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A LARGE DEVIATION THEORY ANALYSIS OF
BAYESIAN TREE SEARCH

JAMES M. COUGHLAN* AND ALAN L. YUILLE*

Abstract. Many perception, reasoning, and learning problems can be expressed
as Bayesian inference. We point out that formulating a problem as Bayesian inference
implies specifying a probability distribution on the ensemble of problem instances. This
ensemble can be used for analyzing the expected complexity of algorithms and also the
algorithm-independent limits of inference. We illustrate this by analyzing the problem of
road detection, formulated as tree search, by Geman and Jedynak [6]. This analysis uses
large deviation theory to put bounds on the probability of rare events, such as exploring
wrong branches of the tree in depth. We prove that the expected convergence is linear
in the size of the road (i.e. depth of the tree) even though the worst case performance
is exponential.

Key words. Bayesian inference, large deviation theory, tree search.

1. Introduction. Many problems in vision, speech, reasoning, and
other sensory and control modalities can be formulated as Bayesian in-
ference [9]. It is important to understand the complexities of algorithms
which can perform these inferences.

We point out that formulating a problem as Bayesian inference implies
specifying a probability distribution on the ensemble of problem instances.
More formally, in Bayesian inference the goal is to estimate a quantity
z from data y by using the posterior distribution P(z|y). Constructing
this posterior requires specifying a likelihood function P(y|z) and a prior
distribution P(z). From these distributions we can construct a distribu-
tion P(x,y) on the ensemble of problem instances (z,y). See Figure 4 for
samples from a particular ensemble for road tracking.

There are two main advantages to analyzing the performance of an
algorithm over the ensemble of problem instances. Firstly, it allows us
to determine the behavior of the algorithm for typical problem instances
(i.e. those which occur with non-negligible probability) and means that we
may not have to deal with worst case situations (because they may have
arbitrarily small probabilities). Secondly, having a distribution over the
ensemble of problem instances also enables us to quantify the accuracy of
the estimates found by the algorithm.

In this paper, we illustrate these advantages by analyzing the complex-
ity of an algorithm proposed by Geman and Jedynak [6] for detecting roads
in aerial images. Geman and Jedynak formulated the problem as Bayesian
maximum a posteriori (MAP) estimation. This reduces the problem to tree
search. In this paper we analyze the complexity of a variant of the Geman
and Jedynak algorithm (this variant was proposed by the authors in [18]).

*Smith-Kettlewell Eye Research Institute, 2318 Fillmore St., San Francisco,
CA 94115.
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The complexity, and performance, of the algorithm depends on the prob-
ability distributions which characterize the ensemble of problem instances
(i.e. the likelihood function and the prior). For a large class of ensembles,
we are able to prove that the expected complexity is linear in the length
N of the road (by contrast, the worst case complexity is exponential in
N). We are also able to put bounds on the expected errors made by the
algorithm.

We emphasize that we are concerned with the ability of the algo-
rithm to detect the road path which may not necessarily correspond to the
MAP estimate. For any problem instance there are three important paths:
(i) the true road path, (ii) the MAP estimate of the true road path, and
(iii) the path found by the algorithm. In this paper we are concerned with
the difference between (iii) and (i) only.

These results complement our previous work [20, 21] which used this
ensemble concept to analyze the algorithm-independent performance of
MAP estimation on problems of this type (i.e. we evaluated errors be-
tween the MAP estimate (ii) and the true road path (i)). In particular, we
derived an order parameter Kpg which is a function of the ensemble. We
proved that if Kp < 0 then it is impossible to detect the true road by any
algorithm. (Not surprisingly, our results in this paper on linear expected
complexity only apply to ensembles for which Kg > 0).

Another advantage of the ensemble concept is illustrated by our choice
of a heuristic A* algorithm [18]. A* algorithms [11, 16, 13] search trees
and/or graphs using a heuristic to estimate future rewards. If we are us-
ing a Bayesian ensemble then the probability distributions can be used to
generate heuristics.

Technically, our proofs make use of large deviation theory [7]. In par-
ticular we use Sanov’s theorem, see [4], to put bounds on the probability of
rare events. We note that many results on statistical learning theory [15]
are derived using similar techniques from large deviation theory.

