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Abstract— We present a new method for automatic segmen-
tation of heterogeneous image data that takes a step toward
bridging the gap between bottom-up affinity-based segmentation
methods and top-down generative model based approaches. The
main contribution of the paper is a Bayesian formulation for
incorporating soft model assignments into the calculation of
affinities, which are conventionally model free. We integrate the
resulting model-aware affinities into the multilevel segmentation
by weighted aggregation algorithm, and apply the technique to
the task of detecting and segmenting brain tumor and edema
in multichannel MR volumes. The computationally efficient
method runs orders of magnitude faster than current state-of-
the-art techniques giving comparable or improved results. Our
quantitative results indicate the benefit of incorporating model-
aware affinities into the segmentation process for the difficult
case of brain tumor.

Index Terms— Multilevel segmentation, normalized cuts,
Bayesian affinity, brain tumor, glioblastoma multiforme

I. INTRODUCTION

Medical image analysis typically involves heterogeneous
data that has been sampled from different underlying anatomic
and pathologic physical processes. In the case of glioblastoma
multiforme brain tumor (GBM), for example, the heteroge-
neous processes in study are the tumor itself, comprising
a necrotic (dead) part and an active part, the edema or
swelling in the nearby brain, and the brain tissue itself. To
complicate matters, not all GBM tumors have a clear boundary
between necrotic and active parts, and some may not have
any necrotic parts. We consider the GBM tumor because it
is the most common primary tumor of the central nervous
system, accounting for approximately 40% of brain tumor
across patients of all ages [1], and the median postoperative
survival time is extremely short (8 months) with a 5-year
recurrence-free survival rate of nearly zero [2]. In Figure 1,
we show a 2D slice of a MR image in the T1 weighted and
T2 weighted channels presenting an enhancing glioblastoma
multiforme brain tumor. On the right, we outline the different
heterogeneous regions of the brain tumor and label them as
edema, active, or necrotic.

It is assumed that a distinct statistical distribution of imag-
ing features exists for each heterogeneous process, and that
each distribution can be estimated from training data. In the
constrained medical imaging domain, it is plausible to cap-
ture such feature distributions with relatively low-dimensional
models that generalize to an entire population. This plausibility
in medical imaging comes in contrast to the natural imaging
domain where the feature distribution can be extremely com-
plex due to external phenomena like lighting and occlusion.
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Fig. 1. Labeled example of a brain tumor illustrating the importance of the
different modalities (T1 with contrast and T2).

A key problem in medical imaging is automatically seg-
menting an image into its constituent heterogeneous processes.
Automatic segmentation has the potential to positively impact
clinical medicine by freeing physicians from the burden of
manual labeling and by providing robust, quantitative mea-
surements to aid in diagnosis and disease modeling. One such
problem in clinical medicine is the automatic segmentation
and quantification of brain tumor.

Quantifying the volume of a brain tumor is the key indicator
of tumor progression [3]. However, like most segmentation
problems, automatic detection and quantification of brain
tumor is very difficult. In general, it is impossible to segment
GBM tumor by simple thresholding techniques [4]. Brain
tumors are highly varying in size, have a variety of shape
and appearance properties, and often deform other nearby
structures in the brain [2]. In the current clinic, the tumor
volume is approximated by the area of the maximal cross-
section, which is often further approximated to an ellipse.
Such a rough approximation is used because the time cost to
compute a more accurate manual volume estimate is too high.
Liu et al. [3] present an interactive system for computing the
volume that reduces the cost of manual annotation and shows
promise in volume estimates on a small number of cases.

However, no completely automatic segmentation algorithm
has yet been adopted in the clinic; In Table I we present a con-
cise review of the prior art in automatic tumor segmentation.
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Authors Description Type # Cases Accuracy Time
Liu et al. [3] Fuzzy clustering (semi-automatic) GBM 5 99% 16 min.

Phillips et al. [5] Fuzzy clustering GBM 1 N/A N/A
Clark et al. [6] Knowledge-based fuzzy clustering GBM 7 70% N/A

Fletcher-Heath et al. [7] Knowledge-based fuzzy clustering NE 6 53%-90% N/A
Karayiannis and Pin [8] Fuzzy clustering (VQ) MG 1 N/A N/A

Prastawa et al. [4] Knowledge-based/outlier detection GBM 4 68%-80% 90 min.
Prastawa et al. [9] Statistical classification via EM GBM 5 49%-71% 100 min.

