 indicates a smaller distance, while
a lighter color shows a greater distance. The distances range in value
UN
CO

Fig. 2. Subject m
^
atrices showing u
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OOfrom (0, 9) and the colors are normalized within each matrix so that
darkest lightest color corresponds to the greatest intensity. The rows
and columns in the distance matrices have no direct correspondence
across subjects. The temporal components are extracted individually
within each subject using ICA, leading to a unique structure in the
temporal associations within that subject's distance matrix, ΦNi ×Ni

.

Feature selection

Each matrix ΦNi ×Ni represents the connectivity over time of
independent componentsMα embedded on some unknown manifold
that is unique to each subject. Distances between points d(

^
Mα, Mβ)

quantify the temporal similarity between two components repre-
sented by timeseriesMα andMβ. It is unreasonable to assume that the
graphical structure represented by a matrix for subject i, ΦNi ×Ni , lies
on a linear space, as only a very small subset of all the spaces on which
a manifold could lie will be linear. To account for this, an intermediary
step will be performed prior to feature extraction that will warp the
graphical structures represented by the matrices to account for the
potential non-linearity of the manifolds.

Thematrices are warped for each subject using the same principles
underlying the manifold embedding technique of ISOMAP (Tenen-
baum et al., 2000). Within each subject, the original matrix is
transformed by recalculating the distances among components using
a non-linear metric, the geodesic distance (Tenenbaum et al., 2000).
The geodesic distance measures distances between non-neighboring
points as the shortest path connecting points through their neighbors
as in Fig. 3, where the distance between A and C is calculated as the
manifold path distance from A to B to C instead of directly from A to C.
nequal number of component.
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Points are considered connected if they fall within a set of k-nearest
neighbors, where k is chosen to minimize the Bayesian Information
Criterion (BIC) (Hogg et al., 2000) of the goodness of fit within the
subject. Further discussion on the choice of neighborhood size and
embedding dimension in presented in Sensitivity to parameter choice

^
.

Using the geodesic distance, each matrix ΦNi ×Ni is warped separately
by recalculating the distances among points (components) prior to
extracting features to create a new matrix Φ4

Ni × Ni
.

We illustrate the graphical structures these matrices Φ4
Ni × Ni

represent by embedding them individually in a two-
^
dimensional

^
space using ISOMAP, shown in Fig. 4. To perform the embedding the
distance matrix is projected onto the eigenvectors corresponding to
the two principal eigenvalues of the decomposition of the geodesic
distance matrix (Tenenbaum et al., 2000; Kruskal and March, 1964).
Every vertex represents an independent component, while the edge
length between vertices corresponds to the geodesic distance
between two components. The complete relationship of spectral
classification to other methods such as ISOMAP is discussed in

^
Relationship to existing methods.

The manifold defined by Φ4
Ni × Ni

can be described by the
eigenvalues λ of the distance matrix that measure the variance
explained along the different dimensions. Φ4

Ni × Ni
= Q1Q−1 where Q

is the matrix of eigenvectors and ∧ is the matrix of eigenvalues. The
largest ni≤Ni eigenvalues for subject i are used to create a feature
vector

←
λi = λ1i ;λ2i

; N ;λni

� �
. Extracting eigenvalues from each graph

bypasses the issue of the structures all lying on a unique self-defined
manifold, because we are using the properties of the subjects'
manifolds to classify instead of the points (components) comprising
it. For classification purposes we enforce that ni=c ∀iwhere c is some
constant chosen as in Sensitivity to parameter choice

^
, because it is

necessary to use the same number of features for classification per
UN
CO

R

Fig. 4. Embedding
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subject. The principal eigenvalues of the geodesic distancematrix give
the strength along the primary dimension and reveal the “skew” in
the connective structure of the components. The geodesic distance
matrix is analogous to the weighted adjacency matrix of the graph;
hence, the spectral decomposition of this matrix lends itself to the
procedure name of spectral classification.