Finally, we would like to mention related work on optimization which
uses the concept of ensembles.

Firstly, Karp and Pearl [8, 11] provided a theoretical analysis of conver-
gence rates of A* search by considering an ensemble of problem instances.
They studied a binary tree where the rewards for each arc were 0 or 1 and
were specified by a probability p. They then obtained the complexity of
algorithms for finding the minimum cost path. This work has some simi-
larities to ours but their formulation is not Bayesian, their heuristics for A*
algorithms are different, and large deviation theory is not used. Their work
was an inspiration for us and we provided an analysis of a block pruning
algorithm motivated by them in [17].

Secondly, there are some recent studies showing that order parameters
exist for NP-complete problems and that these problems can be easy to
solve for certain values of the order parameters [1, 14]. This work involves
analyzing ensembles of problem instances. But the distribution of instances
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Fi1c. 1. Left Panel: Geman and Jedynak’s tree structure with a branching factor of
Q@ = 3. Right Panel: The worst case complexity is exponential because, for some problem
instances, the best path is determined only by the reward of the final arc segment. In
this panel Q = 2 and all the 2V paths have to be ezamined.

2N paths

in the ensemble is typically assumed to be uniform and is not derived from
Bayesian methods.

The structure of this paper is as follows. In Section (2) we formulate
the road tracking problem and introduce A*. Section (3) gives complexity
results for a special choice of A* heuristic (making use of Sanov’s theorem).
These results can be extended to other heuristics [2]. Section (4) proves that
sorting the queue for A* takes constant expected time per sort operation.

2. Problem formulation.

2.1. Tree search: the Geman and Jedynak model. Many prob-
lems in artificial intelligence can be formulated as tree search ([16, 11, 13]).
We now study a specific example of this class of problem.

Geman and Jedynak [6] formulate road detection as tree search in
a Q-nary tree, see Figure 1. The starting point and initial direction are
specified and there are Q" possible distinct paths down the tree. The
goal is to find the road path (whose statistical properties differ from those
of the non-road paths). The worst case complexity for this problem is
exponential but, as we will prove, in many circumstances it is possible to
detect a good approximation to the road path in linear expected time. Our
analysis involves considering an ensemble of problem instances.

More formally, a road hypothesis, or path, consists of a set of connected
straight-line segments. We can represent a path by a sequence of moves
{ti} on the tree. Each move t; belongs to an alphabet {b,} of size Q). For
example, the simplest case studied by Geman and Jedynak sets () = 3 with
an alphabet by, b, b3 corresponding to the decisions: (i) by — go straight (0
degrees), (ii) bs — go left (-5 degrees), or (iii) bs — go right (+ 5 degrees).

Each tree will contain a target path which corresponds to the road to
be detected. This path is sampled from a prior probability distribution
P{t}) = Hfil Pag(t;), where Pag(.) is the geometric transition proba-
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F1G. 2. Different priors for the geometry. (Left Panel) the probabilities of turning
left, right, or straight are 1/3. (Right Panel) the probability of going straight is 2/3 and
the probabilities of turning right or left are 1/6 each, biasing towards straighter paths.

bility. For our Q = 3 example, we may choose to go straight, left or right
with equal probability (i.e. Pag(b1) = Pag(b2) = Pag(bs) = 1/3), see
Figure 2.

A sequence of moves {t; : i = 1,..., N} determines a path of segments
X = (z1,...,zn) (ie. these segments form a connected path from the top
of the tree to the bottom). Conversely, a consistent path X determines a
sequence of moves. (This also applies to subpaths). Let x denote all the
segments of the tree. So a path X is a connected subset of x. The set of
segments not on the path is the complement x \ X.

There is an observation y, for each segment x € x of the tree. The
set of all observations is Y = {y, : « € x}. The values of the observations
belong to an alphabet {a,} of size J. An observation y, is drawn from a
distribution P,,(.) if the segment is on the target path (ie. if z € X). If
not, it is drawn from P,zf(.). For any path {¢;} through the tree, with
segments {z;}, we have a corresponding set of observations {y,,}. (The
observation y, is the response to a non-linear filter, evaluated on the image
at segment x, which is designed to detect straight road segments. The
filter is trained on examples of on-road and off-road segments to determine
empirical distributions P, (y) and P,z (y), as described in [6]. See Figure 3
for examples of distributions Py, Posy, taken from [10]).

