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Introduction

The goal of this chapter is to present computational theories of scene coding by image segmentation and to sugge
their relevance for understanding visual cortical function and mechanisms. We will first introduce computational theories
of image and scene segmentation and show their relationship to efficient encoding. Then we discuss and evaluate the ri
evant physiological data in the context of these computational frameworks. It is hoped that this will stimulate quantitative
neurophysiological investigations of scene segmentation guided by computational theories.

Our central conjecture is that areas V1 and V2, in addition to encoding fine details of images in terms of filter
responses, compute a segmentation of images which allow a more compact and parsimonious encoding of images
terms of the properties of regions and surfaces in the visual scene. This conjecture is based on the observation th
neurons and their retinotopic arrangement in these visual areas can represent information precisely, thus furnishing &
appropriate computational and representational infrastructure for this task. Segmentation detects and extracts cohere
regions in an image and then encode the image in terms of probabilistic models of surfaces and regions in it, in the
spirit of Shannon'’s theory of information. This representation facilitates visual reasoning at the level of regions and their
boundaries, without worrying too much about all the small details in the image.

Figure 1 gives three examples which illustrate the meaning of higher level efficient encoding of scenes. Firstly,
consider Kanizsa’s (1979) famous illusory triangle (Figure 1a). It is simpler to explain it as a white triangle in front
of, and partially occluding, three black circular discs rather than as three pac-mens which are accidentally aligned tc
each other. Indeed this simple explanation is what human perceive and, in fact, the perception of a triangle is so stron
that we hallucinate the surface of the triangle as being brighter than the background and perceive sharp boundaries to t
triangle even at places where there is no direct visual cues. Secondly, when confronted with the image shown in Figure 1
(Ramachandran 1988), we perceive it as a group of convex spheres mixed together with a group of concave indentatiot
(e.g. an egg carton partly filled with eggs). This interpretation is more parsimonious than describing every detail of the
intensity shading and other image features. Thirdly, at first glance, the image in Figure 1c (Gregory 1970) appears to b
a collection of random dots and hence would not have a simple encoding. But the encoding becomes greatly simplifie
once the viewer perceives the Dalmation dog and can invoke a dog model. The viewer will latch on to this interpretation
whenever he sees it again, underscoring the powerful interaction between memory and perception when generating
efficient perceptual description.

These three examples suggest that we can achieve a tremendous amount of data compression by interpreting imac
in terms of the structure of the scene. They suggest a succession of increasingly more compact and semantically mo
meaningful codes as we move up the visual hierarchy. These codes go beyond efficient coding of images based ¢
Gabor wavelet responses (Daugman 1985, Lee 1996) or independent components (Olshausen and Field 1996, Bell a
Sejnowski 1997, Lewicki and Olshausen 1999).

In this chapter, we will concentrate on image segmentation which is the process that partitions an image into regions
producing a clear delineation of the boundaries between regions and the labelling of properties of the regions. The
definition of “regions” is a flexible one. In this chapter, we focus on early visual processing and so a region is defined to
be part of an image that is characterized by a set of (approximately) homogeneous visual cues, such as color, luminanc
or texture. These regions can correspond to 3D surfaces in the visual scene, or they can be parts of a 3D surface defin
by (approximately) constant texture, albedo, or color (e.g. the red letters “No Parking” on a white stop sign). Based on
a single image, however, it is often difficult to distinguish between these two interpretations. At a higher level of vision,
the definition of region is more complex and can involve hierarchical structures involving objects and scene structures.

The approach we have taken stems from the following computational perspective about the function of the visual
system. We hold it to be self-evident that the purpose of the visual system is to interpret input images in terms of objects
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and scene structures, so that we can reason about objects and act upon them. As thirty years of computer vision resea
has shown, interpreting natural images is extremely difficult. Tasks, such as segmenting images into surfaces and objec
appear effortlessly easy for the human visual system but, until recently, have proved very difficult for computer vision
systems.

The principles of efficient coding and maximization of information transmission have been fruitful for obtaining
guantitative theories to explain the behavior of neurons in the early stages of the visual system. These theories expla
linear receptive field development, and various adaptation and normalization phenomena observed in these early are
(Atick and Redlich 1992, Dan et al. 1996, Olshausen and Field 1996, Simoncelli 2003). Moreover, the behaviors of
the neurons in the early stages of the visual systems, such as the retina, LGN, and simple cells in V1, are reasonab
well characterized and successfully modeled in terms of linear filtering, adaptation and normalization (Caradini et al.
2005). But there is a disconnect between this quantitative research in early sensory coding and the more qualitative
function-oriented research that has been directed to the extrastriate cortex.

How can these principles of efficient encoding be extended to hierarchical encoding of images in terms of regions,
surfaces and objects? A more advanced way of encoding images is to organize the information in a hierarchy, in th
form of a generative model (Mumford 1992). In this hierarchical theory, a description at the higher level can synthesize
and predict (‘explain away’) the representations at the lower level. For example, the theory would predict that when a
face neuron fires, the eye neurons and the month neurons will need to fire less. This can lead to an efficient encoding
images, as illustrated in Figure 1. Rao and Ballard’s (1999) model, though limited in the type of visual interpretation it
can perform, is a good illustrative example of this idea of predictive coding.

In reasoning about the functions of V1, it is natural to propose that this first visual area in the neocortex, which con-
tains orders of magnitude more neurons than the retina, should participate in interpreting visual images rather than simpl
encoding and representing them. Decades of computer vision research on scene segmentation, surface inference and
ject recognition can potentially provide theoretical guidelines for the study of brain function. This is where interaction
between neurophysiological investigation and computer vision research could prove to be valuable: computer vision ca
provide knowledge of natural images, and the design of mathematical theories and computational algorithms that work
while biology can provide insights as to how these functions are being solved in the brain.

We will now describe an important class of theories that perform image segmentation in terms of efficient encoding
of regions (Geman and Geman 1984, Mumford and Shah 1985, Blake and Zisserman 1987, and Leclerc 1989). Nex
we will briefly discuss a second generation of theories which represent the current state of the art in computer vision
The first class of models has been instrumental for motivating physiological experiments discussed in the second pa
of this chapter, while the second generation theories can provide insights for understanding some of the physiologice
observations not predicted by the first class of models.

These models are mathematically formulated in terms of probability models on graphs and, in particular, Markov
Random Fields (MRF’s) (Winkler 1995). These graphs, see Figure (3), consist of nodes whose activity represents image
or scene, properties (such as the presence or absence of a segmentation boundary). The connections between the nc
represent the likely probabilistic dependencies between the node activities. The graphical, or network, structure of thes
models makes it straightforward to implement them on networks reminiscent of the neural networks in the brain, as
observed in Koch et al (1987) and Lee (1995). So these models can serve as useful guides for investigating the neur
mechanisms which implement scene segmentation, as we will discuss later in this chapter.

An advantage of using computational theories of this type is that we can test their performance on natural images. |
they fail to yield good segmentations, then we can design new theories which work better. This requirement that thes
theories yield acceptable segmentation results when applied to real-world images ensures that they are not merely “tc
models”. Indeed, the first generation of theories will be adequate for the types of stimuli used in this chapter but the
second generation will be needed to perform segmentation fairly reliably on natural images. There is a growing literature
on more advanced theories which, for example, include Gestalt laws for perceptual grouping, and even object specifi
knowledge.

We conjecture that the neural processes we describe in this chapter are representative of neural mechanisms that «
erate in other areas of the brain for performing other, higher level, tasks such as categorization and analogical associatio
In other words, we propose that these mechanisms are not unique to the segmentation task nor to the visual areas V1 &
V2. Certainly the types of theories described here for scene segmentation might have very close analogies, and mat
ematical underpinnings, to the theories underlying other cognitive abilities such as language, reasoning, categorizatiol
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and other aspects of thinking.
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(a) Kanizsa’s Triangle (b) Ramachandran’s Shapes (c) Gregory’s Dalmatian Dog
Figure 1: Examples that illustrate images are interpreted to make descriptions simpler and shorter.

Computational Theories for Scene Segmentation

The earliest computational methods for scene segmentation were based on designing edge detectors to find the lar
changes in local intensity contrast which are associated with the boundaries of objects (e.g. Marr and Hildreth 1982)
These methods involve convolving the image with first and second order derivative operators which are smoothed b
Gaussian filters and then thresholding the resulting images to extract the edges. This can be implemented by local filtel
which are similar to the properties of cells in V1. These methods can be extended to allow the filters to be influenced
by local context. For example, the Canny edge detector (Canny 1986) uses heuristics like hysteresis and hon-maximul
suppression to facilitate the completion of contours and to thin out multiple responses to the same edge. But overall, thes
methods are often unable to yield a complete segmentation of the scene because they do not take into account the glol
structure.

Global approaches to image segmentation began with a class of models that were developed independently in tf
1980’s (Geman and Geman, 1984, Mumford and Shah 1985, and Blake and Zisserman 1987). These were based !
designing a global criterion for segmenting images into regions. The models assumed that regions have smoothly varyin
intensity patterns separated by boundaries where the intensity changes significantly. This corresponds to scenes cc
taining smoothly varying spatial geometry separated by discontinuities (and with no texture or albedo patterns). We
will describe later how these models can be extended to deal with more general images that include texture, albedo ar
shading patterns.

We discuss these models using Leclerc’s perspective which formulates scene segmentation as an inference problem
terms of efficient encoding (Leclerc 1989). This approach is based on the Minimum Description Length (MDL) principle
(Risannen 1987).

The computational goal is to choose the representdioof the regions best fits the image ddbaor equivalently,
which best encodes the data. In Bayesian terms, we seek to perform Maximum a Posteriori (MAP) estimation by max:
imizing thea posterioridistribution P(W|D) of the representation conditioned on the data. By Bayes theorem, we can
express this in terms of the likelihood functiét®{ D|W) and the priorP (W) as follows:

P(DIW)P(W)
P(D)

The likelihood functionP(D|WW') specifies the probability of observing daftaif the true representation 8~ and
P(W) is the prior probability of the representation (before the data). In the weak-membrane model, the likelihood
function is a simple noise distribution and the prior encodes assumptions that the image is piecewise smooth and th
boundaries are spatially smooth (see next section for details).

