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Abstract. Psychophysical experiments show that humans are better at
perceiving rotation and expansion than translation [4][8]. These findings
are inconsistent with standard models of motion integration which pre-
dict best performance for translation. To explain this discrepancy, our
theory formulates motion perception at two levels of inference: we first
perform model selection between the competing models (e.g. transla-
tion, rotation, and expansion) and then estimate the velocity using the
selected model. We define novel prior models for smooth rotation and ex-
pansion using techniques similar to those in the slow-and-smooth model
[23] (e.g. Green functions of differential operators). The theory gives good
agreement with the trends observed in four human experiments.

1 Introduction

As an observer moves through the environment, the retinal image changes over
time to create multiple complex motion flows, including translational, circular
and radial motion. Imagine that you are in a moving car and seeing a walker
through a set of punch holes, as illustrated in figure (1). In each hole, the com-
ponent of the line motion orthogonal to the lines orientation can be clearly
perceived; however, the component of motion parallel to the lines orientation is
not observable. This is often referred to as the aperture problem. The inherent
ambiguity of motion signals requires the visual system to employ an efficient
integration strategy to combine many local measurements in order to perceive
global motion. In the example (figure (1)), the visual system needs to effectively
integrate local signals to perceive multiple complex motion flows, including the
movement of the walker and the moving background respectively.

Human observers are able to process different motion patterns and infer ego
motion and global structure of the world. Psychophysical experiments have iden-
tified a variety of phenomena, such as motion capture and motion cooperativity
[16], which appear to be consequences of such integration. A number of compu-
tational Bayesian models have been proposed to explain these effects based on
prior assumptions about motion. In particular, it has been shown that a slow-
and-smooth prior, and related models, can qualitatively account for a range of
experimental results [23, 21, 22] and can quantitatively account for others [9, 17].

However, the integration strategy modeled by the slow-and-smooth prior may
not generalize to more complex motion types, such as circular and radial mo-
tion, which are critically important for estimating ego motion. In this paper we
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are concerned with two questions. (1) What integration priors should be used
for a particular motion input? (2) How can local motion measurements be com-
bined with the proper priors to estimate motion flow? Within the framework
of Bayesian inference, the answers to these two questions are respectively based
on model selection and parameter estimation. In the field of motion perception,
most work has focused on the second question, using parameter estimation to
estimate motion flow. However, Stocker and Simoncelli [18] recently proposed
a conditioned Bayesian model in which strong biases in precise motion direc-
tion estimates arise as a consequence of a preceding decision about a particular
hypothesis (left vs. right motion).

Fig. 1. An illustration of observing a walker with a moving camera. Top panel, three
example frames. Bottom panel, observing the scene through a set of punch holes

The goal of this paper is to provide a computational explanation for both
of the above questions using Bayesian inference. To address the first question,
we develop new prior models for smooth rotation and expansion motion. To
address the second, we propose that the human visual system has available
multiple models of motion integration appropriate for different motion patterns.
The visual system decides the best integration strategy based upon the perceived
motion information, and this choice in turn affects the estimation of motion flow.

In this paper, we first present a computational theory in section (4) that
includes three different integration strategies, all derived within the same frame-
work. We test this theory in sections (5,6) by comparing its predictions with hu-
man performance in psychophysical experiments, in which subjects were asked
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to detect global motion patterns or to discriminate motion direction in transla-
tion (left vs. right), rotation (clockwise vs. counter-clockwise), and radial motion
(inward vs. outward). We employ three commonly used stimuli: random dot pat-
terns, moving gratings and plaids (two superimposed gratings each with different
orientations) to show that the model can be applied to a variety of inputs. We
compare the predictions of the model predictions with human performance across
four psychophysical experiment.

2 Background

There is an enormous literature on visual motion phenomena and there is only
room to summarize the work most relevant to this paper. Our computational
model relates most closely to work [23, 21, 9] that formulates motion perception
as Bayesian inference with a prior probability biasing towards slow-and-smooth
motion. But psychophysical [4, 10, 1, 8], physiological [19, 3] and fMRI data [11]
suggests that humans are sensitive to a variety of motion patterns including
translation, rotation, and expansion. In particular, Freeman et al [4] and Lee
et al [8] demonstrated that human performance on discrimination tasks for trans-
lation, rotation, and expansion motion was inconsistent with the predictions of
the slow-and-smooth theory (our simulations independently verify this result).
Instead, we propose that human motion perception is performed at two levels of
inference: (i) model selection, and (ii) estimating the velocity with the selected
model. The concept of model selection has been described in the literature, see
[7], but has only recently been applied to model motion phenomena [18]. Our
new motion models for rotation and expansion are formulated very similarly to
the original slow-and-smooth model [23] and similar mathematical analysis [2]
is used to obtain the forms of the solutions in terms of Greens functions of the
differential operators used in the priors.

Smoothness priors for motion have a long history in computer vision be-
ginning with the influential work of Horn and Schunk [6] and related work by
Hildreth [5]. The slow-and-smooth prior on the velocity [23] was developed to
explain psychophysical phenomena such as motion capture [13]. The nature of
the psychophysics stimuli and the experimental phenomena meant that the first
derivative regularizers used in [6][5] needed to be supplemented by zeroth order
regularizers (i.e. slowness of the velocity) and second, and higher, order regu-
larizers. Specifically, higher order regularizers were required to ensure that the
theory was well-posed for the sparse stimuli (e.g. moving dots) used in typical
psychophysical experiments. Moreover, zeroth order regularizers were needed
to ensure that the interactions (e.g. motion capture) between different stimuli
decreased with distance [24]. Justifications for the slowness and smoothness as-
sumptions came from analyzes of the probability distribution of velocity flow
in the image plane assuming isotropic distributions of velocity in space [20, 25]
which showed that for most distributions of velocity in space the projection onto
the image plane would induce velocity distributions which were peaked at zero
velocity and zero velocity gradient. More recently, empirical studies by Roth and
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Black [15] on motion statistics yield similar results. We note that a limitation of
the slow-and-smooth prior, for computer vision purposes, is that it is a quadratic
regularizer and hence tends to smooth the velocity over motion discontinuities
(although the limited range of interaction of the slow-and-smooth model means
that this effect is more localized than for standard quadratic regularizers). Hence
non-quadratic regularizers/priors are preferred for computer vision applications.
The nature of the psychophysical stimuli in this paper, however, means that
discontinuities can be ignored and so we can use quadratic regularizers and take
advantage of their good computational properties.