This determines the likelihood function P(Y|X):

(2.1) PYIX) =[] Ponlyx) [ Poss(va),
zeX zex\X

which we can re-express as:

Pon(Ya;) Pon(Yz:)
(Y|X) || e IlPo 2) = || SN (Y.
(22) P w PortWei) o 140 w Fors(yz:) £

where F'(Y) = [[,¢, Poss(y=) is independent of the target path X.
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FiG. 3. The quantized distributions Pon(y) (Left) and P,fs(y) (Right), where
y= |§I(x)‘, learned from image data. Observe that, not surprisingly, ‘ﬁl(x)‘ is likely
to take larger values on an edge rather than off an edge.

We formulate the problem as MAP estimation to find the mode of
the posterior distribution P(X|Y) = P(Y|X)P(X)/P(Y) where P(X) =
Héil Pag(t;) (where {t;} is the sequence of moves that generates the path
X).

Then MAP estimation for X is equivalent to maximizing

(2.3) P(Y|X)P HPAG H Pf';ggm F(Y).

This is equivalent to finding the path {t,-} with observations {y;} which
maximizes the following reward function:

@4)  r({t:h ) Zlog{ ol ] ;1 g{ 2o},

off yz

where y; is shorthand for y,,, U(.) is the uniform distribution (i.e. U(b,) =
1/Q Vv) and so Ef;l logU(t;) = —Nlog@ which is a constant. The
introduction of U(.) helps simplify the analysis in the following subsections.

Observe that the reward of a particular path depends only on the
variables {¢;}, {y;} which define the path (the moves and the observations).
This is because the factor FI(Y) in P(Y|X) is independent of X and can
be ignored (i.e. it does not affect which path is most probable).

For any path (or subpath) in the tree of length n we can re-express
the reward function r({t;}, {y:}) as

(2.5) r({t:i}, {yi}) =né-a+nij - B,
where & and 3 have components:
Pon(a ) PAG(by)
(2.6) a, =log ="t pu=1,..,J, B,=log——> v=1,..,0Q.
g Pogr(au) U(by)
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Fic. 4. Samples from the Bayesian ensemble. Simulated road tracking problem
where dark lines indicate strong edge responses and dashed lines specify weak responses.
The data was generated by stochastic sampling using o simplified version of the models
analyzed in this paper. In both examples there is only one strong candidate for the best
path (the continuous dark line) but chance fluctuations have created subpaths in the
noise with strong edge responses.

and @ and 9 are normalized histograms, or types [4], with components (with
d;,; denoting the Kronecker delta function):

1 1<
2.7 ==-%"4, =1,.,J, 0y== 6up, v=1,..,0Q.
( ) ¢u nzz:; Yi,Qp 12 PRREE) ) ¢ n; ti,b, V Q

We now illustrate the Bayesian ensemble by Figure 4 which consists
of two samples from the ensemble. In these cases the target path is easily
detectable (i.e. the target reward is higher than the reward of any other
path) but noise fluctuations mean that some subpaths may distract the
algorithm from the target. In other ensembles, the target path may be far
harder to detect.

2.2. Can the task be solved? Distractor paths. The goal is to
detect the target path by selecting the path with highest reward. But
the MAP estimate may not necessarily correspond to the target path. In
this subsection, we specify conditions which ensure that the MAP estimate
is expected to be significantly similar to the target path. Unless these
conditions are satisfied it will be impossible to find the target path by any
algorithm.