In order to relate MAP estimation to efficient encoding, we take the logarithm of Bayedogile(W|D) =
log P(D|W) 4 log P(W) — log P(D). P(D) is constant (independent &f’), so MAP estimation correspondsaini-
mizingthe encoding cost:

P(W|D) =

—log P(D|W) —log P(W)

We now interpret this in terms of minimal encoding. By information theory (Shannon 1948) the number of bits
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required to encode a variablé which has probability distributio®(X) is —log P(X). The term—log P(WW) is the
cost of encoding the interpretatidfi. The term—log P(D|W) is the cost of encoding the dafa conditioned on
interpretationi?. This cost will be0 if the interpretation explains the data perfectly (il§.D|W) = 1). But usually the
interpretation will only partially explain the data and sdog P(D|W) is called the residual (see the detailed example
below).

Observe that the encoding depends on our choice of madeiglig| D) and P(WW). Different models will lead to
different encoding, as we will describe later.

The Weak-Membrane model

The weak-membrane model deals with images where the intensity varies smoothly within regions, but can have
sharp discontinuities at the boundaries of regions. We introduce it by the energy functional proposed by Mumford anc
Shah (1985). This model was defined on a continuous image space, rather than on a discrete lattice (hence the tel
“functional” rather than “function). But, as we will show, it can be reformulated on a lattice. (There are differences
between the Mumford and Shah model and closely related models by Geman and Geman (1984) and by Blake an
Zisserman (1987). The most important difference is that the Mumford and Shah model is guaranteed to segment th
image into closed regions, while this is only strongly encouraged by the other models).

The weak-membrane model represents the image by varigh/és), where B is the set of boundaries between
regions and: is a smoothed version of the input imagde More precisely, the image is described by intensity values
d(x,y) specified on the image spa¢e,y). The model assumes that the intensity values are corrupted versions of
(unobserved) underlying intensity valuege, y). The underlying intensity values are assumed to be piecewise smooth,
in a sense to be described below.

We formulate this problem by describirglog P(D|u, B) — log P(u, B) directly. We write this ag’(u, B):

—d(z
E(u,B)://R(u(x’y) = d:rdy+// 2\|Vu|]2d:cdy+aB
d

whereR is the image domainB denotes the set of boundary locations boundariesfanrdB indicates the entire image
domain minus the boundary locations.

The first term inE(u, B) is the data term, or log P(D|u, B), where the distribution of the residuéX D|u, B) is
chosen to be Gaussian white noise with standard deviatjorin other words,P(D|u, B) = [, , P(d(z,y)[u(z,y)),

where P(d(z,y)|u(z,y)) = \/%e—(u(xvy)—d(xvy))Q/(%?z)_ The double integrals over andy is simply the continuous
version of summing over all the 6ixels in the image dom@in

The second term is a smoothness prior, which assumes the variation on the estimated image intensity to be smoo
Vu
within each region. Intuitively, the local variation following a Gaussian distribution A(@&/v : (u, B)) = LG,

\/2mo2

whereo,, is the standard deviation of this distribution, but this is an oversimplification (for true interpretation, see Winkler
1995). Observe that when, is very small, then the energy function enforces regions to have constant intensity. This
smoothness term is deactivated (discounted) at the bouritlaosthe integral is oveR — B. The intuition is that when

the local image gradient is too steep, then it will be better to put in a boundary.

The third term is a penalty on the length of the boundaries. This is needed to prevent the image from breaking into toc
many regions or from creating regions with wildly zigzagging boundaries. The sum of the second and third term yields
—log P(u, B) (technically this prior is improper, see Winkler 1995, but this is not significant for this chapter.)

To develop algorithms to minimize the energy function, it is convenient to reformulate it, in the style similar but not
identical to that of Ambrosio and Tortorelli (1990), so that the bounddsiese replaced by line process variables y)
which take on values if, 1]:

B[, 1]d] ://R(“(””’y) ;gd dxdy—i—// 2|Wiy)’ dady

ta / IV, )2 + p~ U1z, y)* /) dady. 1)
R

The line process variables take val(e, y) ~ 1 at the boundaries, thereby cutting the smoothness constraint. It can
be shown that, in the limit ag — 0 the minimization of this corresponds to Mumford and Shah (and the line process
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Figure 2: A locally connected network for scene segmentation: A n@eg) has valueu, ,. It receives direct input from the
datad(x,y). Itis also connected to its immediate neighbors (or more generally, to nodes in a local neighborhood) by symmetrical
connections which embody the prior which enforces the estimated intensity to be piecewise smooth.

variables take values eitheor 1). The advantages of the second formulation (1) are: (i) that it is easier to find algorithms
for it than for Mumford and Shah, and (ii) it can be directly discretized and implemented on a grid.

The weak-membrane model can be generalized to perform 3D surface inference (Belhumeur 1996) and to the couple
membrane model (Lee et al. 1992) for texture segmentation. In natural images, many regions are defined by textur
properties (e.g. stimuli in Figure 12). The image intensities within each region are not smooth, but the texture properties
are. To do this, we set the inpdtz, y) to be Wi(o,0,z,y) which is a image of 4 continuous variables obtained by
wavelet transform (which provides a simple local measure of texture). Each wavelet channel is fitted by a 2D weak-
membrane but each of these membranes is coupled to its nearest neighboring membrangs #) ttemain. (The
algorithm involves anisotropic diffusion which takes place in 4D but breaks are allowedridy only). This model has
been shown to be effective in segmenting some texture images, tolerating smooth texture gradients (Lee et al. 1992).

One justification for models like the Mumford-Shah formulation comes from the study of statistics of natural images.
Zhu and Mumford (1997) used a statistical learning approach to learn moddi§dar, B) and P(u, B) from natural
images, and their results are similar to the Mumford-Shah model (though with interesting differences). It is interesting
to contrast how Zhu and Mumford use images statistics to learn the prior with how receptive fields can be learnt from
similar statistics using efficient encoding principles.

A Computational Algorithm for the Weak-Membrane Model

When discretized on a grid, the weak-membrane model can be implemented in a network structure as shown i
Figure 2. Such a network contains a layer of input observatiany), a layer of hidden nodes(z, y), and a set of
line processes (or boundary processés)y). Theu nodes can communicate (passing messages) to each other, but their
communication can be broken when the line process between them become active. Thus, this is an interacting system
two concurrent processes.

For the weak-membrane implemented in a Markov network or Markov random field (Geman and Geman 1984), the
local connections between the nodes enforce the smoothness constraint, which make the states of the adjacent nodes v
as little as possible, subject to other constraints such as faithfulness to the data (the data term in the energy functiona
More generally, Markov random fields can implement any form of compatibility constraint and do not have to be local
connections (Winkler 1995).

We now describe algorithms that can find the solution of the weak-membrane model using such a network. Finding
the solution that minimizes the energy functional of the weak-membrane model is not trivial, as there are many local
minima due to the coupling of the two processes.

The simplest way of finding the scene estimate functi@md partition boundary that would minimize this class of
energy functionals is to search through all possible sets of regions, calculating the cost for each set and choosing the s
with the smallest cost. But the number of possible sets of regions is prohibitively large for image of any reasonable size
making an exhaustive search infeasible. Simple gradient descent descent algorithms will fail because the interaction wit
line processes makes the system highly non-convex and gives it a lot of local minima to trap the algorithm into inferior
or incorrect solution.

The best algorithms that have emerged so far belong to a class of optimization techniques generally known as contir
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Figure 3: (a) The energy landscapes of a sequence of deforming energy functionals and the successive gradient descent of a ‘ba
in this sequence of landscapes: the system first converges to the global minimum of the convex landscape, which is then used as t
starting point for the next descent in the new energy landscape. This strategy of successive gradual relaxation will allow the syster
to converge to a state that is close to a global minimum of the original energy functional. This strategy can be considered a coarse-tc
fine search strategy in the scale-space of energy landscape. (b) The transformation of the approximating energy functional, from tr
convex one back to the original one, is achieved simply by modifying the local interaction potential as a fungtaasbbwn here.
The local interaction potential dictates the contribution of the second and the third terms in the Mumford-Shah energy functional. At
p = 1, the local interaction potential transits smoothly from the quadratic funefi¢r\u) to thea, which corresponds to a global
convex energy function. Asdecreases, the transition becomes more and more abrupt, and converge to the local interaction potentia
prescribed by the original energy functionalalsecomes very small (see Blake and Zisserman 1987 for details).

uation methods (Blake and Zisserman 1987, Ambrosio and Tortorelli 1990). The basic idea of the continuation method is
to embed the energy function in a family of functiafis(«, /) with the continuation parametgr At largep, the energy
function E,(u, 1) is convex and will have only one single minimum. Asipproaches zero, the energy functional will
transform gradually back to the original function which can have many local minima. The strategy is to minimize the
energy at large and then track the solution to small valuespofMore precisely, we initialize®, select random initial
conditions for(u, /) and perform steepest descent to find a mininfufh [°) of E(u,1). Then we decreageto p', and
perform steepest descent &iy (u, 1) using(u?, ") as initial conditions, and so on. This approach is not guaranteed to
find the global minumum of? (u, B), but empirically it yields good results provided the initial valueobis sufficiently
large. The dynamics of the algorithm with the transformation of the energy landscape is shown in Figure 3.

The steepest descent equations for the functional reformulation of weak-membrane model as in equation 1 are give

by:

d Y Y ’t 2
WEIPY o (aeyp0) 4 d(ey) + V(a9 ~ U y.0.0)) @
dl(xayapat) _ 2 1 2 al(xvyvpvt)

The parameters, andr; are positive rate constants which control the rate of descent. At each stage with a pasticular
which changes slowly from 1 to O, the system relaxes to an equilibriun%.end% are driven to 0.

In these equations, follows a nonlinear diffusion process that is sensitive to the values of the line process. The line
process at each location is a continuous variable, indicating that the boundaries are soft during the early stages of tf
algorithm and only become sharp at the end.

