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Abstract

We describe a hierarchical compositional system for dietgctie-
formable objects in images. Objects are represented byigpapnodels.

The algorithm uses a hierarchical tree where the root of e dorre-
sponds to the full object and lower-level elements of the trerrespond

to simpler features. The algorithm proceeds by passinglsimpssages

up and down the tree. The method works rapidly, in under argkco
on 320 x 240 images. We demonstrate the approach on detecting cats,
horses, and hands. The method works in the presence of loacir
clutter and occlusions. Our approach is contrasted withentraditional
methods such as dynamic programming and belief propagation

1 Introduction

Detecting objects rapidly in images is very important. Ehéas recently been great
progress in detecting objects with limited appearanceabditiy, such as faces and text
[1,2,3]. The use of the SIFT operator also enables rapidcctieteof rigid objects [4]. The
detection of such objects can be performed in under a seocmrdie very large images
which makes real time applications practical, see [3].

There has been less progress for the rapid detection ofrdafde objects, such as hands,
horses, and cats. Such objects can be represented compaahaphical models, see

[5,6,7,8], but their variations in shape and appearanceema&arching for them consider-
ably harder.

Recent work has included the use of dynamic programmind Ené@ belief propagation
[7,8] to perform inference on these graphical models bycdeag over different spatial
configurations. These algorithms are successful at detgotijects but pruning was re-
quired to obtain reasonable convergence rates [5,7,8h &vgalgorithms can take minutes
to converge on images of si2e0 x 240.

In this paper, we propose an alternative methods for peifarinference on graphical
models of deformable objects. Our approach is based onseqtiag objects in a proba-
bilistic compositional hierarchical tree structure. Thiructure enables rapid detection of
objects by passing messages up and down the tree structureapProach is fast with a
typical speed of 0.6 seconds 0820 x 240 image (without optimized code).



Our approach can be applied to detect any object that canpresented by a graphi-
cal model. This includes the models mentioned above [BE,¢pmpositional models
[9], constellation models [10], models using chamfer miaigti11] and models using de-
formable blur filters [12].

2 Background

Graphical models give an attractive framework for modebibgect detection problems in
computer vision. We use the models and notation describg].in

The positions of feature points on the object are repredeéntéx; : i € A}. We augment
this representation to include attributes of the points @lotdin a representatiofy; : i €
A}. These attributes can be used to model the appearance ddaheds in the image.
For example, a feature point can be associated with an edeantensity edge angl can
represent the orientation [8]. Alternatively, the atttdweould represent the output of a
blurred edge filter [12], or the appearance properties ohatedlation model part [10].

There is a prior probability distribution on the configueetiof the modelP({¢;}) and a
likelihood function for generating the image da@D|{q;}). We use the same likelihood
model as [8]. Our priors are similar to [5,8,12], being basedleformations away from a
prototype template.

Inference consists of maximizing the posteriof{q;}|D) = P(D|{¢;})P({4:})/P(D).
As described in [8], this corresponds to a maximizing a pastef form:

P({q:}|D) = %sz(%) H'l/]ij(Qian)a 1)

where{v,(g;)} and{«;;(g¢:, g;)} are the unary and pairwise potentials of the graph. The
unary potentials model how well the individual features chab positions in the image.
The binary potentials impose (probabilistic) constraatisut the spatial relationships be-
tween feature points.

Algorithms such as dynamic programming [5,6] and beliefpagation [7,8] have been
used to search for optima @f({¢; }|D). But the algorithms are time consuming because
each state variablg can take a large number of values (each feature point on tinaldée
can, in principle, match any point in td0 x 320 image). Pruning and other ingenious
techniques are used to speed up the search [5,7,8]. Burpenfice remains at speeds of
seconds to minutes.

3 TheHierarchical Compositional System

We define a compositional hierarchy by breaking down theasgmtatior{¢; : i € A} into
substructures which have their own probability models.

At the first level, we group elements inth; subsets{g; : i € S!} whereA =
Uk sl SN St =0, a # b. These subsets correspond to meaningful parts of the
object, such as ears and other features. See figure (1) fdratsie structure. Specific
examples for cats and horses will be given later.

For each of these subsets we define a generative niQdél|{¢; : i € S!}) and a prior
P,({gi : i € S}}). These generative and prior models are inherited from thenfodel,
see equation (1), by simply cutting the connections betwiersubsefs! and theA/S!
(the remaining features on the object). Hence
. 1
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Figure 1: The Hierarchical Compositional structure. THerfwdel contains all the nodes
S3. This is decomposed into subséts, 53, S7 corresponding to sub-features. These, in
turn, can be decomposed into subsets corresponding to neonertary features.
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We repeat the same process at the second and higher levetssubsetyS! : a =
1,..., K} are composed to form a smaller selection of sub§sfs: b = 1, ..., K>}, so
thatA = U%2,62 52152 = 0, a # band eactS] is contained entirely inside ong?.
Again theS; are selected to correspond to meaningful parts of the objéetr generative
models and prior distributions are again obtained from titleviodel, see equation (1). by
cutting them off the links to the remaining nod&gS?.

The algorithm is run using two threshold@3, 7>. For each subset, s&/, we define the
evidence to be P,1 (D|{z' : i € S.})Pa({z! : i € Sl}). We determine all possible
configurations{2!' : i € S1} such that evidence of each configuration is alibve This
gives a (possibly large) set of positions for thg : i € S.}. We apply non-maximum
suppression to reduce many similar configurations in sara Byea to the one with max-
imum evidence (measured locally). We observe that a lifdpldcement of position does
not change optimality much for upper level matching. Tyfhcaon-maximum suppres-
sion keeps around0 ~ 500 candidate configurations for each node. These remaining
configurations can be consideredisposals [13] and are passed up the tree to the sub-
setS7 which containsS!. NodeS? evaluates the proposals to determine which ones are
consistent, thus detecting composites of the subfeatures.