The tree contains one target path and QN — 1 distractor paths. We
categorize the distractor paths by the stage at which they diverge from
the target path, see Figure 5. For example, at the first branch point the
target path lies on only one of the () branches and there are Q — 1 false
branches which generate the first set of false paths F;. Now consider all
the Q — 1 false branches at the second target branch, these generate set F.
As we follow along the true path we generate sets F; of size (Q — 1)Q~ .
The set of all paths is therefore the target path plus the union of the F;
(t=1,...,N).
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Fi1g. 5. Left: Given a specified target path (the straight line shown in bold in this
case) we can divide the set of paths up into N subsets Fi,...,Fn as shown here. Paths
in F1 have no overlap with the target path. Paths in Fy overlap with one segment, and
so on. Intuitively, we can think of this as an onion where we peel off paths stage by
stage. Right: When paths leave the target path they make errors which we characterize
by the number of false segments. For example, a path in F1 has error N, a path in F;
has error N +1 — 1.

To determine whether the target path can be found by MAP estima-
tion we must consider the probability that one of the distractor paths has
higher reward than the target path. For example, consider the probability
distribution Pl,m,m (*maz /N) of the mazimum reward (normalized by N) of
all the paths in Fy. We can compare this to the probability distribution of
the (normalized) reward Pr(rr/N) of the target path. In related work [21],
we use techniques similar to Sanov’s theorem to estimate these quantities
and to show that there is a phase transition depending on a parameter K
given by:

(2.8) K = D(Pon||Pogs) + D(Pacl|U) —log @,

where D(Pon|Posy) = 32, Pon(y ) log & o (y) is the Kullback-Leibler diver-
gence between F,, and P,yy.

I K > 0 then the probability distribution for the target path reward
Pr(rr/N) lies to the right of the distribution Pi ymqz(rmaes/N) of the maxi-
mum reward of paths in F7, see Figure 6 left panel, and it is straightforward
to detect the target path. At K = 0 the two distributions overlap and it
becomes hard to detect the target path, see Figure 6 center panel. But if
K < 0, then Pi oz (Fmaez/N) is to the right of Pr(rr/N), see Figure 6,
and it is impossible to detect the target path.

To get intuition for K we consider its three terms. The first term,
D(P,,||P,ts), is a measure of how effective the local filter cues are for
detecting the target. If P,, = P,s¢ then D(Pop||Pofs) = 0 and the local
cues are useless. The second term D(Pag||U) is a measure of how much
prior knowledge we have about the probable shape of the target (setting
Pag = U means we have no prior information). Finally, log @ is a measure
of how many distractor paths there are. Therefore K becomes larger (and
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Fi1Gg. 6. A schematic illustration of the Phase Transition. (Top left panel) The
reward of the target path is higher than the largest reward of the distractor paths (so
detection 1is straightforward). (Top right panel) The task becomes difficult because the
target reward and the best distractor reward are very similar. (Bottom panel) Detecting
the target path becomes impossible because its reward is lower than the best distractor
path. The horizontal azis labels the normalized reward.

so target detection becomes easier) with better filter detectors, more prior
knowledge, and fewer distractor paths.

In related work [20] we used Sanov’s theorem to show that the expected
number of paths in F; with rewards greater than the target path behaves
as 2~ VKB where the order parameter Kg is defined by:

(2.9) Kp = 2B(Pan,Poff) =+ QB(PAg, U) — log Q,

where B(P, Q) = —log Y"1~ (p;)*/%(¢;)*/? is the Bhattacharyya bound be-
tween the distributions P = {p;} and @ = {¢;}. Once again, there is a
change in behavior as Kp changes sign. For Kp > 0, we expect there to
be no paths in F} with rewards greater than the target path.

Our analysis of the A* algorithm will proceed in the regime where
K > 0 and Kg > 0. There is little purpose in estimating how fast one
can compute the MAP estimator unless one is sure that the estimator
is detecting a good approximation to the correct target. Our results, see
section (3), will require an additional condition to hold, see Theorems 6 and
7, which will ensure that K > 0. There will, however, be situations where
the target is detectable (ie. Kp > 0) but where we cannot prove expected
linear convergence. More specifically, we can express Kp = {¢; —logQ} +
1o where 11,1 are positive quantities which are defined in Theorem 3.
Our complexity proofs apply provided 1 > log@. If ¥1 < log@ but
1 + Y2 > log @ then the target path is detectable but we can say nothing
about the complexity of the algorithms.