Kaus et al. [10], [11] Statistical classification with atlas prior LGG, MG 20 99% 10 min.
Vinitski et al. [12] k-Nearest neighbor N/A 9 N/A 2 min.

Ho et al. [13] 3D level sets GBM 3 85%-93% N/A
Lee et al. [14] Discriminative Random Fields and SVM GBM, AST 7 40%-89% N/A
Peck et al. [15] Eigenimage analysis N/A 10 N/A N/A

Zhu and Yan [16] Hopfield neural network and active contours N/A 2 N/A N/A
Zhang et al. [17] Support vector machines N/A 9 60%-87% N/A

Our Method Multilevel Bayesian segmentation GBM 20 27%-88% 7 min.

TABLE I
SUMMARY OF RELATED METHODS IN AUTOMATIC BRAIN TUMOR SEGMENTATION. THE TYPE ABBREVIATIONS ARE GBM: GLIOBLASTOMA

MULTIFORME, AST: ASTROCYTOMA, NE: NON-ENHANCING, LGG: LOW-GRADE GLIOMA, MG: MENINGIOMA. N/A IS USED WHENEVER THE

INFORMATION IS NOT GIVEN IN THE PAPER. ACCURACIES ARE COMPUTED AS VOLUME OVERLAP, WHICH IS ALSO CALLED THE JACCARD SCORE.

Both GBM and non-GBM methods are given in the table for
completeness. Fuzzy clustering methods (voxel-based) across
all tumor types appear to be the most popular approach. Philips
et al. [5] gave an early proof-of-concept fuzzy clustering for
brain tumor by operating on the raw multi-sequence data.
They visually demonstrated that even with multi-sequence
data the intensity distributions for tumor and normal tissue
overlap. This led future researchers to incorporate additional
knowledge into features vectors being clustered. Clark et al. [6]
integrate knowledge-based techniques and multi-spectral his-
togram analysis to segment GBM tumors in a multichannel
feature space. Fletcher-Heath et al. [7] take a knowledge-based
fuzzy clustering approach to the segmentation followed by 3D
connected components to build the tumor shape. Prastawa et
al. [4] also present a knowledge-based detection/segmentation
algorithm based on learning voxel-intensity distributions for
normal brain matter and detecting outlier voxels, which are
considered tumor. The distributions are learned with kernel-
based density estimation methods, and the initial outlier de-
tection is followed by a region competition algorithm.

Voxel-based statistical classification methods include [9],
[10]. Kaus et al. [10] use the adaptive template-moderated
classification algorithm [11] to segment the MR image into
five different tissue classes: background, skin, brain, ventricles,
and tumor. Their technique, which proceeds as an iterative
sequence of spatially varying classification and non-linear
registration. Prastawa et al. [9] define a parametric distri-
bution across multiple channels of tumor as a mixture of
Gamma and Gaussian components. They use the Expectation-
Maximization algorithm [18] to perform segmentation and
iteratively adapt the model parameters to the case at hand.

These two sets of methods are limited by their extreme
degree of locality, i.e., they are voxel-based and do not take
local or global context into account. While they have had some
success in segmenting low-grade gliomas and meningiomas
(relatively homogeneous) on a good-sized data set [10], they’re
success is limited in the more relevant GBM (heterogeneous)
segmentation examples. Furthermore, it’s not clear this limited

success will scale to the more difficult inevitable cases arising
in larger data-sets (like the one used in this paper). There
have been few attempts at solving this problem of local
ambiguity. One method of note is the recent work of Lee et
al. [14] that uses the context-sensitive discriminative random
fields model [19], [20]. They use a set of knowledge-based
features [21] coupled with support vector machines to perform
the segmentation and classification. The uses of energy and
shape models (e.g., level-sets [13] and active contours [16])
have promise but are generally iterative in nature and therefore
sensitive to initialization, which, unless interactive, is nearly
as difficult as the entire segmentation.

In this paper, we present a new method for automatic
segmentation of heterogeneous image data that is applicable in
any case that distinct feature distributions can be learned for
the heterogeneous regions. To demonstrate such an application,
we experiment with the task of detecting and segmenting brain
tumors but note the method is more generally applicable. Our
method combines two of the most effective approaches to
segmentation. The first approach, exemplified by the work of
Tu et al. [22], [23], uses class models to explicitly represent the
different heterogeneous processes. The tasks of segmentation
and classification are solved jointly by computing solutions
that maximize a posterior distribution that has been learned
from training data. To make the optimization tractable, the
posterior is often represented as a product distribution over
generative models on sets of pixels, or segments. Hence, we
call these methods model-based. This type of approach is very
powerful as the solutions are guaranteed to be from a statistical
distribution that has been learned from training data, but the
algorithms for obtaining these estimates are comparatively
slow and model choice is difficult. Some techniques have
been studied to improve the efficiency of the inference, e.g.
Swendsen-Wang sampling [24], but these methods still remain
comparatively inefficient.