Figure 4 shows the outcome of such algorithm given an input image (a). MinimiZing B) yields a map of
boundary proces® which, during the first stages of the algorithm, resembles an artist’s sketch (b), and then develops
into crisper boundaries (c) which partition the image into a set of piecewise-smooth regions (d).

The gradual sharpening of the boundaries can be seen in the responses of a collection of line processes (over spa
to a step edge at = 0 (Figure 5a). That is, the gradient alopgs all zero, and the gradient alongs all zero except at
x = 0, which is strong enough to activater = 0) fully, so thati(x = 0) = 1. Therefore the second term in Equation 3
just vanishes, and at the equilibrium of eactelaxation stage (i.eg—ft = 0), the dynamical equation (Equation 3) yields

2 lz|
apgl‘é:i;zl:e_% 4)
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(a) Input image (b) Initial edge map (c) Final edge map (d) Final surface cue map
Figure 4: Segmentation of an image by the weak-membrane model. Results are encoded in two maps: the boundary map and tt
region map. (a) The input image. (b) The initial response of the edge (the line ptacegy map resembles an artist's sketch of
the scene, with uncertainty about the boundary. (c) The final response of the edde shaps crisper boundaries. (d) The final
estimate of the piecewise smooth intensity valugs, y) is like a smoothed and sharpened image, as if make-up had been applied.
Adapted from Lee (1995).

Contraction of the Boundary Signals Over Time Activation function of boundary process
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Figure 5: (a) An image with a luminance step edge. (b) In response to the step edge, initially, line processes near the edge will
respond, resulting in a broader spatial response profile among these population of nodes. Oventitdeereases, the boundary
responses start to contract spatially to the exact location of the step edge. The activity at each location represents the response ¢
line process at that location. The curve does represents the responses of a population of identical boundary processors distribut
over space, or equivalently the spatial response profile of a boundary unit to different part of the image with a step edge. As
decreases, the spatial response envelope becomes narrower and narrower (Lee 1995). (c) Another perspective on the continuat
method is that the activation function of the line process becomes stegpdeareases (Geiger and Yuille 1991).

V21 controls the lateral interaction between the boundary signéls p — 0, the boundary signalin the surrounding is
gradually suppressed, resulting in the contraction to a sharp boundary as shown in Figure 5b.

Observing that a locally connected network is quite compatible with the known anatomical connections in the primary
visual cortex (V1), Koch et al. (1987) first proposed a neural circuit for implementing a variant of the weak-membrane
model in V1 for the purpose of depth estimation (the same model was applied to segmenting images by Geiger and Yuille
1991). Lee (1995) explored the implementation of the coupled-membrane model (Lee et al. 1992) with V1 circuitry
further based on the energy functional stated in equation 1 and the descent equations described here. This circuit tak
data input in the form of V1 complex cell responses, and might be considered more ‘neurally plausible’. It was observed
that the two concurrent and interacting processes of region inference and boundary detection implicated by the desce
equations are very similar in spirit to a neural model proposed for V1 earlier by Grossberg and Mingolla (1985).

Generalizations of the Weak Membrane Model

The main limitation of the weak-membrane model is that it uses very simple assumptions about the intensity propertie:
within regions. We have briefly described how this can be generalized to cases where the regions have smooth textu
patterns. But most natural images have richer properties. Some surface regions are characterized by smooth textu
properties, others have smooth intensities, and yet other have shaded intensity properties which depend on the tilt ar
slant of surfaces. The piecewise smooth intensities, assumed by the weak-membrane model, are suitable for the 3
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it i e e T el A e T ;
(a) Input image (b) Segmentation of the image (c) Synthesis of the image

Figure 6: An illustration of how region competition model can encode an image economically by encoding each region with a set of

boundary elements and two numbers — the mean and the variance of the intensity values in each enclosed region. Different mode
of regions will compete to explain the image. (a) Input image. (b) Segmentation boundary. (c) Representation of image based ol
simple region models. Results produced by the Data-Driven Monte Carlo algorithm for the region competition class of models (Tu
and Zhu 2002). Courtesy of Tu and Zhu.

surfaces which are approximately flat but fail to accurately model images of more complicated surfaces, such as sphere

We now briefly describe some second generation models of image segmentation. These are significantly more effec
tive than the weak-membrane model when evaluated on images with ground truth (as provided by Berkeley dataset, se
Martin et al 2001). We will discuss three different aspects of these methods that might be relevant to the interpretation o
cortical mechanisms.

Firstly, we can generalize the weak-membrane model by observing that natural images are very complex. The image
of object surfaces are characterized by a combination of multiple factors such as textures, color, shapes, material prope
ties, and the lighting conditions. Each region is described by its own model, for example shading or texture. The task o
segmentation is now much harder. We have to determine the segmentation boundaries while simultaneously determinir
the appropriate model for each region.

We can formulate this as a generalization (Zhu et al. 1995, Zhu and Yuille 1996) of the weak membrane model. We
refer to these as region competition models.

E(Ra),m, (ar), (0)) = 3 // {~log Pd(z, ) lar, 0.)}dwdy — 3" log Plar, 0.) + % 3" |Ri| +en.
r—=1 Ry r=1 r=1

This includes a set of generative modél&l(z, y)|a,, 6,) which are indexed by model type index variable(cor-
responding to texture, shading) and a variahleorresponding to the parameters of the model. This corresponds to
encoding the image in terms of a richer language which allows different regions to be encoded by different models (a tex
ture model, or a shaded model, or an alternative). Figure 6 illustrates coding regions of a segmented image with relativel
simple models of regions. Regions can be encoded as one of three types: (i) a Gaussian model encoding the mean &
variance of the intensity in the region, (ii) a shading model where the image intenesity follows a simple parameterized
form, and (iii) a simple texture/clutter model. The segmentation thus encodes an image in terms of a set of boundarie
as well as a set of region model codes (e.g. containing two values for each region the algorithm decides to encode ¢
Gaussians). From such a representation, an approximation of the original image can be synthesized (Figure 6c). Mol
sophisticated generative models will give increasingly realistic synthesized images.

There is no limitation to the class of models that can be used. Recent work has generalized this approach to includ
models of objects, such as faces and text, so that segmentation and object recognition can be performed in the sar
unified framework (Tu et al 2005).

This generalized model requires a significantly more complicated algorithm than the weak-membrane model. It need
processes to select the models and to ‘move’ the boundaries. The movement of boundaries is dictated by a diffusio
process on region properties similar to that for the weak-membrane model. We will discuss this further at the end of this
section.
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Secondly, there is a second class of models which are, in a sense, complimentary to the region competition mode
We will refer to these as affinity-based models.

This family of approaches uses affinity weightg between different image pixels andv;. These affinity functions
are based on properties measured from the image and are designed so that pixels in homogeneous image regions have |
affinity (w;; = 1) with each other. For example, we can obtain a model with similar properties to the weak-membrane by
settingw;; = e—aldi—d;| \whered; is the intensity at lattice site; in the image. This construct is naturally regarded as a
graph with the image pixels constituting the node set, and the weights between them as the edge set (here the boundar
occur whenw;; is small).

Given such a graph, a sensible goal is to label the nodes such that intra-region affinity is maximized (defined by the
labels), while minimizing the inter-region affinity. Given the label et ..., [, }, we assign a label to each image pixel so
that pixels with the same labels define a region. Finding such a labeling can be formalized in the following minimization
(Yu an Shi 2003):
) 1< Zi<j wij(mip — mjp)2
E(m)= min : — 5 5

meP(n,k) k P Zi<j Wij (mip + mjp)

wheren is the number of pixelsk the number of labels, an@(n, k) denotes the set of x k indicator matrices. An
indicator matrixm satisfies the following constraints(z,p) € {0, 1} andz’;zlm(i,p) = 1. In this application the
node indices andj are taken as the indices of the image pixels. Accordingly, the indicator matrix takes theygaleel
when theit”" pixel is assigned thg’" labell,, otherwisemn;, = 0.

The objective function falls into the class of NP-hard problems. Subsequently, a variety of algorithms have been
developed to find nearly optimal solutions in polynomial time. One class of algorithms relaxes the discrete constraints
onm to a continuous values transforming the minimization into a generalized eigenvalue problem (Shi and Malik 2000).
The obtained continuous solutions are then rounded to discrete values producing the cut. Another interesting clas
uses hierarchical grouping and is fast and effective (Sharon et al 2001). A third class of algorithm iteratively modifies
the affinity matrix, using the eigenvectors as soft membership labels, until the graph eventually disconnects, producin
reasonable segmentations (Tolliver et al. 2005).

This type of approach is appealing for several reasons. It simplifies the problem formulation as it does not require
us to specify models. It enables a richer set of connections, defined by the affinities, than those implemented by thi
weak-membrane model (which essentially a Markov random field with the nearest neighbors, see Figure 2). These ric
connection patterns are consistent with the known anatomy of V1. But these models are still being developed and detaile
biological predictions have not yet been worked out. Finally efficient computation of approximate solutions is possible.

Interestingly, there may be interesting connections between these types of theory and the algorithms used to im
plement the region competition models. In the Data-Driven MCMC algorithm, Tu and Zhu (2002) uses “proposals” to
activate the models. These proposals can be generated based on grouping pixels into regions based on affinity cues &
then evaluating these groupings by accessing the models. From this perspective, the affinity-based methods can be us
as sophisticated ways to generate proposals. In this way, it may be possible to combine these two approaches.

Thirdly, we have so far treated segmentation in terms of image intensity properties only. But the extended class o
models, in principle, could enable us to integrate segmentation with the estimation of 3D shape properties such as 3l
geometry or Marr’s 2.5D sketch (Marr 1982).

The inference of surface geometry, integrated into the segmentation framework, can be illustrated by a simple exampl
where the image intensity corresponds to a shaded surface. This requires a model for how the image intensity has be:
generated from the surface of an object by light reflected from it. We assume the standard Lambertian model which i:
characterized by a reflectance functiBg(i) = 7i(x,y) - §, with 7i(x, y) being the surface gradient at position y)
ands'the light source (we assume a single light source here). We also assume that the lighf sokrmvn (there are
techniques for estimating this). It is convenient to express the surface ndfmal) in terms of the surface slaqf, g)

in thez andy directions respectivelyi(z, y) = L )(—fx(x, v), —fy(z,y),1)).