Subject classification

Once feature vectors
←
λ have been extracted for all subjects a

classifier is trained using Random Forests (Breiman, 2001). Random
Forests is well-suited for multivariate classification problems as it
decides outcomes by voting, and is less likely to overfit in practice
than other methods because of its usage of resampling. The algorithm
operates by repeatedly sampling from the data and predictors to
construct decision trees. A group of classification trees become a for-
est, which classifies an observation by having the trees that had not
previously seen that observation vote for an outcome. The predicted
class of an observation is taken to be the category with the maximal
votes by all the trees. The cross-validation error of the classification
forest is taken to be the out-of-bag error, and the average error is
taken to be the best estimate of the accuracy of this predictor on a
completely new scan. However, because the parameters are selected
with respect to the out-of-bag error, the testing error is biased.
Because of this, we performed cross-validation outside of the
parameter selection process to obtain an unbiased testing error
estimate.

Results and discussion

The spectral classification procedure was run on both the
schizophrenia/normal and the Alzheimer's/old/young dataset to
obtain bivariate and multivariate classification results. The Alzhei-
mer's/old/young dataset was also grouped into pairs to further test
bivariate classification. There were two parameters involved in fitting
the manifold: the neighborhood size, k̄, and ni, the number of
dimensions in which to embed. We present the results using two
different parameter selection methods. For more details on these
selection methods see

^
Method 1: Single parameter optimization.

Method 1: Optimized single parameter selection

We will describe here a method of selecting model parameters
(n, ki) such that ki is selected within a subject by optimizing a model fit,
and n is optimized with respect to minimizing the classification error
over all subjects. The embedding dimension n is a global parameter
of m
^
atrices.

tially unaligned fMRI scans, NeuroImage (2009), doi:10.1016/j.
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Table 2 t2:1

Selection of dual embedding parameters.
t2:2
t2:3Classification a

^
ccuracy

t2:4Groups Maximum
a
^
ccuracy

Eigenvalue

^
dimension

Nearest
n
^
eighbors

Median
a
^
ccuracy

Chance
a
^
ccuracy

t2:5Alzheimer's, old, young 65.9% 1 1/2 51.2% 34.1%
t2:6Alzheimer's, o

^
ld 85.2% 1 1/4 63.0% 51.9%

t2:7Alzheimer's,
^
young 74.1% 2 1/7 70.4% 51.9%

t2:8Old,
^
young 89.3% 1 1/2 71.4% 50%

t2:9Schizophrenic, n
^
ormal 90% 3 1/10 80% 70%
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held constant for all subjects, while ki is allowed to vary within
subject.

For a given n we will select the fitting parameter ki within a
subject byminimizing the Bayesian Information Criterion (BIC) for the
goodness of fit. The goodness of fit measure, Li, is the sum of the
eigenvalues used in the partial fitting normalized by the total absolute
value of all the eigenvalues.

Li =

Pn
μ=1

λμi

PNi

μ=1
jλμi j

ð4Þ

where Ni is the number of components within the ith subject, λ
^μ
is the

μth largest eigenvalue,
1
ki

is the fraction of total components
considered to be neighbors and n is the number of eigenvalues used
to describe the subject's distance matrix such that n≤10≤Ni. The
upper bound of 10 is selected as a search parameter range since all
Ni≥10. The BIC for a subject's embedding of Ni components using ki is

BIC Ni; ki;nð Þ = − 24log L ki ;nð Þ
� �

+ ki4log Nið Þ ð5Þ

For a given n, select the ki that minimizes the BIC for that subject. The
ki is treated as the degrees-of-freedom parameter because a neighbor-

hood size is calculated as
Ni

ki
. If ki increases, the neighborhood size

decreases, and there are fewer connections defined between nodes on
the graph. This leads to an increased flexibility in the location which
points can take.More connections necessarily lead tomore restrictions
on how the object can be embedded. Because of this, the BIC of the
model bears an inverse relationship to the connectedness of the graph.
As ki increases, the connectivity decreases and the BIC increases.