2.3. A*. The A* graph search algorithm [11, 16, 13] is used to find
a path of maximum reward between a start node A and a goal node B
in a graph, see Figure 7. The reward of a particular path is the sum
of the rewards of each edge traversed. The A* procedure maintains a
tree of partial paths already explored, and computes a measure f of the
“promise” of each partial path (i.e. leaf in the search tree). New paths are
considered by extending the most promising node one step. The measure



LARGE DEVIATION THEORY, ANALYSIS, BAYESIAN TREE SEARCH 9

C

F1G. 7. The A* algorithm tries to find the path from A to B with highest reward.
For a partial path AC the algorithm stores g(C), the best reward to go from A to C,
and an overestimate h(C) of the reward to go from C to B.

f for any node C'is defined as f(C) = g(C) + h(C), where g(C) is the best
cumulative reward found so far from A to C' and h(C) is an overestimate
of the remaining reward from C to B. The closer this overestimate is to
the true reward then the faster the algorithm will run. We will refer to
the value of f as the A* reward in contrast with the reward function of
equation (2.5).

It is straightforward to prove that A* is guaranteed to converge to the
correct result provided the heuristic h(.) is an upper bound for the true
reward from all nodes C to the goal node B. A heuristic satisfying these
conditions is called admissible. Conversely, a heuristic which does not sat-
isfy them is called inadmissible. The word “inadmissible” is a technical
term only and does not imply that inadmissible heuristics are inferior to
admissible ones. In fact, as we show in this paper, algorithms using in-
admissible heuristics can converge rapidly to good approximations to the
correct result. Conversely, as discussed below, algorithms with admissible
heuristics may be slow to converge.

In this paper, we consider inadmissible heuristics. We set the heuristic
reward to be Hy,+Hp for each unexplored segment (where ;, and p label the
likelihood and the geometric prior respectively). Thus a subpath starting
at the origin of length M will have heuristic reward of (N — M)(Hr, + Hp).
We will drop the N(Hp, + Hp) term, which is the same for all paths, and
simply use —M (Hy, + Hp) as the heuristic.

We consider the A* rewards of two partial paths, one of length m
segments that overlaps completely with the target path, and the other of
length n that does not overlap at all with the target path. The A* rewards
of these paths are denoted by S,,(m) and S,¢¢(n) and are given by:

-

Son(m) =m{¢°" - & — Hp} + m{y°" - § — Hp},

(2.10) N o
Sors(n) =n{¢*’ -a — Hy} + n{¢°// - - Hp},
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Fi1G. 8. An A* search sequence. Panel (a) shows the target path in bold. Panel
(b) shows the two segments added to the queue (marked by asterisks) at the start of the
search. Panel (c) ezplores the right segment, removes it from the queue (label e), and
adds its two children to the queue. The search continues in panels (d,e) where explored
segments are eliminated from the queue (and labelled e) and their children are added to
the queue (labelled with asterisks). Panel (f) A* converges to a solution (A*) that is
one segment away from the target path (T).

where ¢ = L 3.8, ., and o™ = £ 376, 5, for the on path segments
(and similarly for the off path segments).

The effect of this heuristic is to encourage us to explore subpaths
provided their reward per segment is greater than Hy + Hp. Note that the
larger the value of Hr, + Hp the more the algorithm will favor a breadth-
first strategy [16] of exploring the tree (because few long subpaths will
have rewards per segment exceeding Hy, + Hp). Breadth-first search is
a conservative strategy which will find the best solution but may take a
long time to do so. In general, the smaller the heuristic then the faster
the search time but the greater the possibility of error. In particular,
if H, + Hp > max,c1,.. 7} 0y + Max,e(1,...,Q) Bv then the heuristic is
admissible and the search is guaranteed to converge to the path with highest
reward [11, 16, 13]. (But an algorithm which uses this heuristic is likely
to be slow.) We will be considering inadmissible heuristics (i.e. Hp +
Hp < maxyeqi,..,7} 0y + MaX,eq1,... 0}y Bv) Which we expect to be quicker
than admissible heuristics but which will have more errors (our theorems
quantify these statements).