_ V)R ey _ _ -
We can use a classic shape-from-shading method due to Horn (1985) as one of the models in region competitior

There are more sophisticated models on shape from shading. But this is the simplest model that we can illustrate th
principle of surface inference. The cost function is of form:
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Synthetic Shaded Image-300 lterations Synthetic Shaded Image~1000 lterations

(a) (b) (c) (d) (e)
Figure 7: Surface interpolation by propagation of surface orientation from the boundary using locally connected network using
Horn’s algorithm. (a) Input image. (b) Initial estimate of surface as represented by the needle map. The needle points in the directiol
of surface normal. (c) A rendering of the surface as represented by (b) assuming lighting from the left, to illustrate the initial estimate
of the surface. (d) Final estimate of surface orientations at each location and (e) its shaded rendering. This illustrates the propagatic
of surface orientation information from the border to the interior of the surface over time.

o) — 2
Bgcay) = [ [ B gy 5 [ (724 13+ 6+ ooy

where(2 is a subregion of the imagé(z, y) is the intensity of the image at locatidn, y). The first term is the standard
Gaussian noise model. The second term is a smoothness prior on the surface orientation.

An additional constraint on the surface normidl, y) is available at the occlusion bordéf}, where the surface
normal is always perpendicular to the line of view. This provides boundaries conditions to start a surface interpolation
process. Figure 7 illustrates how the surface orientation information, as represented by the needle map that indicat
the direction of surface normals, can propagate in from the occlusion border to the surface interior during the proces:
of surface interpolation. We would like to draw your attention to this propagation of signals from the border, as such
propagation from border to the interior has also been observed in neuronal activities in V1 as we shall discuss. This
model provides one potential interpretation (among many) of such a signal being either a part of or at least a reflection o
an on-going surface inference process.

As in all the region competition theory (as well as the weak-membrane model), the boundary of théregishbe
detected at the same time as inference of the regional properties — in this case, the 3D surface orientation represented
the functionsf, g.

Itis important to remember that many other models of regions and boundaries have also been developed for the regic
competition theory, from simple models that describe each region by the mean and the variance of its intensity value:
within that region, or by covariance of the first derivatives along different directions for encoding texture (e.g. Zhu et al.
1995, Zhu and Yuille 1996), to more advanced models of textures (Zhu and Mumford 1997, Zhu et al. 2005) and ever
objects (Tu et al. 2005).

In summary, the second generation of theories requires richer modeling for the types of intensity patterns that occu
in real images. This can be considered to be a richer class of description of the image which can involve 3D surface
shape and even models of objects. Such theories require complex inference algorithms because the segmentation of
image into regions must be performed while simultaneously determining what type of regions they are, and what are thei
regional properties. Different models cooperate and compete to explain different regions in the image. These inferenc
algorithms can be helped by the use of proposals, some of which may be provided by the output of the affinity-basec
models. For more details on these class of models, see (Tu and Zhu 2002, Tu et al 2005). For related theories, from
different perspective see (Borenstein and Ullman 2001, Yu and Shi 2004).

Three aspects of the second generation of segmentation models may relate to the physiological experiments describ
in the biological section. Firstly, the algorithms for the region competition methods (with multiple models) have aspects
which are similar to the diffusion methods used for the weak-membrane. The difference is that diffusion is only one
of several components of the algorithm. Secondly, these algorithms make a natural use of bottom-up and top-dow
processing where the models are accessed by recurrent connections to different visual areas. Thirdly, this approach mig
also fit naturally in a hierarchical coding scheme which can potentially compress the total coding length by using higher
level (more abstract) description to replace or explain away the redundant information in the low level representations a
suggested by Mumford (1992).
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Biological Evidence

In this section, we will discuss some neurophysiological experiments which suggest that the primary visual cortex is
involved in image segmentation. We start by enumerating the predictions of the computational models, particularly those
of the weak-membrane model for segmentation, then compare them to the experimental results.

1. There exists a dual representation of region and boundary properties. This is possibly in two distinct groups of
neurons, one set coding region properties, while the other set coding boundary location.

2. The processes for computing the region and the boundary representations are tightly coupled, with both process:
interacting with and constraining each other.

3. During the iterative process, the regional properties diffuse within each region and tend to become constant. Bu
these regional properties do not cross the regional boundaries. For the weak membrane model, such spreading c
be described as nonlinear diffusion, which propagates at roughly constant speed. For more advanced models, tt
diffusion process may be more complicated and involve top-down instantiation of generative models.

4. The interruption of the spreading of regional information by boundaries results in sharp discontinuities in the
responses across two different regions. The development of abrupt changes in regional responses also resu
in a gradual sharpening of the boundary response, reflecting increased confidence in the precise location of th
boundary.

5. In the continuation method, there is additional sharpening of the boundary response. This is modulated by a globe
parametep, which increases the sensitivity of all boundary-sensitive neurons (Figure 3).

The computational models say nothing about where the representation, and the processes required to compute the
occur in the visual cortex. To relate these models to cell recordings requires making additional conjectures that we will
now state.

We conjecture that segmentation computation is embodied in V1, with information about boundaries and regions
explicitly represented there. However, not all the computations required for segmentation need take place in V1. Fo
example, it is not clear, based on existing evidence, whether surfaces are represented in V1. There is evidence, howev
on the sensitivity of V2 neurons to surface properties such as relative depth (Thomas et al. 2002), border-ownershi
(Zhou et al. 2000), da Vinci stereo (Bakin et al. 2000), and pop-out due to shape from shading (Lee et al. 2002). Thus, i
seems more likely that surface inference takes place in V2, but the process can be coupled to the segmentation process
V1 through recurrent connections.

This conjecture is related to tiégh-resolution buffetheory of V1 (Lee et al. 1998, Lee and Mumford 2003) partially
inspired by some of the experiments described in this section. In this theory, V1 acts as a high-resolution computationa
buffer which is involved inall visual computations that require high spatial precision and fine scale detail, since V1 is
the only visual area that contains small receptive fields. Some of these computations are performed in V1 directly, while
others are performed by recurrent connections between V1 and the other visual areas in the extrastriate cortex. Proce:
ing in V1 detects salient regions which are enhanced by a recurrent feedback mechanism very much like the adaptiv
resonance or interactive activation mechanisms hypothesized by the neural modeling community (Grossberg 1987, Mc
Clelland and Rumelhart 1981, Ullman 1994, see also Yuille and Grzywacz 1998 for a motion perception theory utilizing
recurrent feedback, Deco and Lee 2004 for a model for integrate what and where in the high-resolution buffer using or
recurrent biased competition). In particular, Lee et al. (1998) have argued that segmentation in V1 cannot be complet
and robust without integrating with other higher order computations, such as object recognition and shape inference. O
the other hand, higher order computations might not be robust without continuous consultation and interaction with the
high-resolution buffer in V1. Thus, in their view, visual computations such as scene segmentation should involve the
whole visual hierarchy utilizing the feedforward and recurrent feedback connections in the visual cortex. This relates to
some of the second generation computational models.

We now present neurophysiological findings that show experimental support for several of these computational pre
dictions. In particular, we discuss evidence for: (1) the gradual sharpening of the response to boundaries, (2) the simulte
neous spreading of regional properties and (3) the development of abrupt discontinuities in surface representations acra
surfaces.

Edge and boundary representations and their spatial temporal evolution
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We first review evidence that V1 neurons represent edge and boundary locations. The early experiments by Hubel ar
Wiesel (1972) showed that neurons in V1 are sensitive to oriented intensity edges. Indeed Hubel and Wiesel conjecture
that the neurons were edge detectors because of their orientation selectivity.

Detailed analysis of the receptive fields of simple cells, using the reverse correlation method, showed that they coulc
be modeled by linear Gabor filters (Daugman 1985; Jones and Palmer 1988). The receptive fields at different scale
resemble scaled and rotated version of each other, which means they can be considered to be two-dimensional Gak
wavelets (Daugman 1985, Lee 1996). In the theoretical neuroscience community, the Gabor filter interpretation has bee
popular because Gabor filters achieve the limit of representing information with maximum resolution in the conjoint space
of space-time and frequency. Recently, it has been shown that they can be derived from the statistics of natural images
efficient codes for natural images based on independent component analysis (Olshausen and Field 1996). Although su
rationalization about efficient representation is interesting intellectually, we should not lose sight of the real functional
purposes of simple and complex cells as edge detectors, as proposed by Hubel and Wiesel (1972). Young (1987) has lo
championed that simple cells can be described equally well in terms of the first and second order 2D Gaussian derivativ
operators (see Figure 8). The odd-symmetric Gabors are sensitive to intensity edges and the even-symmetric Gabors
bars (such as peaks and valleys). In fact, Bell and Sejnowski (1997) have aptly argued that the independent componer
likely arise from the structures of edges in natural images.
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Figure 8: Graphs of (a) a 2D Gaussian, (b) the first x derivative of a 2D Gaussian which resembles the odd-symmetric Gabor
filter/wavelet, (c) the second x derivative of a 2D Gaussian which resembles the even-symmetric Gabor filter/wavelet. Adapted fron
Young (1987).

In summary, simple cells can serve as edge and bar detectors (Hubel and Wiesel 1972), with their maximum responst
used to signal the location of the boundary (Canny 1986). But, considered as derivative of Gaussian filters, they can als
perform some of the other mathematical operations required by the computational models. The complex cells, which ar
not sensitive to the polarity of the luminance contrast at edges, would be particularly suitable for representing borders o
boundaries of regions. The hypercomplex cells could serve as derivative operators which act on complex cells’ response
to detect texture boundaries (see Lee 1995).