The eigenvalue dimension, or eigendimension, indicates the
number of eigenvalues used in the classifier. The eigendimension
parameter nmust be held constant across all subjects in order to train
a classifier, so a random forests model is created for all n∈(1,10),
where the parameter ki will be selected to maximize the goodness of
fit as described above. The eigendimension parameter n is selected
that maximizes the classification accuracy across subjects.

The results are presented in Table 1.
Although the accuracy is decreasing with sample size, the relative

classification accuracy with respect to chance improves with sample
size.When trying to increase the number of possible labels in a set, the
chance rate of accuracy decreases.Withmultivariate classification, the
“chance” accuracy classification rate (Alzheimer's/old/young) was
34.1%, whereas with the bivariate classification of subgroups
(Alzheimer's, o

^
ld), (Alzheimer's, y

^
oung), and (old, young) the

“chance” accuracy rate was 51.9%, 51.9%, and 50%, respectively.
Relative to the chance accuracy, the multivariate classifier actually has
improved results with more samples, with respective accuracy ratios
of classification accuracy/chance accuracy of 1.9326 for the multivar-
iate classification compared to 1.6416, 1.4277, 1.7206 classification
ratios for the bivariate runs, using Method 2 accuracy results in
Table 2.
UNTable 1
Selection of single embedding parameter.

Classification a
^
ccuracy

Groups Maximum
a
^
ccuracy

Eigenvalue
d
^
imension

Median
a
^
ccuracy

Chance
a
^
ccuracy

Alzheimer's, old, young 65.9% 1 50.0% 34.1%
Alzheimer's,

^
old 74.1% 1 48.2% 51.9 %

Alzheimer's,
^
young 74.1% 1 66.3% 51.9 %

Old,
^
young 89.3% 1 66.1% 50 %

Schizophrenic, normal 80% 3 80% 70%
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An investigation into the classification error within category are
discussed in Misclassification error rates

^
.

Method 2: Optimized dual parameter selection

In this section we present a method where the two parameters n
and k for fitting the neighborhood are optimized simultaneously
within the model. Both n and k are global parameters and are
constant across subjects. The out-of-bag error using this approach is
artificially lower than the testing error. Because two parameters are
being optimized with respect to the out-of-bag error, Method 2
produces a more biased estimate of the training error than does
Method 1, which optimizes only a single parameter. This hypothesis is
tested below, when cross-validation is run outside of the random-
forests parameter selection stage.

The neighborhood size parameter kwill be held constant across all
subjects within each model evaluation, where k∈(2,10). The
eigenvalue dimension n∈(1,10).

The results appear in Table 2.
Because there may exist multiple pairs (n⁎, k⁎) corresponding to

the samemaximum classification accuracy over all possible parameter
combinations (n, k), we select the minimum n yielding the optimal
accuracy. In the event that multiple (n, k) pairs yield the same
classification accuracy for the smallest n, the minimal k is use as a
tiebreaker. For example, in the schizophrenia/normal dataset, there
were 9 total (n⁎, k⁎) combinations yielding 90% classification
accuracy, so the smallest n rule yielded a (n⁎, k⁎) parameter pair as
(2, 10).