In order to relate theories like slow-and-smooth to psychophysics we have
to understand the experimental design and model how human subjects address
the specific experimental tasks. The experiments we describe in this paper use a
standard experimental design which we describe for dot stimuli (a similar design
is used for gratings and plaid stimuli). For these stimuli, some of the dots (the
signal) move coherently, whereas other dots (the noise) move randomly. The
experimental task is to measure some property of the coherent stimulus (e.g.
does it move to the left or the right? does it rotate or contract?). The difficulty
of performing this task depends on the proportion of signal dots to noise dots.
The coherence threshold is defined to be the value of the ratio at which human
subjects achieve 75 % accuracy for the task. Hence the psychophysicist can adjust
the parameters of the stimuli (i.e. proportion of signal to noise) until this degree
of accuracy is obtained. To evaluate the performance of a theory, we compute
the analogous threshold for the theory and compare it to the threshold found
by the experiments. An alternative criterion is to measure the minimum speed
or contrast (e.g. brightness of the dots compared to the background) required to
achieve a certain performance level (e.g. 75 % accuracy) at a visual task (e.g. is
the motion to the right or the left?).

3 Overview of the Theory

We formulate motion perception as a problem of Bayesian inference with two
stages followed by post-processing. We hypothesize that the human visual system
has a set of models M for estimating the velocity. Firstly, we perform model
selection to find the model that best explains the observed motion pattern.
Secondly, we estimate motion properties using the selected model. The post-
processing models how human subjects use the estimated motion to perform
psychophysical tasks.

Formally a model M estimates the velocity field {v} defined at all positions
{r} in the image from local velocity measurements {u} at discrete positions
{ri, i = 1, . . . N}. The model is specified by a prior p({v}|M) on the velocity
field and a likelihood function p({u}|{v}) for the measurements. This specifies
a full distribution p({v}, {u}, M) = p({u}|{v})p({v}|M)P (M), where P (M) is
the prior over the models (which is a uniform distribution).
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The prior and likelihoods are expressed as Gibbs distributions:

p({v}|M) = exp(−E({v}|M)/T ), (1)
p({u}|{v}) = exp(−E({u}|{v})/T ), (2)

and are specified in sections (4.1,4.2) respectively.
The first stage of the theory selects the model M∗ that best explains the

measurements {u}. It is chosen to maximize the posterior of the model evidence:

M∗ = arg max
M

P (M |{u}) = arg max
M

P ({u}|M)P (M)
P ({u}) (3)

where p({u}|M) =
∫

p({u}|{v})p({v}|M)d{v}. (4)

The second stage of the theory estimates the velocity flow by using the se-
lected model M∗. This yields:

v∗ = arg max
v

p({v}|{u}, M∗) (5)

where p({v}|{u}, M∗) =
p({u}|{v})p({v}|M∗)

p({u}|M∗)
. (6)

The form of these priors P ({v}) are distributions over functions, see sec-
tion (4.1), which means that this model evidence will be computed by techniques
similar to those used for Gaussian Processes [14].

The post-processing estimates the properties of the motion flow required to
perform the psychophysics tasks. In the psychophysics experiments in this paper,
the human subjects must determine whether the motion is translation, expan-
sion/contraction, or rotation and then estimate the appropriate motion proper-
ties: (i) direction of motion (if translation), (ii) direction of expansion/contraction
(if expansion/contraction), or (iii) direction of rotation (if rotation).

To address these tasks, we use the following post-processing strategy which
we illustrate for the rotation stimuli. First we compute the two stages of the
theory as described above. If the rotation model is selected, then we estimate
the center of rotation (by least squares fit) and compute the direction of rotation
(i.e. clockwise or counterclockwise) for the velocity field evaluated at each data
point (i.e. dots), see Appendix (C) for details. We alter the parameters of the
stimuli (i.e. the proportion of noise dots) until 75 % of the stimulus data points
are estimated to have the correct direction of rotation (for each stimulus). Alter-
natively, we consider a set of stimuli, compute the velocity flow for each stimulus
and estimate the centers of rotation, compute the histograms of the estimated
rotated directions for the data points for all images, and determine the stimulus
parameters so that 75 % of the histogram values are in the correct direction.

4 Model Formulation

This section specifies the priors for the different models, the likelihood functions,
closed form solutions for the velocity flows, and analytic formulae for performing
model selection. Some details of the derivations are described in Appendix (A).
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4.1 The Priors

We define three priors corresponding to the three different types of motion –
translation, rotation, and expansion. For each motion type, we encourage slow-
ness and spatial smoothness. The prior for translation is very similar to the
slow-and-smooth prior [23] except we drop the higher-order derivative terms
and introduce an extra parameter (to ensure that all three models have similar
degrees of freedom).

We define the priors by their energy functions E({v}|M), see equation (1).
We label the models by M ∈ {t, r, e}, where t, r, e denote translation, rotation,
and expansion respectively. (We note that the prior for expansion will also ac-
count for contraction). We use the convention that v = (vx, vy).