The second approach is based on the concept of graph
cuts [25]. In these affinity-based methods, the input data
induces a sparse graph, and each edge in the graph is given
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Fig. 2. The SWA algorithm gives a graph hierarchy of potential voxel
segments at different scales. This figure shows an explanatory 2D graph
hierarchy and the corresponding image region of each lattice element. Only a
few interlevel connections are drawn; note how one node can have multiple
parents. In practice, the individual voxels form the lowest graph layer.

an affinity measurement that characterizes the similarity of
the two neighboring nodes in some predefined feature space.
Cuts are sets of edges that separate the graph into two
subsets, typically by analyzing the eigen-spectrum [25], [26]
or pairwise-predicate measures [27]. These methods have
led to the hierarchical segmentation by weighted aggregation
(SWA) algorithm due to Sharon et al. [28]–[30]. SWA was
first extended to the 3D image domain by Akselrod-Ballin et
al. [31] for the problem of multiple sclerosis segmentation.

SWA operates by recursively coarsening the initial graph
using an adapted algebraic multigrid algorithm [32]; it is
shown to approximate the normalized cut measure [25]. The
SWA algorithm produces a multilevel segmentation of the
data with each node in the hierarchy representing a potential
segment (see Figure 2 for a simple example). The hierarchy
can capture interesting multiscale properties like, for example,
the necrotic and active parts of the tumor as initially separate
segments to be joined at a higher level in the hierarchy as
a single segment. However, the original algorithm does not
give a method for selecting individual segments to produce a
final classification of the data. SWA is extremely rapid and
effective, but does not explicitly take advantage of the class
models used in [22].

The main contribution of this paper is the model-aware
affinity, which is step toward unifying these two disparate
segmentation approaches by incorporating models into the
calculation of the affinities on the graph and then using the
models to extract a final classification from the hierarchy. Both
the model parameters and the model-aware affinity parameters
are learned from labeled training data. Our method incorpo-
rates information from multiple scales and thus has greater
potential to avoid the local ambiguity problem that affects
the prior voxel-based classification and clustering methods.
Furthermore, our algorithm defines a feed-forward process that
require no initialization and is capable of doing classification
during this process. We demonstrate encouraging results and
cross-validate them on a comparatively large GBM dataset.

The organization of the paper is as follows: first, we
discuss the necessary background in generative models and
the notation that will be used in the paper (Section II). Next,

we describe (Section III) how we incorporate Bayesian model
classification into the calculation of affinities. The proposed
model-aware affinity leads to improved cuts by allowing the
use of affinity functions tailored to the specific models in use.
We extend the SWA algorithm to include the model-aware
affinity in Section IV. In Section V, we describe a method to
extract the segmentation from the SWA hierarchy that makes
explicit use of the model probabilities from the new affinity
function. Finally, in Section ?? we discuss the application
of our method to the problem of segmenting brain tumor in
multichannel MR. We describe the specific class models and
probability functions used in the experimental results.

II. MATHEMATICAL BACKGROUND

In this section, we first make the definitions and describe
the notation necessary for the technical discussion. Then, we
introduce the necessary background concepts.

A. Notation

The input data induces a graph, G = (V, E), on which
all of the analysis occurs. Associated with each node in the
graph, u, v ∈ V , are properties, or statistics, denoted su ∈ S,
where S is the space of properties (e.g., R3 for red-green-blue
image data). Edges in the graph, euv ∈ E , are created based
on connectivity relations in the input data. Define a cluster to
be a connected set of nodes C ⊂ V in the graph such that
Ck ∩ Cl = ∅ when k 6= l and

⋃
Ck = V .

Associated with each node is a random variable, mu, called
the model variable that takes values from a discrete set of
process models M that is problem specific; in the brain
tumor example this set would be {brain, tumor, edema}.
Additionally, associated with each edge is a binary random
variable, Xuv , called the edge activation variable, and the set
of these over E is denoted X . An edge activation variable takes
value 1 if u and v are in the same cluster and value 0 if the
two nodes are not in the same cluster. Thus, an instance of
X , an activation set, defines a segmentation of the data into
clusters.