We now turn to evidence of non-local interactions associated with computational models of edge detection. Studies
by Kapadia et al. (2000) showed that the activity of a V1 neuron to a bar within its receptive field can be enhanced by
the presence of other bars outside the receptive field of the neuron, provided these bars are aligned to form a conto
(longitudinal facilitation). Conversely, the neuron’s response is suppressed if these bars are parallel to the bar within the
receptive field (lateral inhibition). One manifestation of longitudinal facilitation is that V1 neurons looking at the short
gaps in boundaries of the Kanizsa figures (see Figure 1a) have been found to respond after a certain delay (100 ms af
stimulus onset versus 40 ms required for the response to a real edge) as shown in the study by Lee and Nguyen (200
(see Grosof et al. 1993, Sheth et al. 1996 for other subjective contour effects in V1, and von der Heydt et al. 1984 for
classic results in V2). Lee and Nguyen (2001) also found that V2 neurons responded earlier to the same stimuli. Thit
raises the possibility that the illusory contour response found in V1 is in part due to feedback influence from V2, and in
part carried out by the horizontal collaterals within V1.

Longitudinal facilitation and lateral inhibition are consistent with the mechanisms in basic edge detection models
(Canny 1986) and contour completion models (Nitzberg et al. 1993, Williams and Jacobs 1997)). These mechanism
are also embodied in the weak-membrane model as described. The continuation method for the weak-membrane moc
further gives a quantitative prediction on the temporal evolution of the boundary process. Specifically, in response tc
a simple luminance border (as shown in Figure 5), the neural response to boundaries gets sharper over time as tl
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Figure 9: The spatial sampling scheme. The monkey fixates on the solid dot on upper left. In successive trials, the image on the
monitor is displaced relative to the fixation point of the monkey, or equivalently, relative to the recorded neuron’s classical receptive
field (CRF). This gives a spatial sampling of the neural response to different parts of the stimulus.

continuation parameterdecreases. (Predictions 4 and 5).

Analysis of data obtained from the experiment described in Lee and Nguyen (2001) provides some evidence ir
support of the boundary contraction prediction. In that experiment, they used used a sampling paradigm to examine th
spatiotemporal responses of neurons to a visual stimulus consisting of a square region whose boundaries were defined
a variety of cues (this sampling paradigm is used for many of the experiments reported in this chapter). In this paradigm
the monkey fixated on a dot on the computer monitor while the visual stimulus was presented for a short period of time
(typically 400 ms for each trial). In different trials, the image was shifted spatially to a different location so that the
receptive field of the neuron overlapped with different parts of the stimulus. This finely sampled the spatial response of
the neuron at an interval @ 25° as illustrated in Figure 9. During each presentation, the stimulus remained stationary
on the screen so that the temporal evolution of the neural responsess at each location could be monitored and studied.

Figure 10 shows the response of a cell to the different locations around the borders of three types of stimuli. The
normalized responses at three different time windows reveal that the half-height width of the spatial response profile
around the boundary decreases over time, which is consistent with the boundary sharpening prediction. However, th
absolute response of the neuron also decayed over time. This raises the possibility that this sharpening could potential
be simply be an “iceberg effect” where the response profile stays the same but simply sinks over time uniformly across
space. The iceberg tip that remains visible, when normalized, might appear to be sharper. This seems unlikely, howeve
firstly because firing rate adaptation tends to be proportional to the firing rate (i.e. higher firing rates will adapt by a
larger amount), so pure adaption would flatten out the response profile; and secondly because the reduction of hal
height width of the response profile can be observed even when absolute response of the neurons remain the san
Figure 11 shows the distribution of the half-height widths of the spatial response profiles of a population of neurons
at three different time windows post-stimulus onset, which demonstrates a statistically significant effect of boundary
contraction. Further experiments are needed to confirm this contraction of the boundary response, for example, b
testing the neurons’ responses to noisy and ambiguous figures which, we conjecture, should exaggerate and prolong t
sharpening process.

It is evident from these data that a neuron’s response often decays over time. This is traditionally considered to be a
adaptation effect (the initial burst can partly be attributed to the neuron’s temporal receptive field responding to the suddel
onset of the stimulus). This adaptation is not a property of the weak-membrane model considered. Adaptation is no
necessarily due to the neurons losing steam metabolically, since ‘habituating’ neurons are capable of increasing their firin
if a new and different stimulus suddenly appears (Miller and Desimone 1994). For example, when the global orientation
of the contour is more consistent to the neurons’ orientation preference than the local texture, the later responses of tf
neurons are found to be stronger than the initial responses (Figure 10 in Lee et al. 1998). The adaptation effect ca
potentially be understood as a ‘predictive coding’ or ‘explaining away’ effect proposed by Mumford (1992) and Rao and
Ballard (1999). According to that theory, when there is a good high-level interpretation of an image region, as represente
in a higher visual area, V1's responses are attenuated because they are partially explained away or replaced by the higt
order, presumably simpler description. V1, as a high-resolution buffer, is still needed to represent the residual informatior
between the high-level prediction and the image stimulus. This information will include the local texture and color and
disparity, because only V1 can represent such fine details in high resolution. Furthermore, not all predictive coding
requires a top-down feedback mechanism. Recurrent center-surround or lateral inhibition mechanisms within V1 car
also perform ‘predictive coding’, just as the center-surround structure of the retinal receptive field has been considered
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Figure 10: First row: three stimuli tested
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. Second row: A V1 neuron’s spatiotemporal response to boundaries sampicoaa

line boundary, a luminance boundary and a subjective boundary (left to right panels). A gradual contraction of the spatial response
of the neurons to the boundary i) can be observed for the line and the luminance border. Third row: When the peaks of the
spatial response profiles were normalized to the same heights at different time windows, this reduction of the half-height width of

the spatial response profile, a measure of sharpness of the boundary representation, becomes more evident.
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Figure 11: The distributions of half-height widths in the spatial response profiles of a population of V1 neurons in response to the

boundary of the luminance square at different time periods after stimulus onset. A successive reduction in the average boundat
widths of the spatial response profile can be observed over time. The mean widths of boundary at three different time periods ar
0.53, 0.42 and 0.37 degree visual angles, with standard error equal to 0.022, 0.016, 0.016 respectively. The reduction of the bounda
widths is statistically significant. Note that these boundary widths are necessarily over-estimated as the sampling resolution was 0.2
degree visual angles, and the eye movement fixation window was about 0.5 degree window. Both factors would have increased tt
spatial width of the boundary response.
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form of predictive code.

Segmentation of texture figures

The first study that systematically explored the responses of V1 neurons to a figure against the background in a visue
scene was performed by Lamme (1995). In his experiments, there is a square region containing one type of textur
surrounded by a background region with a different texture (Figure 12). This stimulus is ambiguous, however, in terms of
physical interpretation: it could be seen as a square foreground figure in front of a textured background, or alternatively
a window (background) on a textured wall. The simplest interpretation might be that there is a single square region with
an albedo (pattern) discontinuity relative to the rest of the stimuli (e.g. a patch of texture cloth sewn into a hole in a
cloth with a different texture). Since the cues embodied in the test images literally cannot distinguish between these
interpretations, caution must therefore be taken not to over-interpret the results. With this caveat, we can agree that tr
common perceptual interpretation of this square is that of a foreground figure based on its many converging figure-groun
organizational cues (Palmer 1999) such as smallness, convexity and compactness.

Using a spatial sampling paradigm similar to the one we have described earlier for Lee and Nguyen’s (2001) study
Lamme (1995) examined neuronal responses at different spatial locations of the image relative to the texture square. |
particular, he was interested in comparing the four conditions shown Figure 12. His findings are startling. First, he found
that V1 neurons respond much more strongly (on the order of 40 to 100 percent) when their receptive fields are insid
the figure than when they are in the background @e> A, D > C). This occurred even though the size of the figure,

(4° x 4°), was much larger than the classical receptive field of the neurons (which is tygicgglky 1° for RFs from 2-4
degrees eccentricity). Second, this enhancement was uniform within the figure and terminated abruptly at the boundary

It must be asked whether Lamme’s results are significantly different from previous findings on surround suppression
which result from the well-known center-surround interactions in the primary visual cortex. It is well known that V1
neurons exhibit a phenomenon known as iso-orientation surround inhibition. That is, a neuron that prefers vertical
orientation, in response to a vertical bar or vertical sinewave grating in its receptive field, will be inhibited by a surrounding
vertical bars or grating (e.g. Maffei and Fiorentini 1976, Knierim and Van Essen 1992, Li and Li 1994). A cell inside a
compact region of texture will receive less inhibition than a cell located in a large region of similar texture. But classical
iso-orientation surround suppression theory has not anticipated an uniform enhancement within the figure, nor an abruj
discontinuity of enhancement response at the border.

Subsequent studies showed that the figure enhancement effect was weaker than Lamme described (about 15 perc
enhancement, Lee et al. (1998)) or even less (Rossi et al. (2001))}ifoxal® texture square figure (see also, Marcus
and Van Essen 2001). Lee et al. (1998) nevertheless confirmed that the enhancement was indeed uniform within th
figure, with an abrupt discontinuity at the boundary, as shown in Figure 13a. This uniform enhancement response wa
obtained only when the cell’'s preferred orientation was parallel to that of the border that it encountered along the
spatial sampling line. When the cell’'s preferred orientation was parallel to that of the border, a significant response wa:
observed at the border which can overshadow the small uniform enhancement observed within the texture figure (se
Figure 13b).
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Figure 12: Lamme measured V1 neurons’ responses to four conditions. In (A) and (B) the receptive field of the neuron is stimulated
by vertical texture stimuli, but the receptive field is outside the figure in condition (A) and inside the figure in (B). Cases (C) and (D)
are similar, except that now the receptive field of the neuron is now stimulated by horizontal texture. Lamme found that neurons’
activity is enhanced when its receptive field is inside the figure compared to when it is outside the figure. The solid dot indicates the
fixation spot, while the ellipse indicates the receptive field of the neuron.
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Figure 13: Population averaged combined responses (30 cells recorded individually) to texture figures in a contrasting background
Panel (a): Spatiotemporal responses when the preferred orientation of the cells is orthogonal to the orientation of the border along tt
sampling line. The combined response inside the figure is uniform within the figure and greater than that in the background. Pane
(b): Spatiotemporal responses when the preferred orientation of the cells is parallel to the border. In addition to the enhancemer
of response inside the figure relative to that in the background, a strong boundary response can be observed. The X-axis indicat
the offset of the RF location relative to the center of the square, whi¢h is4° in size. The combined response in the figure in

both cases was enhanced relative to the background at about 80 msec after stimulus onset. Panel (c) gives the population PST
(peri-stimulus time histograms) of the neurons at three locations (on the boundary, in the figure and in the background) and show
that the elevation of the response at the boundary is over three times larger than the elevation of response inside the figure (bo
relative to the background). The enhancement inside the figure emerged at about 80 ms for texture figures.