1. Slow-and-smooth-translation:

E({v}|M = t) =
∫

λ(|v|2 + µ|∇v|2 + η|∇2v|2)dr, (7)

2. Slow-and-smooth-rotation:

E({v}|M = r) =
∫

λ{|v|2+µ[(
∂vx

∂x
)2+(

∂vy

∂y
)2+(

∂vx

∂y
+

∂vy

∂x
)2]+η|∇2v|2}dr,

(8)
3. Slow-and-smooth-expansion:

E({v}|M = e) =
∫

λ{|v|2+µ[(
∂vx

∂y
)2+(

∂vy

∂x
)2+(

∂vx

∂x
−∂vy

∂y
)2]+η|∇2v|2}dr,

(9)

These priors are motivated as follows. The |v|2 and |∇2v|2 terms bias towards
slowness and smoothness and are used in all three models. However, the priors
differ in the use of first derivative terms. The translation prior prefers constant
translation motion with v constant, since ∇v = 0 for this type of motion. The
translation prior is similar to the first three terms of the slow-and-smooth energy
function [23] but with a restriction on the set of parameters. Formally λ(|v|2 +
σ2

2 |∇v|2 + σ4

8 |∇2v|2)dr ≈ λ
∑∞

m=0
σ2m

m!2m |Dmv|2dr (for appropriate parameter
values). Our computer simulations showed that the translation prior performs
similar to the original slow-and-smooth prior.

The first derivative terms in the slow-and-smooth-rotation prior is motivated
by the ideal form of rigid rotation:

vx = −ω(y − y0), vy = ω(x− x0) (10)

where (x0, y0) are the (unknown) centers, ω is the (unknown) angular speed.
This rigid rotation is preferred by the slow-and-smooth-rotation prior (at least,
by its first derivative terms), since we have ∂vx

∂y + ∂vy

∂x = 0 and ∂vx

∂x = ∂vy

∂y = 0
(independent of (x0, y0) and ω).
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The first derivative terms in the slow-and-smooth-expansion prior is moti-
vated by the ideal form of rigid expansion:

vx = e(x− x0), vy = e(y − y0) (11)

where (x0, y0) are the (unknown) centers, and e is the (unknown) expansion rate.
Such a rigid expansion is preferred by the slow-and-smooth-expansion prior (first
order terms), since we have ∂vx

∂x −
∂vy

∂y = 0, and ∂vx

∂y = ∂vy

∂x = 0 (again independent
of (x0, y0) and e).

Note that we will use equations (10,11) in the post-processing stage where we
estimate the centers (x0, y0) and the rotation/expansion ω, e, see Appendix (C).

4.2 The Likelihood Functions

The likelihood function differs for the three classes of stimuli used in the psy-
chophysics experiments that we considered: (i) For moving dots, as used in [4],
the motion measurement is the local velocity u of each dot (assumed known
since the motion is small and so correspondence between dots at different time
frames is unambiguous); (ii) For a moving grating [12] [8], the local motion mea-
surement is the velocity component in the direction orthogonal to the grating
orientation; (iii) For a moving plaid (with two superimposed grating each with
different orientation) [12] [8], the local motion measurement uses the velocity
components of each grating (effectively this reduces to the moving dot case).

For the dot stimuli, the energy term in the likelihood function, see equa-
tion (2), is set to be

E({u|v}) =
N∑

i=1

|v(ri)− u(ri)|2 (12)

For the grating stimuli, see figure (5), the likelihood function uses the energy
function

En({u}|{v}) =
N∑

i=1

|v(ri) · û(ri)− |u(ri)||2 (13)

where û(ri) is the unit vector in the direction of u(ri) (i.e. in the direction of
local image gradient and hence perpendicular to the orientation of the bar).

For the plaid stimuli, see figure (6), the likelihood function uses the energy
function

Ep({u}|{v}) =
N∑

i=1

(|v(ri) · û1(ri)−|u1(ri)||2 + |v(ri) · û2(ri)−|u2(ri)||2) (14)

where there are two sets of measurements {u1} and {u2}. This specifies the
velocity in two different directions and hence can be reformulated in terms of
model for the dots.
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4.3 MAP estimator of velocities

The MAP estimate of the velocities for each model is obtained by solving

v∗ = arg max
v

p({v}|{u},M) = arg min
v
{E({u}|{v}) + E({v}|M)} (15)

For the slow-and-smooth model [23], it was shown using regularization anal-
ysis [2] that this solution v∗ can be expressed in terms of a linear combination
of the Green function G of the differential operator which imposes the slow-and-
smoothness constraint (the precise form of this constraint was chosen so that G
was a Gaussian [24]).

In this paper, we perform a similar analysis for the three types of models
M ∈ {t, r, e} introduced in this paper and show that the solution v∗ can also
be expressed as a linear combination of Green functions GM where M indi-
cates the model. The precise forms of these Green functions are determined
by the differential operators associated with the slow-and-smoothness terms of
the models and are derived in Appendix (A). The main difference with the
Green functions described by Yuille and Grzywacz [23],[25] is that the models
for expansion/contraction and rotation require two vector valued Green functions
GM

1 = (GM
1x, GM

1y) and GM
2 = (GM

2x, GM
2y) (with the constraint that GM

1x = GM
2y

and GM
2x = GM

1y). These vector-valued Green functions are required to perform
the coupling between the different velocity component required for rotation and
expansion, see figure (2). For the translation model there is no coupling required
and so GM

2x = GM
1y = 0.

Fig. 2. The vector-valued Green function G = (G1, G2). Top panel, left-to-right:
GM=t

1x , GM=r
1x , GM=e

1x for the translation, rotation, and expansion models. Bottom panel:
left-to right: GM=t

2x , GM=r
2x , GM=e

2x for translation, rotation, and expansion models. Ob-
serve that the GM

1x are similar for all models, GM=t
2x vanishes for the translation model

(i.e. no coupling between velocity components), and GM=r
2x and GM=e

2x both have two
peaks which correspond to the two directions of rotation and expansion. Recall that
GM

1x = GM
2y and GM

2x = GM
1y.
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Our analysis, see Appendix (A), shows that the estimated velocities for model
M can be expressed in terms of the Greens functions GM

1 , GM
2 of the model and

coefficients {αi}, {βi}:

v(r) =
N∑

i=1

[αiG
M
1 (r − ri) + βiG

M
2 (r − ri)], (16)

where the coefficients {αi}, {βi} are obtained by solving linear equations, derived
in Appendix (A), which depend on the likelihood function and hence on the form
of the stimuli (e.g. dot, grating, or plaid).