For a given image, there may be multiple plausible activa-
tion sets. These multiple interpretations often arise from the
inherent scale ambiguity in biomedical images: for example, at
one scale, a tumor is composed of separate necrotic and active
segments, but at a higher scale, the two subparts of the tumor
are joined giving a single tumor segment. We thus note that
the clusters are not deterministically defined by assignments
to the model variables: both sets of variables are stochastic,
there is an interdependent relationship between the two, and
nodes with different model variables can reside in the same
cluster.

B. Generative Models

The model based methods define a likelihood function
P ({su}|{mu}) for the probability of the observed statistics
{su} conditioned on the model variables {mu} of the pixels
{u}. The methods also put prior probabilities P ({mu}) on
the model variables defining what is termed a generative
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model [33]. Intuitively, the term generative means that by
explicitly modeling the likelihood and prior, the creative, or
generative, process has been captured. Thus, one can generate
random samples from the model that resemble the real images
from which the model was trained. Examples of such gener-
ative models include simple point processes like those used
in this paper, maximum entropy models of texture [34], and
stochastic grammars [35].

Computing estimates of the class labels that maximize the
posterior probability

P ({mu}|{su}) ∝ P ({su}|{mu})P ({mu}) (1)

is the modus operandi of the model-based segmentation
methods. However, such distributions are typically very high-
dimensional and require very sophisticated modeling and
inference algorithms.

C. Affinity Methods

In contrast, the affinity-based methods define a compara-
tively efficient bottom-up strategy for computing the segmen-
tation of the input data. In the induced graph, each edge is
annotated with a weight that represents the affinity of the two
nodes. The affinity is denoted by wuv for connected nodes u
and v ∈ V . Conventionally, the affinity function is of the form

wuv = exp (−D(su, sv; θ)) (2)

where D is a non-negative distance measure and θ are
predetermined parameters. To promote efficient calculation,
the affinity function is typically defined on a simple feature
space like intensty or texture. For example, on intensities
a common function is θ |su − sv|1. The parameters θ are
fixed and predetermined through some heuristic techniques or
learned from training data [36].

The goal of affinity methods is to detect salient clusters
defined as those clusters giving small values of the following
function

Γ(C) =

∑
u∈C,v/∈C wuv∑

u,v∈C wuv
. (3)

Such clusters have low affinity across their boundaries and
high affinity within their interior. This is the so-called nor-
malized cut criterion [25]. Eigenvector techniques [26] were
originally used to compute the clusters, but, more recently, an
efficient multiscale algorithm for doing this was proposed [29],
[30] and is described in Section IV.

III. INTEGRATING MODELS AND AFFINITIES

In this paper, we restrict ourselves to the simple generative
model where P (su|mu) is the conditional probability of the
statistics su at a node u with model mu, and P (mu,mv) is the
prior probability of model labels mu and mv at nodes u and
v. We assume the edge activation variables are conditionally
independent given the properties at its nodes.

We use probabilities to combine the generative model meth-
ods with the affinities. The affinity between nodes u, v ∈ V is
defined to be the probability of the binary event Xuv that the
two nodes lie in the same cluster. This probability is calculated

by treating the class labels as hidden variables that are summed
out:

P (Xuv|su, sv) =∑
mu
mv

P (Xuv|su, sv,mu,mv)P (mu,mv|su, sv) ,

∝
∑
mu
mv

P (Xuv|su, sv,mu,mv)P (su, sv|mu,mv)P (mu,mv) ,

=
∑
mu
mv

P (Xuv|su, sv,mu,mv)P (su|mu)P (sv|mv)P (mu,mv) ,

(4)

where the third line follows from the assumption that the nodes
are conditionally independent given class assignments. This
Bayesian model-aware affinity avoids making premature hard
assignments of nodes to models by integrating over all possible
models and weighting by the class evidence and prior. The
formulation also makes it plausible to define a custom affinity
function for each model pair: the first term in the sume of (4)
is a model specific affinity:

P (Xuv|su, sv,mu,mv) = exp
(
−D (su, sv; θ[mu,mv])

)
.

(5)
Note that the property of belonging to the same region is not
uniquely determined by the model variables mu,mv . Pixels
with the same model may lie in different regions and pixels
with different model labels might lie in the same region.