Cross-validation

Both Method 1 and Method 2 optimized neighborhood fit
parameters by minimizing the out-of-bag error, or maximizing the
out-of-bag-accuracy. To compensate for the bias created by training
our classifier on the out-of-bag error, we performed leave-one-out

^
cross-validation on top of the resampling already involved in the
random forests procedure. This cross-validation is performed outside
of the entire model fitting and parameter selection stage to ensure
that the testing-accuracy remains unbiased (Simon et al., 2003;
Demirci et al., 2008). A single observation is omitted from the dataset
containing n observations, the model is constructed using the n

^
- 1

observations with the eigendimension parameter and neighborhood
Table 3 t3:1

Accuracy over m
^
ethods.

t3:2
t3:3Cross-validation accuracy

t3:4Groups Method 1 CV
a
^
ccuracy

Method 2 CV
a
^
ccuracy

Chance
a
^
ccuracy

t3:5Alzheimer's, old, young 65.9% 53.7% 34.1%
t3:6Alzheimer's,

^
old 74.1% 74.1% 51.9%

t3:7Alzheimer's,
^
young 62.9% 59.3% 51.9%

t3:8Old,
^
young 89.2% 89.2% 50%

t3:9Schizophrenic, n
^
ormal 80% 80% 70%
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Table 4 t5:1

Correlation m
^
etric.

t5:2
t5:3Classification a

^
ccuracy

t5:4Groups Method 1
RF a

^
ccuracy

Method 1
CV a

^
ccuracy

Method 2
RF a

^
ccuracy

Method 2
CV a

^
ccuracy

t5:5Alzheimer's, old, young 61.0% 42.9 % 65.9% 58.5%
t5:6Alzheimer's,

^
old 63.0% 59.3% 70.4% 37.0 %

t5:7Alzheimer's,
^
young 81.5% 74.1% 81.4% 63.0%

t5:8Old,
^
young 82.1% 71.4 % 92.9% 71.4 %

t5:9Schizophrenic, normal 80% 75% 90% 70%

Table 5 t6:1

White-noise metric.
t6:2
t6:3Classification a

^
ccuracy

t6:4Groups Method 1
RF a

^
ccuracy

Method 1
CV a

^
ccuracy

Method 2
RF a

^
ccuracy

Method 2
CV a

^
ccuracy

t6:5Alzheimer's, old, young 48.8% 29.3 % 58.5% 46.3%
t6:6Alzheimer's, o

^
ld 70.4% 59.3% 85.2% 81.4%

t6:7Alzheimer's,
^
young 51.9% 29.6% 81.4% 70.4%

t6:8Old,
^
young 64.3% 57.2 % 78.6% 75%

t6:9Schizophrenic,
^
normal 80% 75% 75% 75%
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size parameter optimized as above. The predictive model is chosen
with the eigendimension that maximizes the classification accuracy
(minimizes the out-of-bag error) on the n

^
- 1 observations, and this

model is then tested on the nth observation that was originally set
aside. This procedure is performed repeatedly leaving out a single
observation each time for the entire dataset, and the classification
accuracy is computed based on the cross-validation accuracy leading
to a truly unbiased estimate. The results are shown in Table 3.

A difference between the cross-validation and out-of-bag error
cannot be interpreted directly as a measure of bias in the original
model creation. Because of the relatively small sample size, leaving
out a single observation significantly reduces the dataset size on
which the model is created. For example, using leave-one-out on the
schizophrenia/normal dataset reduces the training set size by 5%. A
difference between the out-of-bag error and the cross-validation error
then may be attributed to this difference, and not because of bias
introduced with the parameter optimization procedure.

Because there may exist multiple (n⁎, k⁎) parameters that yield
the same maximal classification accuracy in Method 2, there exists
some flexibility in the choice of (n, k) on which to estimate the cross-
validation accuracy. For simplicity, here we use the (n, k) pair with the
smallest n over all pairs yielding the same maximal classification
accuracy. If there exists more than one (n, k) corresponding the
maximal classification accuracy and the same minimum n, we then
select the pair with the minimum k as well. This is equivalent to the n,
k chosen to represent the eigenvalue dimensions in Method 2. For
further details see

^
Sensitivity to parameter choice.

Sensitivity to distance metric choice

In this section we will test the methods developed above using
three other distance metrics: the correlation distance, the fractal
distance, and a new metric we call the phase distance. In this manner
we will see how sensitive spectral classification is to the distance
metric used to describe the association between independent
components.