For the dot stimuli, the {α}, {β} are obtained by solving the linear equations:

N∑

i=j

[αjG
M
1 (ri − rj) + βjG

M
2 (ri − rj)] + αie1 + βie2 = u(ri), i = 1, . . . N, (17)

where e1, e2 denote the (orthogonal) coordinate axes (i.e. the x and y axes).
If we express the {α}, {β} as two N-dimensional vectors A and B (recall N is
the number of dots), the {ux} and {uy} as vectors U = (Ux, Uy), and define
N × N matrices gM

1x, gM
2x, gM

1y , gM
2y to have components GM

1x(ri − rj), GM
2x(ri −

rj), GM
1y(ri − rj), GM

2y(ri − rj) respectively, then we can express these linear
equations as:

[
(

gM
1x gM

2x

gM
1y gM

2y

)
+ I]

(
A
B

)
=

(
Ux

Uy

)
(18)

For the grating stimuli, the {α}, {β} satisfy similar linear equations:

[
(

g̃M
1x g̃M

2x

g̃M
1y g̃M

2y

)
+ I]

(
A
B

)
=

(
Ux

Uy

)
(19)

where g̃M
1x is the matrix with components G̃M

1x(ri−rj) = [GM
1 (ri−rj)·û(ri)]ûx(ri),

and similarly for g̃M
1y , g̃M

2x and g̃M
2y .

For the plaid stimuli, the {α}, {β} satisfy:

(
(

g̃M
1x g̃M

2x

g̃M
1y g̃M

2y

)

u1

+
(

g̃M
1x g̃M

2x

g̃M
1y g̃M

2y

)

u2

+ I)
(

A
B

)
=

(
U1x

U1y

)
+

(
U2x

U2y

)
, (20)

where U1, U2 are the velocity components of the two gratings respectively.
These equations (18,19,20) can all be solved by matrix inversion to determine

the coefficients {α}, {β}. These solutions can be substituted into equation (16)
to obtain the velocity field.

4.4 Model Selection

We re-express model evidence p({u}|M) in terms of (A,B):

p({u}|M) =
∫

p({u}|A,B, M)p(A,B|M)dAdB, (21)
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where p({u}|A,B, M), p(A,B|M) are obtained by substituting the form of the
velocity estimate, equation (16), and then normalizing these distributions. This
is similar to how analogous terms are calculated for Gaussian Processors [14].
It can also be considered a variant of the Laplace approximation. The analysis
is given in Appendix (B) and shows that the model evidence can be computed
analytically be exploiting properties of multi-dimensional Gaussians. The result
can be expressed compactly by introducing new notation in the form of 2N×2N
matrices:

gM =
(

gM
1x gM

2x

gM
1y gM

2y

)
g̃M =

(
g̃M
1x g̃M

2x

g̃M
1y g̃M

2y

)
.

For the dot stimuli this gives:

p({u}|M) =
1

(πT )N
√

det(gM + I)
exp[− 1

T
(UT U − UT gM

gM + I
U)] (22)

Similarly, for the gratings stimuli we obtain:

p({u}|M) =
1

(πT )N

√
det(gM )√
det(Σ̃)

exp[− 1
T

(UT U − UT g̃M Σ̃−1g̃MU)] (23)

where Σ̃ = g̃M g̃M + gM .
For the plaids stimuli we obtain: (we omit the M in gM to simplify notation.)

p({u1}, {u2}|M) =
1

(πT )N

√
det(g)√
det(Σ̃)

exp− 1
T

[UT
1 U1 + UT

2 U2 − ΦT Σ̃−1Φ] (24)

where Σ̃ = g̃M
1 g̃M

1 + g̃M
2 g̃M

2 + gM and Φ = g̃T
1 U1 + g̃T

2 U2.

5 Experiment 1: random dot motion

We first investigate motion perception with the moving dots stimuli (figure 3)
used by Freeman and Harris [4]. The stimuli consisted of 128 moving dots in a
display window. All the dots in the stimulus had the same speed in all the three
motion patterns, including translation, rotation and expansion.

The reported simulations are based upon 1000 trials for each speed condition.
The parameter values used in the simulations are λ = 0.001, µ = 12.5, η = 78.125
and T = 0.0054.

Model selection results are shown in the panels of figure (4). It is shown that
the correct model is always selected over the entire range of speed, and for all 3
type of motion stimuli.
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Fig. 3. Moving random dot stimuli – translation, rotation and expansion
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Fig. 4. Model selection results in Experiment 1 with random dot motion. Plots the log
probability of the model as a function of speed for each type of stimuli. left: translation;
middle: rotation; right: expansion. Green curves with cross are from translation model.
Red curves with circles are from rotation model. Blue curves with squares are from
expansion model.

6 Experiment 2: randomly oriented gratings

6.1 Stimulus

When randomly oriented grating elements drift behind apertures, the perceived
direction of motion is heavily biased by the orientation of the gratings, as well as
by the shape and contrast of the apertures. Recently, Nishida and his colleagues
developed a novel global motion stimulus consisting of a number of gratings
elements, each with randomly assigned orientation [12]. Lee and his colleagues
[8] extended this stimulus to rotational and radial motion. A coherent motion
in this type of stimuli is perceived when the drifting velocities, also termed the
component of velocity, of elements are consistent with a given global motion
pattern. Examples of the stimuli used in these psychophysical experiments are
shown in left side of figure (5). The stimuli consisted of 728 gratings (drift-
ing sine-wave gratings windowed by stationary Gaussians). The orientations of
the gratings were randomly assigned, and their drifting velocities were deter-
mined by a specified global motion. The motions of signal grating elements were
consistent with global motion, but the motions of noise grating elements were
randomized. The task was to identify the global motion direction as one of two
alternatives: left/right for translation, clockwise/counterclockwise for rotation,
and inward/outward for expansion. Motion sensitivity was measured by the co-
herence threshold, defined as the proportion of signal elements that yielded a
performance level of 75% correct.
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Similar stimuli with 328 gratings were generated to test our computational
models. The smaller grating number is used to shorten simulation time, and
experiments show that model behavior remains the same when grating number
increases. The input for the models is the component velocity perpendicular to
the assigned orientation for each grating. Two levels of inference are involved.
Our simulations first select the correct model for each stimulus and then estimate
the velocity flow using the selected model.