There is a close connection between heuristics for A* search and the
general issue of pruning search algorithms. In previous work [19] we an-
alyzed the results of a search algorithm which pruned out paths whose
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rewards fell below a critical value (corresponding to a heuristic). In related
work, we explored the use of pruning heuristics for speeding up dynamic
programming algorithms for detecting hand outlines in real images [3].

We will first prove convergence results for a specific choice of Hy,, Hp
and later generalize to a larger set of values.

3. Convergence proof with Bhattacharyya Heuristics. This
section will prove convergence results for a specific choice of heuristic which
we call the Bhattacharyya Heuristic. The next section will generalize the
results to a larger class (for which the proofs are more complicated). First
we need to say something about the choice of heuristics.

We need to choose a heuristic so that it is smaller than the reward (per
unit length) that we would get from the target path and larger than the
reward for a distractor path. This means, see equation (2.10), that the A*
rewards will tend to be positive for the target and negative for the distractor
paths (so the algorithm will prefer to explore the target). Let us consider
the reward Hp, only (the analysis is similar for Hp). The expected reward

for the target path is D(Pon||Poss) = -, Pon(y)log f;:f"f((y;) and for the

distractor path it is —D(Poss||Porn) = -, Poss(y)log éf"f((yy)). Therefore

we want to select Hy, so that —D(P,s¢||Pon) < Hr < D(Pon||Posy)-

Our complexity results will be obtained using Sanov’s theorem [4] to
estimate the probability that the algorithms wastes time searching dis-
tractor paths. In order to use Sanov’s theorem, it is convenient to think
of the heuristic as the expected reward of data distributed according to
the mixture of P,,, P,ss given by Py(y) = Pl};’\(y)Po)‘ff(y)/Z[)\] (where
Z[A] is a normalization constant). In this section we will consider the spe-
cial case where A = 1/2. This gives the Bhattacharyya heuristic Hy =

>y Pr=1/2(y) log g”;f((y;). (We give it this name because the distribution
Py—1/ is associated with the Bhattacharyya bound in statistics [12]). By
setting A = 1/2 we are essentially choosing a heuristic midway between the
target and distractors (generated by P,y and Pz respectively). (In [2] we

will extend the results to deal with other values of \.)

The Bhattacharyya heuristic is special in two ways. Firstly, it simpli-
fies the analysis. Secondly, and more importantly, we can prove stronger
results about convergence if the Bhattacharyya heuristic is used (although
this may reflect limitations in our proofs). As we show in [2], if the
algorithm converges using one of the alternative heuristics then it will
also converges with the Bhattacharyya heuristic, but the reverse is not
necessarily true.

The Bhattacharyya heuristics Hj, Hp are the expected rewards per
segment:

(3.1) H} = ¢Bp - a, Hy =B - B,
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with respect to the distributions ¢pp, ¥ph:
_ {Pan®)}{Pogs )}

¢Bh(y) VA )
¢
(3.2)
” _ {Pac@)}' 2 {U@®)}'/?
Bh(t) - VA )
P

where Zy, Z,, are normalization constants.

We first put an upper bound on the probability that any completely
false segment is searched.

Let A, ; be the set of subpaths of length n that belong to F;. Then
we have the following result:

THEOREM 1. The probability that A* searches the last segment of a
particular subpath in Ay ; is less than or equal to Pr{3 m : S,r¢(n) >
Son(m)}.

Proof. By definition of A*, a necessary condition for the segment to
be searched is that its A* reward (including the heuristic) is better than the
A* reward of at least one segment on the target path. This is because the
A* algorithm always maintains a queue of nodes to explore and searches
the node segment with highest reward. The algorithm is initialized at the
start of the target path and so an element of the target path will always lie
in the queue of nodes that A* considers searching. (This condition is not
sufficient to ensure that the segment is searched — so we are only obtaining
an upper bound). O

We now bound Pr{3 m : S,55(n) > Son(m)} by something we can
evaluate.

THEOREM 2.

Pr{am: Soss(n) > Son(m)} < S50 o Pr{Soss(n) > Son(m)}.