Correlation
The cross-correlation of two timeseries is merely a lagged version

of the correlation. The correlation is a linear metric describing the
relationship between increases and decreases in signal amplitude
over time.

Correlation Mα ;Mβ

� �
=

E mα;t − Mα

� �
mβ;t − Mβ

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E mα;t − Mα

� �2
� �

E mβ;t − Mβ

� �2
� �s ð6Þ

Results using this metric are shown in Table 4.

Phase distance
To quantify the relationship between pairs of components within a

subject, we will create a metric called phase distance that measures
the change in activation levels between pairs of components over
time.

A shift in energy between two timecourses Mα and Mβ between
time (t,t+1) can be calculated as the Euclidean distance

DE mα;t ;mβ;t

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mα;t−mα;t−1

� �2
+ mβ;t−mβ;t−1

� �2
r

ð7Þ

This is an extension of the univariate concept of “phase distance”,
where univariate movement over time is plotted with the two axis
being the observation at time (t,t+1). Performing this calculation
over the range of time yields a vector, DE(Mα, Mβ).
Please cite this article as: Anderson, A., et al., Classification of spa
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If this energy shift were systematic, one could argue there existed a
relationship between the independent components represented by
Mα and Mβ. The periodogram of the distance vector DE^

(Mα, Mβ)
would exhibit dominant frequencies if this energy shift were ordered,
and equal amplitude at all frequencies if there was no regular pattern.
“White noise” is defined by this equal distribution of amplitude across
all frequencies, and the variance of the amplitudes across all
frequencies would be small. A dominant frequency would increase
the standard deviation of the periodogram frequencies.

The phase distance between two independent components time-
courses is constructed around the regularity of energy shifts among
pairs of independent component timecourses.

d Mα ;Mβ

� �
=

1

SD DE Mα ;Mβ

� �� � ð8Þ

This metric is calculated for all possible component pairs within a
subject to form a distance matrix. Results using this metric are shown
in Table 5.

Fractal correlation dimension
A fractal measure of dimensionality is used to quantify the

complexity of this bivariate trajectory. The correlation dimension
(Grassberger and Procaccia, 1983) computes the dimensionality of a
space occupied by a set of random points, and is measured as a density
limit of the number of points contained within an ɛ-ball where the
number of points sampled approaches infinity as the radius of the ball
ɛ approaches zero. We compute the density of points in a

^
two-

dimensional space, where the first dimension is the set of points Mα,
and the second dimension is the set Mβ. A single point in the space at
time t is (mα, mβ,t). Although these points are embedded in a two-
dimensional space, the distribution of the fractal dimension of these
points is bounded above by two and is actually lower than this.

The fractal dimension is calculated using a parameter called the
confidence parameter, α, which allows extremely distant points in the
set to be removed. This reduces the effects of possible outliers in the
calculation by removing an observation that is atypical with respect to
the other points. The default parameter in R of α=.2 is used here.

Results using this metric are shown in Table 6.
The results for this metric are suboptimal with respect to the other

parameters. A reason for this may be in the instability of this metric
because of the number of points. The fractal dimension is an estimate
tially unaligned fMRI scans, NeuroImage (2009), doi:10.1016/j.
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Fig. 6. AD accuracy by extracted eigenvalues.

Table 6t7:1

Fractal dimension metric.
t7:2
t7:3 Classification a

^
ccuracy

t7:4 Groups Method 1
RF a

^
ccuracy

Method 1
CV a

^
ccuracy

Method 2
RF a

^
ccuracy

Method 2
CV a

^
ccuracy

t7:5 Alzheimer's, old, young 53.7% 41.5 % 53.7% 36.7%
t7:6 Alzheimer's,

^
old 55.6% 37.0% 63.0% 22.2%

t7:7 Alzheimer's,
^
young 77.8% 63.0% 77.8% 55.6%

t7:8 Old,
^
young 67.9% 60.7 % 78.6% 39.3 %

t7:9 Schizophrenic,
^
normal 80% 75% 85% 75%
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of density as N →∞, however our N here is limited to roughly 125
points for both datasets. As such, the number of points we have may
lead to instable estimates of an infinite limiting density.