All reported simulations in Experiment 2-4 are based up 50 trials for each
level of coherence ratio. The parameter values used in the simulations are µ =
12.5, η = 78.125, v = 0.0244 and T = 4 exp−5.0. For rotation/expansion model,
λ = 0.005; for translation model, λ = 0.0025.

6.2 Model selection results

Model selection results are shown in tables (1,2,3). From the table we see that the
rotation model has the highest model evidence for the rotation stimulus over the
entire range of the coherence ratio. As coherence ratio increases, the advantage
of rotation model over the other two models also increases. Analogous results are
found for the expansion stimuli. However, for translation stimulus, all models
have very similar model evidence values. This is caused by translation being
favored by all three models, and indeed they all produce very similar motion
field estimates.

6.3 Comparison between human performance and model prediction

Once the appropriate model has been selected, the velocity flow is estimated us-
ing the selected model (more specifically, this is computed from equations (16,17)
with the appropriate M).

The post-processing in Experiments 2 4 includes a simple decision rule the
input of which is the velocity flow estimated by the selected model.First the
selected model estimates velocity flow in each trial. At each level of coherence
ratio in the range of 0 to 50%, the post-processing enables the model to predict
accuracy in discriminating motion direction for each stimulus (e.g., left vs. right
for translation, clockwise vs. counter-clockwise for rotation, and inward vs. out-
ward for expansion). To address this task, we pool estimated motion directions
of 328 elements to generate a motion direction histogram for each trial. Note we
use rotation direction and expansion direction to generate histograms. We then
compute the average direction histogram over 50 trials for stimuli with one mov-
ing direction (e.g., P (v|L) for leftward translation), and the average direction
histogram over 50 trials for stimuli with the opposite moving direction, P (v|R)
for rightward translation. Based on the two computed histograms, a decision
boundary is searched to achieve maximum accuracy. We apply the same post-
processing on each of the three motion patterns to estimate accuracy at each
level of coherence ratio, and then estimate the coherence threshold needed to
achieve 75% correct in the discrimination task.
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coherence ratio 10% 20% 30% 40% 50%

rotation model 1009.0 1060.1 1146.3 1256.9 1418.8

expansion model 1008.9 1059.5 1144.9 1254.4 1414.7

translation model 1008.9 1059.7 1145.5 1255.5 1416.5

Table 1. Model selection result for the grating rotation stimuli. The values are log-
arithms of model evidence. The correct model, rotation model, always wins. As the
coherence ratio increases, the rotation model’s advantage also increases.

coherence ratio 10% 20% 30% 40% 50%

rotation model 1011.5 1057.4 1151.8 1275.9 1430.0

expansion model 1011.7 1058.0 1153.4 1278.5 1434.2

translation model 1011.6 1057.6 1152.5 1277.1 1431.9

Table 2. Model selection result for the grating expansion stimuli. The correct model,
expansion, always wins.

coherence ratio 10% 20% 30% 40% 50%

rotation model 990.2 1076.3 1159.7 1265.6 1456.1

expansion model 990.2 1076.2 1159.7 1265.7 1456.3

translation model 990.2 1076.2 1159.7 1265.6 1456.2

Table 3. Model selection result for the grating translation stimuli. All three models
(rotation/expansion/translation) have virtually the same model evidence. This is due
to the fact that rotation/expansion models also favor translation as translation model
does.
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The results of psychophysical experiments (middle panel of figure 5) showed
worse performance for perceiving translation than rotation/expansion motion
[8]. Clearly, as shown in the third panel of the same figure, the model performs
best for rotation and expansion, and is worst for translation. This finding agrees
with human performance in psychophysical experiments.
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Fig. 5. Stimulus and results in Experiment 2 with randomly-oriented grating stimuli.
Left panel: illustration of grating stimulus. Blue arrows indicate the drifting velocity of
each grating. Middle panel: human coherence thresholds for different motion stimuli.
Right panel: Model prediction of coherence thresholds which are consistent with human
trends.

7 Experiment 3: plaid stimuli

7.1 Stimulus

A plaid pattern consists of two drifting gratings arranged such that their individ-
ual orientations are orthogonal (see illustration in the left panel of figure 6). The
drifting velocities of the two gratings in one plaid are determined by the global
motion and their orientations. As the point of intersection for two superimposed
gratings provides a tracking feature, the plaid stimulus reduces ambiguity in the
measurement of local motion. The experimental methods were the same as those
used in Experiment 2, except plaid elements were replaced by grating elements.

7.2 Results

As shown in the middle panel of figure 6, human observers exhibited the worst
performance (highest thresholds) in discriminating motion directions in trans-
lation, as compared to rotation and radial motion. The right panel of figure 6
shows the model’s performance, which matches human performance quantita-
tively. Notably, the model predicts better performance for plaid stimuli (Exp 3)
than for grating stimuli (Exp 2), which is consistent with human performance.
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Fig. 6. Stimulus and results in plaid experiment in Experiment 3 with plaid stimuli.
Left panel: illustration of plaid stimulus. Blue arrows indicate the drifting velocity of
each grating. Middle panel: human coherence thresholds for different motion stimuli.
Right panel: Model prediction of coherence thresholds which are consistent with human
trends.

8 Experiment 4: Results for non-rigid rotation and radial
motion

8.1 Stimulus

In each of the previous three experiments, all the elements were assigned the
same speed, which yielded non-rigid rotation and radial motion. However, in a
rigid motion pattern, the assigned speed for each element should vary according
to the distance to the center of rotation and radial motion. In Experiment 4, we
assessed whether rigidity could affect human motion performance in perceiving
rotation and radial motion. We introduced a rigid rotation condition, in which
element speeds were determined by a constant rotation velocity and the distance
of the element to the rotation center. The average speed was kept the same as
that used in non-rigid rotation condition. Similar manipulations were employed
for the rigid radial-motion condition. The experimental methods were the same
as those employed in Experiment 2 with the grating stimulus.