This definition of affinity is suitable for heterogeneous data
since the affinities are explicitly weighted by the evidence
P (su|mu) for class membership at each pixel u, and so can
adapt to different classes. This differs from the conventional
affinity function wuv = exp (−D(su, sv; θ)), which does not
model class membership explicitly. The difference becomes
most apparent when the nodes are aggregated to form clusters
as we move up the pyramid, see the multilevel algorithmic
description in Section IV. Individual nodes, at the bottom of
the pyramid, will typically only have weak evidence for class
membership (i.e., P (su|mu) is roughly constant as a function
of mu). But as we proceed up the pyramid, clusters of nodes
will usually have far stronger evidence for class membership,
and their affinities will be modified accordingly.

The formulation presented here is general; in this paper,
we integrate these ideas into the SWA multilevel segmentation
framework (Section IV). In Section ??, we discuss the specific
forms of these probabilities used in our experiments.

IV. SEGMENTATION BY WEIGHTED AGGREGATION

We now review the segmentation by weighted aggregation
(SWA) algorithm of Sharon et al. [28]–[30], and describe
our extension to integrate model-aware affinities. As earlier,
define a graph Gt = (Vt, Et) with the additional superscript
indicating the level in a pyramid of graphs G = {Gt : t =
0, . . . , T}. Denote the multichannel intensity vector at voxel i
as I(i) ∈ RC , with C being the number of channels.
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A. Original Algorithm

The finest layer in the graph G0 = (V0, E0) is induced by
the voxel lattice: each voxel i becomes a node v ∈ V with
6-neighbor connectivity, and node properties set according to
the image, sv = I(i). The affinities, wuv , are initialized as in
Section III using D(su, sv; θ) .= θ |su − sv|1. SWA proceeds
by iteratively coarsening the graph according to the following
algorithm:

1) t← 0, and initialize G0 as described above.
2) Choose a set of representative nodes Rt ⊂ Vt such that
∀u ∈ Vt and 0 < β < 1∑

v∈Rt

wuv ≥ β
∑
v∈Vt

wuv . (6)

3) Define graph Gt+1 = (Vt+1, Et+1):
a) Vt+1 ← Rt, and edges will be defined in step 3f.
b) Compute interpolation weights

puU =
wuU∑

V ∈Vt+1 wuV
, (7)

with u ∈ Vt and U ∈ Vt+1.
c) Accumulate statistics to coarse level:

sU =
∑
u∈Vt

puUsu∑
v∈Vt pvU

. (8)

d) Interpolate affinity from the finer level:

ŵUV =
∑

(u 6=v)∈Vt

puUwuvpvV . (9)

e) Use coarse affinity to modulate the interpolated
affinity:

WUV = ŵUV exp (−D(sU , sV ; θ)) . (10)

f) Create an edge in Et+1 between U 6= V ∈ Vt+1

when WUV 6= 0.
4) t← t + 1.
5) Repeat steps 2 → 4 until |Vt| = 1 or |Et| = 0.

The parameter β in step 2 governs the amount of coarsening
that occurs at each layer in the graph (we set β = 0.2 in this
work). There is no explicit constraint to select a minimum set
of representative nodes that satisfy (6). However, the set Rt

should be programmatically chosen to be a minimum set or
the height of the resulting graph hierarchy is potentially un-
bounded. [29] shows that this algorithm preserves the saliency
function (3).

In Figure 3, we show the hierarchy resulting from running
the SWA coarsening algorithm on a synthetic grayscale image.
The input image is drawn in the top-left corner of the figure;
it consists of a bright annulus, a dot, a dark circle and a noise
process in the background. The levels of the pyramid depict
the segments (drawn with arbitrary colors) outputted by the
iterative coarsening process. Until we encounter some of the
objects of interest, the coarsening follows an isotropic growth.
At levels 3 and 4, the small dot is segmented well. At level
7 the dark circle is detected, and at level 8 the annulus is
detected. Eventually, all of the segments merge into a single
segment.

Fig. 3. Example SWA hierarchy on a synthetic grayscale image. The numbers
indicate the level in the hierarchy (0 would be the pixels).

In the example, we see that each of the salient foreground
objects in the image are correctly segmented at some level in
the hierarchy. However, being objects of different scale, they
are not detected at the same level. This is another example
of the important phenomena we mentioned in the introduction
and in Figure 2. Sharon et al. [29], [30] suggest thresholding
the saliency function (3) to detect the salient objects at their
intrinsic scale. In our experimentation, we found this method
to be inadequate for medical imaging data because the objects
of interest are often not the only salient objects and seldom
the most salient objects in the imaging volume resulting in
many false positives. In Section V, we propose a new method
for extracting segments from the hierarchy that incorporates
the model likelihood information, and in Section ??, we show
the model-aware approach performs significantly better than
the saliency based approach.