Sensitivity to parameter choice

Here we will examine the effect the parameter choice has on the
classification accuracy.

Method 1: Single parameter optimization
Method 1 discussed the selecting model parameters (n, ki) such

that ki is selected within a subject by optimizing a model fit, and n is
optimized with respect to minimizing the classification error over all
subjects. We will discuss here the change in classification accuracy
associated with the change in n.

For the schizophrenia/normal dataset, the maximal classification
accuracy was obtained with eigenvalue dimension n=3, and the
accuracy stayed constant with successive dimensions in Fig. 5. This is
an indicator that the smaller dimensions were the better predictors at
between-group differences. For the Alzheimer's/old/young dataset,
the maximal classification accuracy was obtained with an eigendi-
mension of n=1 in Fig. 6. Extracting successive eigenvalues into the
feature vector served to lower the classification accuracy.

Method 2: Dual parameter optimization
The procedure has two free parameters that are optimized: the

eigendimension n and the neighborhood size k.
The number of principal eigenvalues used to create a feature

vector for a subject is a free parameter bounded above by the
minimum number of components existing over all subjects. The
number of eigenvalues n used to construct a classifier are by
themselves an indicator of the level of variation among the groups;
if there existed significant differences between groups, one would see
a large number of principal eigenvalues along which there existed
between-group variations.
UN
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neighbors to be considered when calculating the geodesic distances.
Because all subjects had a unique number of components, we will take
a constant percentage of the total number of components to
determine the neighborhood size. The eigenvalue dimension will be
selected between 1 and 10, while between 10

^
% and 50% (1k ; ka 2;10ð Þ)

of the total number of components within a subject will be used for
neighborhood selection.

We will examine the influence of these parameters on the
classification accuracy by altering the free parameters.

As shown in Fig. 7, the accuracy of the classifier for the Old/Young/
Alzheimer's dataset improves when using smaller numbers of
eigenvalues, which is an indicator that the most difference exists
among the first few dimensions. The trend is not as clear in the effect
of neighborhood size in the predictive accuracy. The dashed line
indicates the random classification accuracy of 33.3%. The median
classification accuracy was 51.4%, and the maximum accuracy was
65.9%. The distribution of the accuracy for all possible free parameters
for the Alzheimer's/old/young dataset shows a unimodal shape with
the middle 50% of parameters having accuracy between 46.4% and
53.7%.

For the schizophrenia/normal dataset the accuracy of the classifier
improves using greater numbers of eigenvalues in Fig. 8. This may be
true because there existed initially more components in this dataset
than the Alzheimer's/old/young dataset, which would lead to a
greater number of dimensions onwhich to discriminate. Similar to the
first dataset, there does not appear to be a consistent pattern between
the neighborhood size and classification accuracy. The distribution of
accuracies over all possible parameters is roughly symmetric with a
left skew.

Conclusion

The methods developed here can be seen as comparing interac-
tions of spatially independent components over time within a subject
and seeking differences in these interactions across groups. Mathe-
matically, we are trying to discriminate among distance matrices,
while geometrically we are comparing a group of points (compo-
nents) in some unknown subject-defined space to another group of
points in a different subject's space. Using the geodesic similarity
unwinds the shape that each group of point forms, thereby increasing
the effectiveness of a linear eigendecomposition on a non-linear
subspace. Then, we extract the eigenvalues of the similarity matrix to
obtain the strength of the primary dimensions. We are then
comparing the size of our unknown manifolds along the primary
dimensions across subjects and using differences across subjects to
construct a classifier.