8.2 Results

As shown in figure 7 (left panel), human observers were not sensitive to rigid
versus non-rigid rotation and radial motion (in the current experimental condi-
tions). This result is consistent with previous findings reported in the literature
[1]. The right panel in figure 7 shows the model’s predictions, which qualitatively
match human performance across the four conditions. Although the rotation and
expansion priors were motivated by rigid rotation and expansion, the results in
Experiment 4 clearly the priors are ”robust” to non-rigid

9 Conclusion

We propose a computational theory for motion perception which proceeds in
two stages. The first stage selects the best model to explain the data from a
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Fig. 7. Results in Experiment 4 with grating stimuli to compare rigid versus nonrigid
rotation and expansion. Left panel: human coherence thresholds for rigid and non-rigid
conditions as a function of different motion patterns. Right panel: Model prediction of
coherence thresholds which are consistent with human trends.

set of competing models. The second stage estimates the velocity field using the
selected model. In this paper, we used three competing models for translation,
rotation, and expansion. We defined novel priors for rotation and expansion by
analogy to the slow-and-smooth prior proposed by Yuille and Grzywacz [23, 24]
and showed that the velocity estimation could be expressed as a linear combi-
nation of Green functions. We showed that model selection correctly selects the
appropriate model for several different stimulus conditions and that the selected
model estimates a plausible velocity field.

We compared our competitive prior theory to the performance of human sub-
jects on threshold tasks using different types of stimuli. Our results on random
dot stimuli were in general agreement with the experimental findings of Freeman
and Harris [4]. We also found good agreement with the experimental findings
of our group [8] for grating and plaid stimuli. But there are current limitations
to our results since different parameter settings are required for the model es-
timation and the velocity estimation tasks. We are exploring two possibilities:
(i) for the psychophysics stimuli the human subjects are aware that the centers
of expansion and rotation are at the center of the image, but this information
is not currently being used in our theory (but can be inserted as an additional
requirement), (ii) humans may be better at observing expansion/rotation than
translation since attention and eye movements (A. Glennerster – private com-
munication) may be used to remove the translational components leaving only
expansion/rotation, but this is not included in our model.

Our current work aims to resolve these issues and extend these findings to a
range of different motions (e.g. affine motion) and to use increasingly naturalistic
appearance/intensity models. It is also important to determine if motion patterns
to which humans are sensitive correspond to those appearing regularly in natural
motion sequences.

Acknowledgments We gratefully acknowledge funding from NSF 0736015 and
0613563. We thank Xuming He for feedback.
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Appendix A

This appendix gives the derivations of the formulae for estimating velocity. In
particular, it justifies that the MAP estimate of the velocity is of form:

v(r) =
N∑

i=1

[αiG
M
1 (r − ri) + βiG

M
2 (r − ri)]

as stated in equation (16), and the {α}, {β} are given by equations (17) for the
dot, grating, and plaid stimuli. This generalizes the derivation of the original
slow-and-smooth model [23, 24].

We first re-express the prior in terms of a differential operator (A.1), show
that the MAP estimate can be expressed in terms of Green functions of the
differential operator (A.2), and then show how to solve for the Green functions
(A.3).

A.1 Re-express the Prior in terms of a Differential Operator D We use
the quadratic form of the energy functions of the priors, see equations (7, 8, 9),
to re-express them in terms of a differential operator DM indexed by the model
M .

E({v}|M) =
∫

v · (DMv)dr. (25)

This re-expression is performed by functional integration (assuming suitable
boundary conditions as |r| 7→ ∞) and yields:

∫
|v|2dr =

∫
vT

(
1 0
0 1

)
vdr

∫
(|∇vx|2 + |∇vy|2)dr = −

∫
vT

(∇2 0
0 ∇2

)
vdr

∫
2
∂vx

∂y

∂vy

∂x
dr = −

∫
vT

(
0 ∂2

∂x∂y
∂2

∂x∂y 0

)
vdr =

∫
2
∂vx

∂x

∂vy

∂y
dr

∫
|∇2v|2dr =

∫
vT

(
(∇2)2 0

0 (∇2)2

)
vdr

Combining the terms for the different priors E(v|M) gives the operators:

Dt = λ(I − µ

(∇2 0
0 ∇2

)
+ η

(
(∇2)2 0

0 (∇2)2

)
)

Dr = λ(I − µ

(
∇2 ∂2

∂x∂y
∂2

∂x∂y ∇2

)
+ η

(
(∇2)2 0

0 (∇2)2

)
)

De = λ(I − µ

(
∇2 − ∂2

∂x∂y

− ∂2

∂x∂y ∇2

)
+ η

(
(∇2)2 0

0 (∇2)2

)
)
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A.2 The Euler-Lagrange Equations

The MAP estimate {v} for model M , {v∗} = arg max{v} P ({v}|{u}, M), is ob-
tained by solving the Euler-Lagrange equations for the functional E({u}|{v})+
E({v}|M). This equation will depend on the form of the stimuli (e.g. dots and
gratings).

For the dot stimuli, we express the functional in the form:

E({u}|{v}) + E({v}|M) =
∫ N∑

i=1

|v(r)− u(ri)|2δ(r − ri)dr +
∫

v · (DMv)dr

(26)
This gives Euler-Lagrange equation:

N∑

i=1

2[v(r)− u(ri)]δ(r − ri) + 2DMv(r) = 0. (27)

The solution can be obtained (extending [2] and [24]) by assuming a solution
expressed as linear combination of vector valued Green’s functions GM

1 , GM
2 :

v(r) =
N∑

i=1

[αiG
M
1 (r − ri) + βiG

M
2 (r − ri)], (28)

where {α}, {β} are coefficients and GM
1 , GM

2 are the solutions of

DMG1(r) =
(

δ(0)
0

)
= e1, DMG2(r) =

(
0

δ(0)

)
= e2

The form of the priors, and hence the Green functions, ensures that this
solution is well-posed at the data points and falls off smoothly as r 7→ ∞. More
specifically: (i) the second order derivative terms in the priors ensure that G1(0)
and G2(0) are finite [24], and (ii) the slowness term ensures that the Green
functions decrease to zero as |r| 7→ ∞ [24].