Proof. Boole’s inequality. O

We now proceed to find a bound on Pr{S,ss(n) > Syn(m)}. This
is done using Sanov’s theorem (see [2] for details). It will show that this
probability falls-off exponentially with n,m (provided certain parameters
are positive).

THEOREM 3. -
Pr{S,z7(n) > Son(m)} < {(n +1)(m + 1)}/ @ 2~ (m¥rtmi2),
where 1 = D(¢Bnl|Poss) + DWpnl|lU) and ¥2 = D(¢Bnl||Pon)

+D(Y5h||Pac).

Proof. The proof is an application of Sanov’s theorem, see [2], applied
to the product space of types of P,,, Poss, Pag,U. Define:

E = {($0ff’J0ff,(;on,Jon) :n{(;off &—H; +1Z0ff ,B’_ H'}
Zm{aon_d'_Hz_i_,Jon_B’_H;}}.

(i.e. E is the set of all histograms corresponding to partial off paths with
higher A* reward than the partial on path).

(3.3)
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Sanov’s theorem gives a bound in terms of the ¢°f )°ff $om )°m that
minimize:

FEIT01T 3o, 5°m) = nD(°77)|P,p4) + nD (47 ||U)

+mD(°"||Pon) + mD(4°"|| Pac)

+71{Z¢°ff(y)—1} +72{Z¢"ff(t)—1}

(3.4) t
srd Somw -1} +n{ Svno-1)
y t
+y{m{¢’"-a& — Hp +¢°" - - Hj}
—nf My P F - ),
where the 7’s and « are Lagrange multipliers. This function f(.,.,.,.) is

known to be convex so there is a unique minimum. Observe that f(....) con-
sists of four terms of form nD(&’ffHPoff)%—ﬁ{Ey ¢°FF (y) =1} —nygoff . @
which are coupled only by shared constants. These terms can be minimized
separately to give:

1—y 1—y pY
q';off* — P‘;Y”POff q_s'on* — Pon ’YPOff
Z[1—~]’ Zly
(3.5) Z
Joss+ = DU Jone = Pac’U”
Zs[1 -]’ Zs[y]

subject to the constraint given by equation (3.3).
By inspection, the unique solution occurs when v = 1/2. In this case:

3.6) ¢ .a=H;=¢"-a, porf* . f = Hp =4 - B.
L P

The solution occurs at ¢°™* = g°ff* = $g, and at o = off* =
JBh. Substituting into the Sanov bound gives the result. |

From Theorem 3, it is a direct summation, and application of Theo-
rem 2, to obtain:

THEOREM 4. Pr{3 m : So5s(n) > Son(m)} < 3 0° o Pr{Soss(n) >
Son(m)} < (n+1)7"Q*Cy(¥,)2-"Y1, where Uy, Uy are specified in Theorem
3, and

(3.7) Co(Uy) = f: (m +1)7" @ g—m¥>,

m=0

Theorem 4 shows that the probability of exploring a particular dis-
tractor path to depth n falls off exponentially with n.
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F1G. 9. This figure illustrates Theorem 5. F1 has at most Q™ segments at depth n.

We now compute the expected number of false segments that are
searched at depth n in the tree. There is a factor of @™ — 1 segments
at this depth which we can bound above by Q™.

THEOREM 5. Provided ¥, > log @, the expected number of segments
searched in Fy is less than or equal to Co(¥3)C1 (¥ — log Q), where:

(3.8) C1(Ty —logQ) = Zn(n + 1)J2Q22*n(\111710gQ)-

n=1

Proof. There are at most Q" segments at depth n in Fj. Using The-
orem 4, the expected number of segments explored is less than or equal to
2% Q" (n + 1)7°@°Cy(W,)27"%1. Sum the series. It will not converge
unless ¥; > log Q. O

Finally, by the recursive structure of the tree we see that the number
of segments explored in the sets F», F3, ... must be less than, or equal to,
the number explored in F;. (We simply eliminate the first few segments,
which are in common with the target path, and perform the same argument
as above). This yields our main result:

THEOREM 6. The expected number of segments explored by an A*
algorithm using the Bhattacharyya heuristic is bounded above by
NC3(05)C1 (P —log Q), provided ¥; > log Q.