We have demonstrated that the temporal information alone
contains a signal strong enough for discrimination. The eigenvalue
dimension indicates the number of principal eigenvalues along which
tially unaligned fMRI scans, NeuroImage (2009), doi:10.1016/j.
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the groups exhibit significant variation. The need for the geodesic
distance transformation demonstrated that the temporal connectivity
among the components is highly non-linear. This may be related to
the non-linearity of the initial dimension reduction method ICA. The
geodesic transformations of the association matrices smooth the non-
linear manifold joining components, improving the features extracted
during the eigen-decomposition.

A proposed future direction is to combine spatial and temporal
classification models to create a more powerful time

^
–space hybrid

classifier. Both methods offer valuable discriminative power along
different domains, so a combination could only serve to strengthen
existing models. In addition, the existing algorithm could developed
using aligned scans with group component extraction, which would
allow one to identify what hypothesized neurological networks
behave differently across groups. This would allow direct comparisons
of components across subjects instead of comparing properties of
subject connectivity.

The approach presented here circumvents many problems that
otherwise make classification based on neuroimaging data difficult.
First we perform dimension reduction using a method, ICA, that
extracts discriminating features of the images automatically. ICA can
be seen as an element from a class of dimension

^
–reduction methods

that effectively extract basis functions that describe the images in a
compact manner. Although there were 125 total possible indepen-
dent components within a randomly selected normal subject, the top
UN
CO

R

Fig. 8. SZ param
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OO10 independent components sorted by variance explained cumula-
tively were able to explain roughly 27.0% of the total temporal
variance. The independent components have the further attractive
feature that the spatial signatures are reported by neuroscientists in
many cases to correspond roughly to identifiable functional net-
works. Thus our classifier may be operating on meaningful functional
architecture of the brain. Our method operates using all the
independent components within a subject, so no human interpreta-
tion is required to achieve classification of the data. Because of the
anatomical variability of human brains

^
– and presumably the added

variability of the presence of certain function circuits
^
– as crucial

advantage of our method is the obviation of the need for structural
alignments.
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Table 8 t8:1

Method 1 AD/young/old errors.
t8:2
t8:3Mi

^
sclassification

^
matrix

t8:4Variable Young Old Alzheimer's Classification e
^
rror

t8:5Young 9 2 3 35.7%
t8:6Old 1 11 2 21.4%
t8:7Alzheimer's 2 4 7 46.2%

Fig. 9. Number of components extracted by selection method.
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As the procedure was created with the free parameters of
neighborhood size choice and eigendimension, we wish to see how
the selection of these parameters changes the accuracy of the
classifier. We also will discuss how the algorithm methods presented
here relates to two popular machine-learning algorithms: ISOMAP
(Tenenbaum et al., 2000) and spectral clustering (Ng et al., 2001).
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Sensitivity to component number approximation method

The number of components was initially chosen using the laplace
approximation to the model order (LAP) (Minka, 2000), which has
been found previously to best estimate the number of ICAs in a subject
compared to other methods such as Akaike information criterion
(AIC), Bayesian information criterion (BIC), and the minimum
description length (MDL). We will examine the impact of changing
the method in which the number of independent components are
selected within the schizophrenia/normal dataset by comparing the
results using LAP to select the parameters compared to AIC and BIC.

There exists a consistent trend in the number of components
extracted by criterion method used, shown in Fig. 9. The AIC
consistently estimates the greatest number of components, while
the LAP is second, and the BIC selects the lowest number of
components. Using the components extracting for each of these
three methods, we will investigate the effect changing the criterion
has on classification accuracy using Method 1 and Method 2 for the
schizophrenia/normal Dataset.

Changing the estimation method yields lower classification
methods for both criteria using Method 1, yet yields slightly better
results for BIC than LAP in Method 2, as shown in Table 7. As Method 2
is a biased estimate of the testing error because of its extreme use of
parameter optimization, this result may be a result of overfitting. As
the LAP method has previously been shown to be the best manner of
estimating the number of component sources, it appropriately yields
the highest average accuracy over the other selection methods of AIC
and BIC.
 U 827

828Table 7
SZ/normal method dependency.