We obtain the linear equations for {α}, {β}, given by equation (17), by sub-
stituting equation (28) into the Euler-Lagrange equations (27), using the Green
functions from equation (9).

For the grating stimulus, we obtain similar results. The energy functional
becomes:

E({u}|{v})+E({v}|M) =
∫ N∑

i=1

|v(r)·û(ri)−u(ri)|2δ(r−ri)dr+
∫

v·(DMv)dr.

(29)
This gives Euler-Lagrange equations:

N∑

i=1

{[v(r) · û(ri)]û(ri)− u(ri)}δ(r − ri) +DMv(r) = 0. (30)
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The solution v can be expressed in form given by equation (28) with the
same Green functions from equation (9). Substituting the form of v into the
Euler-Lagrange equation (30) gives the linear equation (19) for the {α}, {β}.

A.3. Solving for the Green Functions We solve equation (9) for the Green
functions by Fourier transforms. Denote G1(r) = (G1x(r), G1y(r))T (we drop
the model index M to simplify notation). This gives the following solutions for
the three different cases:

1. Slow-and-smooth-translation: We apply Fourier transforms to the equation
for the Green functions:

λ

(
1− µ∇2 + η(∇2)2 0

0 1− µ∇2 + η(∇2)2

)(
G1x

G1y

)
=

(
δ(0)
0

)

to obtain linear equations for the Fourier transforms FG(ωx, ωy) (where
ω2 = ω2

x + ω2
y):

λ

(
1 + µω2 + ηω4 0

0 1 + µω2 + ηω4

)(FG1x

FG1y

)
=

(
1
0

)

which is solved to give
(FG1x

FG1y

)
=

1
λ

( 1
1+µω2+ηω4

0

)

with similar solution for FG2.
2. Slow-and-smooth-rotation: we re-express the Green function equation in fourier

space

λ

(
1− µ∇2 + η(∇2)2 −µ ∂2

∂x∂y

−µ ∂2

∂x∂y 1− µ∇2 + η(∇2)2

)(
G1x

G1y

)
=

(
δ(0)
0

)

λ

(
1 + µω2 + ηω4 µωxωy

µωxωy 1 + µω2 + ηω4

)(FG1x

FG1y

)
=

(
1
0

)

defining

dr = det[
(

1 + µω2 + ηω4 −µωxωy

−µωxωy 1 + µω2 + ηω4

)
]

gives the solution
(FG1x

FG1y

)
=

1
λdr

(
1 + µω2 + ηω4 −µωxωy

−µωxωy 1 + µω2 + ηω4

)(
1
0

)

3. Slow-and-smooth-expansion: this is a simple modification of the rotation
case:

λ

(
1 + µ∇2 + η(∇2)2 −µ ∂2

∂x∂y

−µ ∂2

∂x∂y 1 + µ∇2 + η(∇2)2

)(FG1x

FG1y

)
=

(
1
0

)
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yields the solution
(FG1x

FG1y

)
=

1
λde

(
1 + µω2 + ηω4 µωxωy

µωxωy 1 + µω2 + ηω4

)(
1
0

)

Note that the following equalities hold for both rotation and expansion:

G1x(x, y) = G2y(y, x), G1y(x, y) = G2x(x, y)

B. Model Selection

The model evidence is

p({u}) =
∫

p({u}|{v})p({v})d{v}

which we re-express in term of (A,B)

p({u}) =
∫

p({u}|A,B)p(A,B)dAdB

in which

p({u}|A,B) =
1
Z1

exp(−E({u}|A,B)/T ), p(A,B) =
1
Z2

exp(−E(A,B)/T )

where, for the random dot stimuli,

E({u}|A,B) =
N∑

i=1

|v(ri)− u(ri)|2 = ΦT G2Φ− 2UT GΦ + UT U, (31)

where Φ = (AB)T .
We can re-express this as:

E(A, B) = ΦT GΦ,

using v(r) =
∑N

i=1[αiG1(r − ri) + βiG2(r − ri)] and Dv(r) =
∑N

i=1[αiδ(r −
ri)e1 + βiδ(r − ri)e2].

The partition functions are of form:

Z1 =
∫

exp(−E({u}|A,B)/T )d{u} =
∫

exp(−(U − V )T (U − V )/T )dU = (πT )N

Z2 =
∫

exp(−E(A, B)/T )dAdB =
∫

exp(−ΦT GΦ/T )dΦ =
(πT )N

√
det(G)

We now re-express the model evidence p({u}),

p({u}) =
∫

1
Z1

exp(−E({u}|A,B)/T )
1
Z2

exp(−E(A, B)/T )dAdB

=
1

Z1Z2

∫
exp[− 1

T
(ΦT (G2 + G)Φ− 2UT GΦ + UT U)]dΦ
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denoting

Σ = G2 + G = GH, H = G + I, Θ = Σ−1GU = H−1U

gives

p({u}) =
1

Z1Z2

∫
exp[− 1

T
(ΦT ΣΦ− 2UT GΦ + UT U)]dΦ

=
1

Z1Z2

∫
exp[− 1

T
((Φ−Θ)T Σ(Φ−Θ) + UT U −ΘT ΣΘ)]dΦ

=
1

Z1Z2
exp[− 1

T
(UT U −ΘT ΣΘ)]

∫
exp{− 1

T
[(Φ−Θ)T Σ(Φ−Θ)]}dΦ

=
1

(πT )N

√
det(G)

(πT )N
exp[− 1

T
(UT U −ΘT ΣΘ)]

(πT )N

√
det(Σ)

=
1

(πT )N
√

det(G + I)
exp[− 1

T
(UT U − UT H−1U)].