Figure 13c plotted the temporal evolution of combined responses at three different locations (inside the figure, in the
background, and at the boundary) to compare the magnitude of the boundary effect to the figure enhancement effect.
shows that the enhancement effect (the difference between the response inside the figure and the response outside
figure) emerged at about 80 ms after the stimulus onset, after the initial burst of responses of the neurons, and that tf
boundary response, when the preferred orientation of the neurons is parallel to that of the texture boundary, is 3-4 time
larger than the ‘figure enhancement’ response. (Lee et al. 1998).

Note that in the spatiotemporal response profiles shown in Figure 13, the responses of each neuron to the two con
plementary cases (i.e. a vertically-textured figure in a horizontally-textured background versus a horizontally-texture
figure in a vertically-textured background) are summed together at each location for each point in time. For example, the
combined response within the figure is obtained by summing the response for conditions B and D in Figure 12, while
the combined response in the background is the summation of the responses to A and C. By adjusting the position ¢
the stimuli relative to the neurons, a spatiotemporal profile of the neuron’s response to the images was obtained. If nc
summed, a vertical neuron will naturally respond more inside a vertically-textured figure simply because of its orientation
tuning. Summing the response helps to isolate aspect of response that is due to figure-ground context or compactness
the region, rather than the orientation tuning of the cell (see Lee et al. 1998 for further details).
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How do these experimental findings relate to the computational models described earlier? Clearly several aspects ¢
these results are consistent with the first class of computational segmentation models. There are uniform responses witt
each region with a sharp discontinuity at the border (prediction 3). There are responses to the boundaries (prediction 4
But there is a significant discrepancy, since none of the segmentation models predict the delayed enhancement within t
figure. Some additional mechanisms not included in the weak-membrane model must also be involved.

Lamme (1995) interpreted the enhancement effect as a signal for figure-ground segregation (i.e. a signal that ca
contrast a figure against the background). He argued that since figure-ground segregation is a high order perceptu
construct, the delayed enhancement effect observed in V1 is likely a consequence of feedback from the extrastriate corte
He has subsequently reported experiments showing that the enhancement effects disappeared when the extrastriate co
was lesioned (Lamme et al. 1997) or when the monkeys were under anesthesia (Lamme et al. 1998) — see also Hupe
al. (1998). The temporal delay in enhancement as evident in the PSTH (peri-stimulus time histograms) is also consister
with the idea of feedbback, as signhals from even IT would be able to propagate back to V1 within 80 ms after stimulus
onset (or 40 ms after the V1 initial response) (Zipser et al. 1996). However, it is still possible that the enhancement coulc
be computed ‘bottom-up’ with only feedforward and recurrent interaction within V1.

The segmentation of luminance and color figures

To demonstrate that the enhancement effect is more general, and not limited only to texture stimuli, Lee et al. (1998
examined the responses of V1 neurons to luminance figure stimuli (a dark figure in a bright background, a bright figure
in a dark background, or a gray figure in a texture background) and found a similar but stronger enhancement effect
(in terms of modulation ratio or percentage enhancement) for the luminance figures, even though the cells’ absolut:
responses were much less because there were no oriented features inside their receptive fields. The enhancement
found to decrease as the size of the figure increased, but remained significant for figures as large as 7 degrees in diame
far bigger than the size of the classical receptive field of the neurons.

Of particular interest were the responses to the grey figure in a texture background. In this test, the entire image wa
initially grey and then the background region was given a texture. Nevertheless, enhancement was observed even thou
there was no change in the stimulus within the receptive field of the neuron (only the surround was updated). Rossi et ¢
(2001) repeated this experiment and found a progressive delay in the onset time of responses inside the grey figure as t
size of the figure increased, as would be expected if the signal was propagated in from the border. They however did nc
believe the ‘enhancement’ is necessarily related to figure-ground organization.

Similar observations have also been made for equiluminance color figures (Yan and Lee 2001). In this experiment
the entire screen was first set to a particular color, and then 300 ms later, a disc was made to appear centered at t
receptive field of the neuron by changing the color of the background to the opponent color. This ensures, as for the gre
figure case, that there was no change in the stimulus within or near the receptive field when the figure appears. Henc
the transient response due to sudden color onset in the receptive field can be dissociated from the response due to |
appearance of the figure due to background update. Figure 14 shows a typical neuron’s temporal responses at the cen
of discs of 6 different diameters, ranging from 1 degree (border close to the receptive field) to 14 degrees (border far awa
from the receptive field). Even though the classical receptive field of the neuron (measured as the so-called minimun
responsive area) was quite small, ab0®° in diameter, the neuron responded to the appearance of a color contrast
border 7 degrees radius away! As the disc diameter became larger, the onset of the neural responses was progressiv
delayed, roughly in the order of 20 ms per degree. This result is consistent with Rossi et al. (2001)’s observation on the
luminance figure, and the hypothesis that signals are propagating (or diffusing) from the border to the interior surface o
the figure. However, it is also possible the enhancement effect arises simultaneously in cells across the entire surface wi
a delay that is proportional to the size of the figure.

To resolve whether the progressive delay in onset of the enhancement is due to an increase in distance away fro
the border, or simply due to a larger figural size, the spatial sampling paradigm was applied to monitor the temporal
emergence of the enhancement signals at different locations relative to the border for the chromatic stimuli. A red figure
in a green background or vice versa, as shown in Figure 16, were tested. The findings as described below were consiste
with the border propagation hypothesis than the simultaneous emerging hypothesis (see Zipser et al. 1996 for the textu
stimuli). In addition, the data showed that there were three major classes of neurons. One class of neurons respond
primarily to the boundaries, while a second class responded well inside the figure, even though there are no oriente
features within their receptive fields. The third class responded well at the boundaries as well as inside the surface
Figure 16 shows three typical neurons which illustrate these three types of behavior.

Neuron 1 (row 1) was a cell that responded both to regions and boundaries. This cell responded much more strongl
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Figure 14: The PSTHSs (peri-stimulus time histograms) of a neuron in response to the onset of a color change in the disk surrounc
that makes visible a disc figure of 1,2,3,4,6,14 degrees diameter centered at the receptive field of the neuron. The interior respon:
was shown to be progressively delayed relative to the onset of response near the border (i.e. the RF is very close to the border whi
the figure is only 1 degree in diameter.

Figure 15: The static presentation paradigm: the receptive field sampling positions in the red square and the green square are labelle

here by crosses.
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Figure 16: The temporal evolution of the responses of three different (typical) V1 neurons to different parts of the red figure in the
green background (left column), and to different parts of the green figure in the red background (middle column). The right column
sums the responses to the two stimuli at each spatial location to demonstrate the figure enhancement effect.
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to the green figure than the response to the red background (middle column). Its response to the green background w
weaker or about the same as the response to the red figure (left column). Therefore, the stronger response inside t
green figure cannot be attributed to its preference to green color alone. The combined response (to red/green figu
with green/red background) shows a moderate enhancement in the figure relative to the background, as well as a robt
boundary response. Many cells exhibited this kind of behavior.

Neurons 2 (row 2) and 3 (row 3) preferred red color initially, as shown by their robust response to the onset of the red
color in their receptive fields (left and middle columns). In fact, these neurons did not initially respond to the temporal
onset of the green stimuli in their receptive fields. However, over time, the neurons started to respond more strongly
inside the green figure to such an extent that the response in the green figure became stronger than the response to
red background (the color of which they initially preferred). In the case of the neuron 2, the later responses inside the
figures were always stronger than the responses in the background, regardless of the color of the stimuli, with shar
discontinuities at the boundary. Its combined responses (the sum of the responses to the red and the green figures
contrast to the sum of the responses to the green and the red backgrounds) emphasized the enhancement responses ir
the figure. Neuron 3 is similar to neuron 2 in exhibiting a dramatic reversal of the responses from initial preference for
color to a later preference for figure (row 2, middle column). Its combined response emphasizes the boundary response
more than the enhancement of the figure.

These examples relate to prediction 1, since they show that some neurons responded more to the color region, othe
responded more to the boundaries, and a significant number of neurons, such as neuron 1, respond to both. In all the
three neurons, the responses at the interior of the figure lag behind the responses at the figure border, particularly
the case of the green figure in a red background (middle column). This is manifested as a concave ‘wavefront’ in the
responses to the green figure (middle column), which is consistent with the idea of information propagating inward from
the border. This concave wavefront is not as obvious in the red figure case, perhaps because the initial chromatic chan
from grey (the initial screen color) to red within the receptive field provided a stronger bottom-up drive to the neurons as
well. When this temporal transient in color is eliminated as in the experiment described in Figure 14, a progressive dela
in the onset time of the interior response relative to the boundary response is observed.

But perhaps, the most striking aspects of these plots are the uniform responses within the figure and the abruy
discontinuity at the border of the figures. This is similar to the findings for texture, and is a clear indication of a mechanism
similar to nonlinear diffusion as prescribed by the computational models. However, it is not entirely clear at this stage
whether the propagated signals are related to color perception, surface representation or perceptual saliency. Some net
models such as the BCFC model proposed by Grossberg and Mingola (1985) suggest that color information in V1 is only
carried by center-surround color-opponent cells, which means that both luminance and color information are available
only at the contrast border. This necessitates the propagation of color and luminance signals from the boundary to th
interior during the inference of color for each region. Evidence from von der Heydt et al. (2003) seems to argue agains
this color-diffusion hypothesis. On the other hand, the propagation of neural activity from the border is also reminiscent
of the border propagation of Horn’s surface inference from shading algorithm. Further experiments are needed to clarify
these issues.