There is also top-down message passing which occurs whepeohef a nodes? contains
high evidence — e.gP,: (D|{z!" : i € S}})P.({z} : i € Sl}) > T» — but the other
child nodes have no consistent values. In this case, we #lewnatching to proceed if the
combined matching strength is above threstigldThis mechanism enables the high-level
models and, in particular, the priors for the relative posi of the sub-nodes to overcome
weak local evidence. This performs a similar function to @dan and Shen’s dynamic
guantization scheme [8].

More sophisticated versions of this approach can be corsid&or example, we could use
the proposals to activate a data driven Monte Carlo Markaail€{DDMCMC) algorithm
[13]. To our knowledge, the use of hierarchical proposalthi type is unknown in the
Monte Carlo sampling literature.



4 Experimental Results

We illustrate our hierarchical compositional system omeples of cats, horses, and hands.
The images include background clutter and the objects caattially occluded.

Figure 2: The prototype cat (top left panel), edges afteugiry (top right panel), proto-
type template for ears and top of head (bottom left panet),paototype for ears and eyes
(bottom right panel). 15 points are used for the ears and 2théohead.

First we preprocess the image using a Canny edge detedtawéal by simple edge group-
ing which eliminates isolated edges. Edge detection and gouuping is illustrated in the
top panels of figure (2). This figure is used to construct agtype template for the ears,
eyes, and head — see bottom panels of figure (2).

We construct a graphical model for the cat as described itiose2). Then we define a
hierarchical structure, see figure (3).
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Figure 3: Hierarchy Structure for Cat Template.

Next we illustrate the results on several cat images, seeefig). Several of these images
were used in [8] and we thank Coughlan and Shen for suppliieignt In all examples, our



algorithm detects the cat correctly despite the deformataf the cat from the prototype,
see figure (2). The detection was performed in less than @@nds (with unoptimized
code). The images aB20 x 240 and the preprocessing time is included.

The algorithm is efficient since the subfeatures give bottgmproposals which constraint
the positions of the full model. For example, figure (5) shdwesproposals for ears for the
cluttered cat image (center panel of figure (4).

Figure 4: Cat with Occlusion (top panels). Cat with cluttegr{tre panel). Cat with eyes
(bottom panel).

We next illustrate our approach on the tasks of detectingd®or This requires a more
complicated hierarchy, see figure (6).

The algorithm succeeds in detecting the horse, see righdlpaf figure (7), using the
prototype template shown in the left panel of figure (7).

Finally, we illustrate this approach for the much studiesktaf detecting hands, see [5,11].
Our approach detects hand from the Cambridge dataset i argkrond, see figure (8).
(We are grateful to Thayananthan, Stenger, Torr, and Gifoflsupplying these images).



Figure 5: Cat Proposals: Left ears (left three panels). Righs (right three panels).

Figure 7: The left panels show the prototype horse (top leftgh) and its feature points
(bottom left panel). The right panel shows the input imagp (tght panel) and the position
of the horse as detected by the algorithm (bottom right panel



Figure 8: Prototype hand (top left panel), edge map of pypwhand (bottom left panel),
Test hand (top right panel), Test hand edges (bottom rigilpad0 points are used.

5 Comparison with alternative methods

We ran the algorithm on image of typical siz20 x 240. There were usually000 segments
after edge grouping. The templates had between 15 and 2&pdime average speed was
0.6 seconds on a laptop with 1.6 G Intel Pentium CPU (includirgpaicessing: edge
detector, edge grouping, and object detection.

Other papers report times of seconds to minutes for detec&fiormable objects from
similar images [5,6,7,8]. So our approach is up to 100 tirastef.

The Soft-Assign method in [15] has the ability to deal withjeats with around 200 key
points, but requires the initialization of the template todbose to the target object. This
requirement is not practical in many applications. In owpmsed method, there is no need
to initialize the template near to the target.

Our hierarchical compositional tree structure is simitatite standard divide and conquer
strategy used in some computer science algorithms. Thisnmaghly be expected to
scale adog N where N is the number of points on the deformable template. But peeci
complexity convergence results are difficult to obtain lisegthey depend on the topology
of the template, the amount of clutter in the background,ahdr factors.

This approach can be applied to any graphical model suchOa&d]L It is straightforward
to design hierarchial compositional structures for olgdxased on their natural decompo-
sitions into parts.

There are alternative, and more sophisticated ways, togeifiference on graphical mod-
els by decomposing them into sub-graphs, see for exampleBidthese are typically far
more computationally demanding.

6 Conclusion

We have presented a hierarchical compositional systemafudly detecting deformable
objects in images by performing inference on graphical feod@omputation is performed



by passing messages up and down the tree. The systems adsjects in under a second
on images of siz820 x 240. This makes the approach practical for real world appliceti

Our approach is similar in spirit to DDMCMC [13] in that we upeoposals to guide
the search for objects. In this paper, the proposals aredb@se hierarchy of features
which enables efficient computation. The low-level feasupeopose more complex fea-
tures which are validated by the probability models of theplex features. We have not
found it necessary to perform stochastic sampling, thotighstraightforward to do so in
this framework.
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