Modification for the Grating Stimulus In the model selection stage we
modify the energy to be,

E({u}|A,B) =
N∑

i=1

|v(ri) · û(ri)− u(ri)|2

= ΦT G̃T G̃Φ− 2UT G̃Φ + UT U

E(A,B) =
∫

v · (Dv)dr = ΦT GΦ

The partition functions Z1 and Z2 remain the same. So

p({u}) =
∫

1
Z1

exp(−E({u}|A,B)/T )
1
Z2

exp(−E(A, B)/T )dAdB

=
1

Z1Z2

∫
exp[− 1

T
(ΦT (G̃T G̃ + G)Φ− 2UT G̃Φ + UT U)]dΦ

denoting

Σ̃ = G̃T G̃ + G, Θ̃ = Σ̃−1G̃T U
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and (noting that Σ̃ is symmetric even though G̃ is not) we get:

p({u}) =
1

Z1Z2

∫
exp[− 1

T
(ΦT Σ̃Φ− 2UT G̃Φ + UT U)]dΦ

=
1

Z1Z2

∫
exp[− 1

T
((Φ− Θ̃)T Σ̃(Φ− Θ̃) + UT U − Θ̃T Σ̃Θ̃)]dΦ

=
1

Z1Z2
exp[− 1

T
(UT U − Θ̃T Σ̃Θ̃)]

∫
exp{− 1

T
[(Φ− Θ̃)T Σ̃(Φ− Θ̃)]}dΦ

=
1

(πT )N

√
det(G)

(πT )N
exp[− 1

T
(UT U − Θ̃T Σ̃Θ̃)]

(πT )N

√
det(Σ̃)

=
1

(πT )N

√
det(

G

Σ̃
) exp[− 1

T
(UT U − UT G̃Σ̃−1G̃T U)]

Appendix C: Least-Square Fit of Rotation/Expansion

This appendix answers the question of how to estimate the coefficients of the
expansion and rotation motions from the estimated velocity fields. More pre-
cisely, we need to estimate the centers (xc, yc) of expansion/rotation and the
expansion/rotation coefficients e, ω. We perform this by least squares fitting.

C1. Rotation

We need to estimate the center (xc, yc) and rotation ω from a velocity field. We
define

u(x, y) = (ω(yc − y), ω(x− xc))

and an energy function:

E(xx, yc, ω) =
N∑

i=1

{[vx(ri)− ω(yc − yi)]2 + [vy(ri)− ω(xi − xc)]2}

We estimate xc, yc and ω by minimizing E(., ., .). This is performed analyti-
cally by solving the equations ∂E

∂xc
= ∂E

∂yc
= ∂E

∂ω = 0. The derivatives with respect
to (xc, yc) can be computed and set to zero yielding the equations:

∂E

∂xc
= 2

N∑

i=1

[vy(ri)− ω(xi − xc)] · ω = 2ωN(v̄y − ωx̄ + ωxc) = 0

∂E

∂yc
= 2

N∑

i=1

[vx(ri)− ω(yc − yi)] · (−ω) = −2ωN(v̄x − ωyc + ωȳ) = 0

This gives the solutions (xc, yc) as functions of ω and the means x̄ = 1/N
∑N

i=1 xi,
ȳ = 1/N

∑N
i=1 yi,v̄x = 1/N

∑N
i=1 vx(ri),v̄y = 1/N

∑N
i=1 vy(ri) of the data points

and their estimated velocities. The solutions are given by:
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{
xc = x̄− v̄y

ω

yc = ȳ + v̄x

ω

To solve for ω, we calculate ∂E
∂ω and set it to zero. This gives

∂E

∂ω
= −2

N∑

i=1

{[vx(ri)− ω(yc − yi)](yc − yi) + [vy(ri)− ω(xi − xc)](xi − xc)}

= −2N [ycv̄x − xcv̄y − yvx + xvy − ω(x2
c + y2

c ) + 2ω(xcx̄ + ycȳ)− ω(x̄2 + ȳ2)] = 0

Plugging in xc and yc yields

0 = (ȳv̄x − yvx)− (x̄v̄y − xvy) + ω(x̄2 + ȳ2)− ω(x̄2 + ȳ2) (32)

hence

ω =
(xvy − x̄v̄y)− (yvx − ȳv̄x)

(x̄2 + ȳ2)− (x̄2 + ȳ2)

C2. Expansion

Similarly to the rotation case, define an expansion velocity field with three pa-
rameters xc, yc and k.

u(x, y) = (k(x− xc), k(y − yc))

Define an energy

E(xc, yc, k) =
N∑

i=1

{[vx(ri)− k(xi − xc)]2 + [vy(ri)− k(yi − yc)]}2

The xc, yc and k that minimize E satisfy

∂E

∂xc
=

∂E

∂yc
=

∂E

∂k
= 0

As before, we solve for (xc, yc) as functions of k and the means of the data
points and their velocities.

∂E

∂xc
= 2

N∑

i=1

[vx(ri)− k(xi − xc)] · k = 2kN(v̄x − kx̄ + kxc) = 0

∂E

∂yc
= 2

N∑

i=1

[vy(ri)− k(yi − yc)] · k = 2kN(v̄y − kȳ + kyc) = 0 (33)

This leads to {
xc = x̄− v̄x

k

yc = ȳ − v̄y

k



24 Shuang Wu, Hongjing Lu, Alan Lee, and Alan Yuille

Then we solve for k by setting

∂E

∂k
= −2

N∑

i=1

{[vx(ri)− k(xi − xc)](xi − xc) + [vy(ri)− k(yi − yc)](yi − yc)}

= −2N [xvx − xcv̄x + yvy − ycv̄y − k(x̄2 + ȳ2) + 2k(xcx̄ + ycȳ)− k(x2
c + y2

c )] = 0

and plugging in xc and yc gives

0 = xvx + yvy − (x̄− v̄x

k
)v̄x − (ȳ − v̄y

k
)v̄y − k(x̄2 + ȳ2)

+ 2k[(x̄− v̄x

k
)x̄ + (ȳ − v̄y

k
)ȳ]− k[(x̄− v̄x

k
)2 + (ȳ − v̄y

k
)2]

hence

k =
(xvx − x̄v̄x) + (yvy − ȳv̄y)

(x̄2 + ȳ2)− (x̄2 + ȳ2)
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