The nature of the enhancement signal

The evidence presented so far is broadly consistent with the nonlinear diffusion and boundary contraction prediction:
of the weak-membrane class of models. The main differences are the adaptation decay, and the enhancement within t
figure that have been observed in neurophysiological studies.

Both of these two discrepancies can be understood in terms of the theory of hierarchical generative model for predic
tive coding (Mumford 1992, Rao and Ballard 1998). The rapid decay in response after the initial outburst in response tc
stimulus onset can be understood mechanistically in terms of synaptic adaptation in the forward connection (Chance ¢
al. 1998), as surround inhibition, or as feedback inhibition. Alternatively, it can be understood in terms of V1 neurons
losing interest on the input because the input stimulus is being explained or ‘predicted’ by the surrounding neurons ol
higher level neurons (Mumford 1992, Rao and Ballard 1998). The delayed enhancement in responses could reflect th
differential predictions that are offered by the contextual surround. The stimulus features in a small region or compact
figure are not as well predicted by the surround stimuli, thus they are considered more surprising and appear to be mol
salient, which can elicit stronger attention. Features in a larger region of similar features are better predicted by the sut
rounding context, and hence are less salient. The delay in the enhancement response simply reflects the amount of tir
required to integrate the signals over each region: the larger a region, the longer the delay. From this predictive codin
perspective, the enhancement response can be viewed as a measure of surprise or saliency.
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Figure 17: The basic stimuli conditions with LA (sphere with lighting from above) as the stimulus element presented to the receptive

field of the neuron. The actual display contains many more stimulus elements repeated in the surround. (a) Oddball condition: R}
stimulus is different from the surrounding stimulus elements. (b) Uniform condition: RF stimulus is the same as the surrounding
stimulus elements. (c) Singleton condition. (d) Hole condition: RF not simulated, only the RF surround was stimulated. (e) An

example of the 2D control. Oddball condition of the WA (white above) stimulus.

An alternative perspective, however, is also possible. The enhancement could be signaling a fithess measure (info
mally a “happiness factor”), which is proportional to the probability of how well a higher level description or model that is
fitting the input data in V1. A compact figure fits the model of an object better because its smooth and compact boundan
might fit the spatial and shape prior better. This explanation is more consistent with Tu et al.'s (2005) model in the seconc
generation of segmentation theories in which a match of a model to the data can produce resonating happiness. This vie
is also compatible with the classical ideas of interactive activation and adaptive resonance (McClelland and Rumelhar
1981, Grossherg 1987). The delay in the enhancement is expected because matching data with top-down models wol
need to involve recurrent interaction with the extrastriate cortex, and this takes time. Such resonance could enhance tt
relevant part of the V1 representation (see also Deco and Lee 2004).

These two views are difficult to resolve at this stage, as they share many features in common, and it is likely both
contain aspects of the truth. Both views involve recurrent bottom-up and top-down interaction, although the predic-
tive coding theory includes both feedback and surround inhibition. Both views suggest that the response enhanceme
associated with a stimulus would be correlated related to the perceptual saliency of that stimulus.

It is possible that the computation of the ‘saliency’ of the texture and color figures can potentially be computed
bottom-up using lateral inhibition. Lee et al. (2002) performed another experiment to establish that this enhancemen
does involve top-down processes and is quantitatively related to perceptual saliency of a region. They tested V1 an
V2 neurons with a set of stimuli with different degrees of bottom-up contrast saliency and perceptual ‘pop-out’ saliency.
Among them, a white-above (WA) stimulus (Figure 17e) has a high contrast and thus strong bottom-up saliency. Ye!
when surrounded by a set of white-below (WB) stimuli, the WA oddball is difficult to detect, thus with low perceptual
pop-out saliency. On the other hand, a light-from-above (LA) stimulus (Figure 17a) has a lower stimulus contrast, but
when surrounded by a set of light-from-below (LB) stimuli, the LA oddball easily pops out from the distractors.

In this experiment, the RF stimulus (the center of each display in Figure 17) was presented to the center of the classic:
receptive field of the neuron, while the monkey performed a simple fixation task. Note that there were 6 types of stimuli
tested in the actual experiment. Each of the stimulus elements (the target and distractors) was 1 degree in diameter wh
the receptive field ranged in size from 0.4-0.7 degrees. The center-to-center distance between the stimulus elements
1.5 degree visual angles. The RF stimulus could be surrounded by identical stimulus elements (uniform condition) ol
the opposite stimulus elements (oddball condition). Can V1 neurons distinguish the difference in the surround stimuli
between the oddball condition (Figure 17a) and the uniform condition (Figure 17b)?

We would expect that because of iso-orientation surround suppression, a vertically oriented neuron will respond more
strongly to a vertical bar in the receptive field when the surround is populated by horizontal bars (oddball) than when the
surround is populated by vertical bars (uniform). This has been observed by Knierim and Van Essen (1992) as well a
other center-surround experiments based on sinewave gratings. However, the WA and WB stimuli, and likewise the LA
and LB stimuli, would stimulate neurons of the same orientation. Since the iso-orientation suppression is not sensitive tc
the phase of the stimuli in V1, the amount of iso-orientation suppression from the surround will be the same for both the
oddball and the uniform conditions. This is indeed the case for the WA and WB stimuli.

They found that, indeed, before the monkeys had learned to utilize the stimuli in some way (e.g. making a saccadk
to the oddball in the stimulus), V1 neurons were not sensitive to the difference in the surround stimuli between those twc
conditions, for both LA/LB and WA/WB stimuli. V2 neurons, on the other hand, responded more in the oddball condi-
tion than in the uniform condition for the LA/LB stimuli but this is not observed for the WA/WB stimuli. Ramachandran
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Figure 18: (a) The responses (PSTHSs) of a neuron to the LA stimulus element in various contextual conditions. (b) The response:s
(PSTHSs) of a neuron to the WA stimulus element in various contextual conditions. (c) The enhancement modulation ratio is found
to be inversely correlated to the reaction time of the monkey in detecting the various stimuli with different degrees of saliency. The
enhancement ratio is defined to be (A-B)/(A+B), where A is the response to the oddball condition and B is the response to the uniforn
condition. See Lee et al. 2002 for detalils.

(1988) pointed out that the LA/LB stimuli were more salient pop-out targets because they afford opposite 3D interpre-
tation when a single lighting direction is assumed. For example, when the LA stimuli are considered convex, the LB
stimuli in the same image will be considered concave (although it is also possible to perceive all the stimulus element:
as convex spheres but with lighting coming from different directions). The WA/WB stimuli have stronger bottom-up
contrast, and thus can drive V1 and V2 neurons more rigorously. Yet WA oddball does not jump out from the distractors
because neither the WA or the WB stimuli offer 3D interpretations. Lee et al. (2002)’s initial negative finding of oddball
enhancement effect in V1 but positive result in V2 might suggest that the ‘predictive inhibition’ mechanisms for such
shape from shading stimuli may be based in V2.

Interestingly, after they trained the monkeys to make a saccade to the oddball in each stimulus (for both LA/LB and
WA/WB), they found the V1 neurons started to respond better to the oddball condition than the uniform condition for
the LA/LB stimuli but still not for the WA/WB stimuli, even when the monkeys were performing the same fixation task.
Figure 18a shows that the singleton condition (i.e. no distractors) elicited the biggest response. The responses to tt
oddball and the uniform conditions are initially smaller than that for the singleton, perhaps due to surround suppressior
(if it is possible that lateral inhibition works at this scale). But at 100 ms, the response to the oddball condition became
stronger than the response to the uniform condition, showing that the neuron was now sensitive to the difference in th
surrounding stimuli between the two conditions. Observe that the latency of 100 ms is longer than the latency for the
enhancement signals for the luminance/color figures (60 ms), and for the texture figures (80 ms) (see earlier figures). Th
longer delay probably reflects the greater complexity of the images being processed. In addition, the oddball (e.g. LA o
LB) that is perceptually easier to detect is found to elicit a stronger enhancement responses than the oddball that are ma
difficult to detect (e.g. WA or WB). This suggests that the enhancement may reflect how salient a stimulus element is.

To establish this observation, Lee et al. (2002) compared the neural enhancement ratio against the speed and accur:
of the monkeys in detecting the oddball. They found that the enhancement ratio was inversely correlated to the reactio
time of the monkeys (Figure 18c), and positively correlated with the accuracy (not shown) in the monkeys’ ability in
correctly locating the oddball. This finding confirms that the enhancement signal is correlated with the perceptual saliency
of the target stimuli.

A simple interpretation is that the responses to the oddball were enhanced in the extrastriate cortex because tt
monkeys started to pay more attention to it. This attentional signal was then fed back to enhance the responses of tt
V1 neurons. Could this enhancement in V1 be a simple passive reflection of activities higher up, an epihenomenot
that does not serve any functional purpose? First, the enhancement itself is not completely dependent on top-dow
attention because WA and WB stimuli fail to elicit the response even though the monkeys have been trained to detec
them and should be paying as much attention to them as the LA and LB stimuli. The interaction between attention anc
the underlying processing of these stimuli is important. Second, Lee et al. (2002) argued from the high-resolution buffel
perspective that V1 must provide the necessary segmentation boundary to constrain and contain the enhancement sign
precisely. The participation of V1 is thus essential to produce a precise ‘coloring’ of the figure to highlight it for further
processing. To prove this point, they showed that the enhancement response is limited to the oddball stimuli but not t
the distractor stimuli (Lee et al. 2002).
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Figure 19: Spatial sampling of the shape from shading stimuli in oddball and uniform condition. (a) LA oddball condition: 10
positions sampled covering the entire oddball and part of the distractor. (b) LA uniform condition: 6 positions sampled covering
the pattern of the oddball when it is surrounded by identical elements, for comparison with the response to the oddball in (a). (c)
LB uniform condition: 4 positions sampled covering the pattern of the distractor when it is surrounded by identical elements, for
comparison with the response to the distractor in (a). Second row shows a neuron’s response to the (a) (left column) and (b) and (
(right column). (d) The spatiotemporal response to the oddball condition (a) shows that the response was strong and the enhancem
was localized inside the figure, while (e) the response to the distractor vanished over time with only a weak boundary effect.