B. Incorporating Model-Aware Affinities

The two terms in (10) convey different affinity cues: the
first affinity ŵUV is comprised of finer level (scale) affinities
interpolated to the coarse level, and the second affinity is
computed from the coarse level statistics. For all types of
regions, the same function is being used. However, at coarser
levels in the graph, evidence for regions of known types (e.g.,
tumor) starts appearing making it sensible to compute a model-
specific affinity (step 3e below). Furthermore, the model-
aware affinities compute the model likelihood distribution,
P (sU |mU ), and we can also associate a most likely model m∗

U

with each node (step 3f below). The final algorithm follows:
1) t← 0, and initialize G0 as earlier.
2) Choose a set of representative nodes Rt satisfying (6).
3) Define graph Gt+1 = (Vt+1, Et+1):
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a) Vt+1 ← Rt, and edges will be defined in step 3g.
b) Compute interpolation weights according to (7).
c) Accumulate statistics according to (8).
d) Interpolate affinity according to (9).
e) Apply the model-aware affinity as a modulation

factor:

WUV = ŵUV P (XUV |sU , sV ) , (11)

where P (XUV |sU , sV ) is evaluated as in (4).
f) Associate a class label with each node:

m∗
U = arg max

m∈M
P (sU |m) . (12)

g) Create an edge in Et+1 between U 6= V ∈ Vt+1

when WUV 6= 0.

4) t← t + 1.
5) Repeat steps 2 → 4 until |Vt| = 1 or |Et| = 0.

We give an example in Section ?? (Figure ??) showing the
added power of integrating models into the affinity calculation
in the case of heterogeneous data like tumor and edema.

V. EXTRACTING SEGMENTS FROM THE HIERARCHY

Both the original and the modified SWA algorithms pro-
duce a graph hierarchy during the iterative coarsening of
the input image. As briefly dicussed through the example in
Figure 3, extracting the segments corresponding to objects
of interest from the hierarchy is non-trivial. In this section,
we propose two extraction algorithms. First, we discuss an
approach that uses saliency (3) and is derivative of the original
SWA papers [29], [30]. Second, we present a novel extraction
algorithm that is based on tracing a voxel’s model signature
up the hierarchy. The second method relies exclusively on the
generative models that have been learned from data, and in
the results (Section ??), we show it outperforms the original
saliency-based approach.

A. Saliency Based Extraction

This method associates each voxel with the most salient
segment of which it is a part in the graph hierarchy. The
routine proceeds for each voxel independently; neighborhood
information for the voxels is implicitly incorporated due to the
agglomerative nature of the graph hierarchy. First, associate
every voxel with a node at each level using the Gauss-Seidel
relaxation sweeps algorithm [29]. For voxel i, denote the node
v at level t with which it is associated by vt

i . Then, traverse
the hierarchy to find the level at which the associated node is
most salient:

t∗ = arg min
t={1...T}

Γ
(
vt

i

)
. (13)

Finally, label the voxel with the class associated with this most
salient node: mi ← mvt∗

i
.

B. Model Based Extraction

We focus on the model likelihood function that is computed
during the Bayesian model-aware affinity calculation (4). In
this extraction method, we conserve the soft clustering nature
of the SWA algorithm in contrast to the saliency based method
that makes a hard assignment of a voxel to a node at each
level. Again, we proceed independently for each voxel letting
the neighborhood information be captured by the multiscale
nature of the graph hierarchy.

For each voxel i with corresponding node v, create a
variable m0

v to store the most likely model as in (12).

m0
v = arg max

m∈M
P (sv|m) (14)

Then, recursively proceed up the hierarchy creating such a
model variable for the voxel at each level in the hierarchy.
Explicitly use the interlevel interpolation weights (7) to incor-
porate the soft node coarsening from SWA. For example, at
level one, the function is easily written:

m1
v = arg max

m∈M

∑
V ∈V1

pvV P (sV |m) (15)

From the T + 1 resulting model variables, associate the voxel
with the model that occurs most frequently. As discussed ear-
lier, the model likelihood distribution will be roughly constant
at the fine (initial) levels in the hierarchy but will tend to
quickly peak for one model. In most cases, the likelihood will
remain peaked until the node gets joined to some other larger
node of a different class at which time, the distribution will
shift to prefer that class. An extraction algorithm of this sort
is especially suited to the i.i.d. generative models we use in
this paper.
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