The algorithm is expected to explore O(N) segments and the coeffi-
cients C2(¥2)C1 (¥ —log Q) rapidly decrease as ¥4 and ¥ —log () increase.

In addition, we can estimate the expected error of how much our final
estimate differs from the target path. Note that this is not the same as the
error with respect to the MAP estimate. The error is defined as the number
of incorrect segments on the path estimated by A*, see Figure 10.

THEOREM 7. The expected error is bounded above by Ca2(¥5)Cy (¥1 —
log Q), provided ¥, > log Q.

Proof. We measure the error in terms of the expected number of off-
road segments. The expected error can be bounded above by >>° | Pr(n)n,
where Pr(n) is the probability that A* will explore a path in Fnyi_, to
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F1G. 10. Illustrates Theorem 7. Ax marks the path found by the A* algorithm. M
marks the MAP estimate of the target path position. T marks the target path. Observe
that A* has an error of one segment and the MAP has an error of two.

the end. There are Q™ such paths. For each path, the probability that we
explore it to the end is bounded above by Y-~ Pr{S,ss(n) > Son(m)} <
(n+1)7°@” Cy(¥,)2-"¥1 | ysing Theorem 4. Therefore the expected error is
bounded above by Y2 nQ™(n+1)7" 9" Cy(¥2)2 "1, which was summed
in Theorem 5. Hence result. O
The condition ¥; > log @ is related to the order parameter Kp given
by equation (2.9). It is straightforward algebra to check that K = ¥; +
P, — log@. Therefore the condition ¥; > log(@ implies that Kg > 0
(T3 > 0 by definition) which ensures that the expected number of paths in
Fy with rewards higher than the target path will fall to zero as N — oo.

4. Sorting the queue in linear expected time. We have shown
that the expected number of nodes searched is linear in N. But the conver-
gence rate of the algorithm will also depend on how much time is required
to sort the queue of nodes that we want to expand. In this section, we
prove that the expected time to sort the queue nodes is constant.

We use a simple linked list data structure where we order the queue
nodes according to their rewards (instead of a more sophisticated data
structure, like a heap — see, for example, [5, 3]). A* proceeds by expanding
the top node (the one with highest A* reward) and must then adjust the
queue to accommodate its children. We now show that the expected sort
time, which is required to place the children in their correct positions in
the queue, is a constant. To do this, we note that the children nodes
have A* rewards that are smaller than the top node by at most A, where
A = Hy + Hp —miny log Py (y)/ Pos s (y) —ming log Pag(t)/U(t) (note that
A > 0). We therefore only have to compare the rewards of the children
with nodes whose rewards are within A of the top node. As we will show,
the expected number of these nodes is constant. This gives the following
theorem.
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THEOREM 8. The expected sorting rate is constant (i.e. independent
of the size N of the problem).

Proof. The expected sorting rate is equal to () times the expected
number of nodes in the sort queue which have rewards within A of the
top node. The reward of the top node is guaranteed to be greater than, or
equal to, the reward rr of the longest target subpath in the queue. Let this
longest target subpath have length n. To prove that the expected sorting
time is constant it suffices to show that the expected number of paths
in the queue with rewards greater than rr — A is constant. This requires
computing the probabilities that subpaths in Fi, ..., F}, have rewards higher
than 77 — A and bounding the expected number of such subpaths. (We do
not need to consider paths in F;, i > n because, by definition of n, they
involve children of nodes in the queue and so cannot be in the queue.) We
can bound these probabilities using Sanov’s theorem and then bound the
expected number of nodes by summing exponential series. The details are
given in [2]. O

5. Conclusion. The goal of this paper is to point out that Bayesian
formulation of inference problems leads to a probability distribution on the
ensemble of problem instances. Analysis of this ensemble can give com-
plexity results and, in other work [20, 21], algorithm-independent results.

As a specific example, we analyzed the Geman and Jedynak [6] theory
for road tracking. We were able to demonstrate linear (in the road size)
expected convergence for a class of ensembles even though the worst case
performance is exponential. This agrees with previous work [17] where we
analyzed a block-pruning search strategy motivated by [11].
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