A recent pilot study in Lee’s laboratory applied the spatial sampling paradigm to examine the precise spatiotemporal
responses of neurons to these stimuli. Ten positions were sampled in the LA oddball condition, including a position
centered on the LA oddball and another centered on one of its immediate neighboring distractors (Figure 19a). Addition:
ally, six positions were sampled over the LA stimulus in the uniform condition (there is no need to sample centered on a
distractor, since it is the same as the target) (Figure 19b), and 4 positions were sampled over the shape of the distract
also in the uniform condition (Figure 19. The idea is to compare the response to the oddball image against the uniforn
images while keeping the receptive field stimulus in each comparison constant. Figure 19d and e show the spatial activit
profile of a cell in response to the oddball condition as well as the uniform conditions.

Several interesting phenomena can be observed. First, the neurons’ responses inside the oddball were enhanced o
time, with a sharp discontinuity at the boundary. By contrast, the responses to the distractors were initially strong, bu
decayed rapidly to very low levels. The later differential response between the oddball and the distractors presumabl
arose because the oddball was selected as the figure or target.

In addition, the discontinuity in response at the boundary of the distractors was weak and poorly localized. Similar
weak discontinuity responses at the boundaries occur for both types of stimuli in the uniform condition. This suggests
that the process of target selection and the process of segmentation might be tightly coupled: segmentation constrains t
target enhancement, but segmentation itself also depends on target selection.

These oddball enhancement effects require several mechanisms. There is an initial stage where all the objects (il
target and distractors) are detected. Next is a selection stage where the target is selected. In the case of oddball, ti
can be mediated by surround competition. Finally there is an enhancement of the response within the target and
strengthening of the discontinuity at its boundary. The oddball enhancement might arise from the same principle of the
‘figure enhancement’ observed in texture, luminance and color figures. When there is only one figure in the scene, thi
figure is salient and will be selected almost automatically as a target. When there are multiple figures in the scene, th
less predicted one (i.e. the oddball) will pop out as the preferred target. As with the figure enhancement phenomena, th
oddball enhancement or target selection phenomenon goes beyond the scope of the first class of segmentation mode
It is partially consistent with theories where the recognition of objects and their segmentation are integrated (Tu et al.
2005). In this theory, bottom-up processing activates higher-level object models, which feed back to explain the early

MIT Press Page 23



Efficient coding by scene segmentation Lee & Yuille

representation. As before, such ideas can be understood either in terms of the predictive coding theory or in terms ¢
interactive activation or resonance theory. Whether the excitement in the neurons is a sign of surprise or ‘happiness
remains to be elucidated.

Summary and Discussion

In this chapter, we have described how image segmentation can be formulated in terms of obtaining an efficient en
coding of the image. We introduced a class of computational models consistent with this viewpoint and made prediction:
from these models. We described several experiments consistent with these conjectures which strongly suggest that ne
rons in V1 are involved in image segmentation. At the very least, we showed that activity in V1 is significantly more
complex than the standard models of V1 as a filter-bank, or as way to efficiently encode intensity. Here is a summary o
the evidence that has been discussed.

1. Evidence of region and boundary representations: Neurons in V1 responded to the interior and the boundarie
of regions, even when there were no image features (oriented or otherwise) inside their classical receptive field:
(Figure 14). While some cells responded solely to boundaries and others responded strongly inside regions, man
cells responded to both. This suggests that the boundary and surface representations might be more distribute
than the simple dual representations in boundary cells and region cells that some earlier computational model
envisioned.

2. Evidence of interaction between the surface and boundary processes: While the initial spatial response profile c
a neuron tends to be smooth across boundaries, the later spatial response profile of the neuron always exhibited
sharp discontinuity between regions (Figure 16). The gradual sharpening of the boundary responses coincides wit
the development of abrupt discontinuity in responses across regions, which suggests that the two effects might b
coupled (Figure 10). However, the boundary sharpening seems to continue to progress (200 to 300 ms) even afte
the response discontinuity has developed (100 ms) (Figure 11).

3. Evidence of nonlinear diffusion in regional representation: There was a delay between the responses at the cent
of the figure versus the response close to the boundary (Figure 16). The delay is progressively larger as the size ¢
the figure or the distance away from the border increases, suggesting that the signal is propagated (diffuses) fror
the border to the interior surface of the figure (Figure 14). The abrupt discontinuity in response between regions
suggests diffusion is blocked by the region boundary (hence making it nonlinear).

4. Evidence of gradual sharpening of the boundary representation: Gradual sharpening of the boundary response w
observed for both impulse edges (i.e. boundaries defined by lines) as well as for step edges (Figure 10). Thit
boundary sharpening may result from the continuation mechanignlesreases.

5. Evidence of model selection or predictive coding between different visual areas: The enhancement of response
inside the figure is not predicted by most of the segmentation models. The experimental evidence from the oddbal
detection experiment (Figure 19) suggested that feedback from other cortical areas is likely involved, and that top-
down feedback in turn can facilitate segmentation, while segmentation helps to confine the enhancement process
precise spatial locations. Empirical evidence suggests the enhancement is proportional to perceptual saliency of tr
target. However, there are multiple interpretations on the nature of the enhancement effect. The predictive coding
perspective suggests the enhancement is a measure of surprise, while the model selection perspective sugge
the enhancement is a measure of happiness (or fithess or resonance) which emerges from the match between |
selected top-down model and the V1 representation.

We propose that, in addition to furnishing a wavelet/filter bank for efficient detection and representation of image
details, V1 performs image segmentation, and represents boundary locations and region properties in the activity of it
neurons. This is consistent with Lee and Mumford’s earlier proposal (Lee et al. 1998, Lee and Mumford 2003) that
V1 can serve as a high-resolution buffer to sup@dirtvisual reasoning and interpretations which require high spatial
precision and fine details available explicitly only in V1. We are not arguing that V1 by itself is sufficient for robust
scene segmentation. In our view, early visual inference such as segmentation cannot be robust or complete witho
the interaction with global context and higher order visual reasoning (e.g. object recognition). Such interaction can be
mediated by the feedforward/feedback loops in the visual hierarchy (Lee et al. 1998). Recent works in computer vision
makes it clear that segmentation can be enhanced by object recognition (Borenstein and Ullman 2001, Yu and Shi 200
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Tu et al. 2004). Processing required to perform segmentation may be partially performed in higher-level areas using top
down feedback to V1. In this scenario, V1 performs an initial processing of the image and excites higher level models
and processing in other visual areas, which then in turn feed back to V1 to refine the representation.

Direct evidence in support of V1 performing higher order process such as figure-ground segregation (border-ownershi
and 3D surface encoding are either weak or unconvincing at this stage (Zipser et al. 1996, MacEvoy et al. 1998). Currer
compelling evidence seem to suggest that the representation of border-ownership (Zhou et al. 2000) and the represen
tion of surface (Bakin et al. 2001, Thomas et al. 2002) might start at V2. Many color and brightness illusion that are tied
to surface perception have also been mainly observed in V2 (Hung et al. 2001, Huang et al. 2002). V1's sensitivity to
shape from shading information as demonstrated in Lee et al. (2002) is probably originated from feedback from V2. It
is possible that the granularity of surface geometry representation is much coarser than the granularity for representin
region and image properties, hence it is logical to factorize the functional representations into two separate areas. |
surface inference and segmentation are to be integrated together, V1 and V2 have to work closely together.

How regions, boundaries and their models can be encoded flexibly as a whole in V1 or in the extrastriate areas remair
an open question. An interesting but controversial hypothesis is that cells belonging to the same region or same contol
can synchronize together, exhibiting a higher degree functional connectivity. This is related to von der Malsburgh (1981)'s
binding-by-synchrony theory. The experimental evidence in support of this idea is mixed (Shadlen and Movshon 1999;
Singer and Gray 1995). Emerging evidence suggests that synchrony due to similarity in bottom-up input could potentially
serve as a mechanism for Gestalt grouping (Samonds and Bonds 2005), which might be related to the mechanisms for t
affinity-based model (Shi and Malik 2000, Yu and Shi 2003, Sharon et al. 2001, Tolliver and Miller 2005) and Geman et
al.'s (2002) compositional system. Further experiments are needed to clarify the connection between the phenomena |
neuronal synchrony and figure enhancement, and their role in the encoding of the regions.

The computational models described in this chapter have provided important insights into the computational con-
straints and algorithms of segmentation. The biological predictions based on the weak-membrane class of models (Koc
etal. 1987, Lee 1995) have motivated much of the experimental research discussed in this chapter. These first generati
theories are, at best, first order approximations to true theories of segmentation since their performance on segmentir
natural images is still limited. But the increasing successes of the next generation of theories, when evaluated on datase
with ground truth, suggests that the computational vision models for scene segmentation might be on the right track
and should be taken seriously in our investigation of visual systems. Insights from computer vision might prove to be
instrumental in guiding our study on how V1 interprets images, extracting and representing abstract information rathel
than merely coding the raw input images. Theoretical framework will guide us where to look, and what to analyze.
However, extra caution must be taken to guard against over-interpreting results to fit the theory in any theory-driven
neurophysiological research.

The experimental results described in this chapter support some of the predictions derived from the computationa
models developed from computer vision. It is reassuring that the discovery of new phenomena such as region enhanc
ment was parallel to the development of new computational algorithms in the computer vision community such as inte-
gration of top-down object recognition and bottom-up segmentation in various probabilistic inference frameworks. While
current evidence, based on relatively simple image stimuli and experimental paradigm, cannot distinguish whether th
enhancement within the figure is a sign of surprise (predictive coding) or happiness (model fitting and resonance), it:
correlation with perceptual saliency, and its various image-dependent properties provide credence to the hypothesis th
image segmentation is a major computational task being performed in V1. Segmentation of the scene is a process ¢
inference that produces a simpler and more compact description of the scene based on regions and boundaries, and tf
associated models. It can thus be considered as a form of efficient coding that goes beyond raw image coding.
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