Classification accuracy by component selection criterion

Criterion
^̂̂

Method 1
a
^
ccuracy

Eigenvalue
d
^
imension

Method 2
a
^
ccuracy

Eigenvalue
d
^
imension

AIC 65% 5 75% 1
BIC 70% 7 95% 8
LAP 80% 3 90% 3
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Mis
^
classification error rates

The mi
^
sclassification rate by category is shown for both datasets

using the optimal model selected in Method 1.
For the Alzheimer's/old/young dataset, the easiest category to

identify was
^
old, while the most difficult category to identify was

Alzheimer's in Table 8.
Themissclassificationmatrix for the bivariate schizophrenia/normal

classification run shows that the easiest class to identify was the
^̂
normal

category, while the most difficult was the
^̂
schizophrenia class in Table 9.

Relationship to existing methods

Independent components analysis (ICA)
Themethods presented here are largely dependent upon the initial

step of dimension reduction, where ICA is used to decompose the data
into source signals.

ICA operates under the assumption that an observation x is
actually a linear combination of independent source signals si such
that x=As (Hyvärinen and Oja, 2000). The source signals are assumed
to be non-Gaussian, because if they were Gaussian and independent
the estimating multivariate Gaussian joint distribution would be
symmetric, thus leading to source estimations that are estimable only
up to orthogonal rotations. The algorithm used for this analysis, FAST-
ICA, estimates the source signals by maximizing the negentropy using
Newton's method.

ISOMAP
This classification method uses concepts from the ISOMAP

algorithm (Tenenbaum et al., 2000) which transforms a Euclidean
distance matrix into a geodesic distance matrix before projecting the
data on the principal eigenvectors corresponding to the principal
eigenvalues. ISOMAP can be understood as a geodesic transformation
of a distance matrix followed by traditional multidimensional scaling.
While spectral classification transforms the distance matrix using
geodesic distances, spectral classification uses the eigenvalues of the
primary dimensions for classification rather than using the principal
eigenvectors for projection. Calculating the geodesic distances trans-
forms the original distance matrix into a weighted adjacency matrix
by using nearest neighbors to determine adjacency.

Spectral clustering
Spectral c

^
lustering procedures group points using on the spectral

properties of the Laplacian matrix of a graph (Ng et al., 2001). For a
weighted adjacencymatrixW(n,n) that gives theweighted connections
for n points, the degree of a point is defined as di =

Pn
j = 1 wij. If two

points i and j are not connected,wij=0. For a set of n points the degree
matrix D(n,n) is a diagonal matrix where ai,j=degree(i) if i= j, and 0
otherwise. The adjacency matrix A(n,n) describes the connectivity of a
Table 9 t9:1

Method 1 SZ/normal errors.
t9:2
t9:3Mis

^
classification m

^
atrix

t9:4Variable Schizophrenic Normal Classification e
^
rror

t9:5Schizophrenic 4 2 33.3%
t9:6Normal 2 12 16.7%
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graphs, where ai,j=1 if points i and j are connected, and 0 otherwise.
The Laplacian of a graph then is computed as L=D

^
- A. Spectral

clustering operates by extracting the eigenvectors of L that correspond
to theminimum eigenvalues and creating amatrix Vwith the columns
of V corresponding to the eigenvectors of L. Points yi are constructed
by taking the rows of V and are clustered into a predetermined number
of k groups using the k-means clustering technique.

Spectral c
^
lassification differs from spectral clustering by using a

spectral decomposition of the weighted adjacency matrix W instead
of the Laplacian L of W. The principal eigenvalues are used for
classification in spectral classification, while theminimal eigenvectors
are used for clustering in spectral clustering.
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