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Abstract

A Bayesian network formulation for relational shape
matching is presented. The main advantage of the re-
lational shape matching approach is the obviation of
the non-rigid spatial mappings used by recent non-rigid
matching approaches. The basic variables that need to
be estimated in the relational shape matching objective
function are the global rotation and scale and the lo-
cal displacements and correspondences. The new Bethe
free energy approach is used to estimate the pairwise
correspondences between links of the template graphs
and the data. The resulting framework is useful in
both registration and recognition contexts. Results are
shown on hand-drawn templates and on 2D transverse
T1-weighted MR images.

1. Introduction

Shape matching in its broadest context is a very dif-
ficult problem since it involves establishing distances
between shapes that can be different due to intrinsic
reasons—differing topologies, non-rigid deformations
and the like—and due to extrinsic reasons—illumination
changes, unknown correspondence, segmentation errors,
outliers, missing and occluded information etc. How-
ever, if shape equivalences and distances in shape space
can be constructed and more importantly efficiently
computed, the payoff is huge since a host of applica-
tions ranging from non-rigid registration in biomedical
and other imaging areas [27], object recognition [9], in-
dexing in image databases and statistical shape analy-
sis [5] awaits. In this work, we formulate a relational
shape matching objective which at its core, casts shape
matching as the warping of a template point-set with a
fixed topology onto an unstructured data point-set. By
leveraging recent developments in Bayesian networks—
notably the Bethe free energy approach [30]—we show
that efficient relational shape matching algorithms can
be designed.

2 Previous Work

Taxonomically, the principal difference in both registra-
tion and recognition applications is between intensity-
and feature-based methods. Since we are focused on
feature-based methods, our review of intensity-based
methods is cursory.

The main recent advance in intensity-based methods
is the use of mutual information (MI) [28] as a distance
measure for non-rigid registration [19]. Somewhat sur-
prisingly, MI-based methods have generated much less
interest in recognition applications. We speculate that as
MI-based non-rigid matching methods improve in speed,
they will become more viable for recognition. Or in
more general terms, any efficient method for optical flow
which avoids the brightness constancy assumption is si-
multaneously of interest to both registration and recog-
nition.

There exist a plethora of approaches and methods for
feature-based matching as applied to non-rigid registra-
tion and recognition. For a comprehensive review of fea-
ture matching approaches (with an emphasis on registra-
tion applications) please see [4]. Also the work in [10]
is a particularly good review of feature-based matching
in general.

Most of the feature-based recognition approaches be-
gin with the fundamental assumption that the template
and/or the data consists of a single closed curve or sur-
face ([15, 22, 25, 26, 13, 12]). While these methods can
be extended to some extent to the multiple curve/surface
case, we were motivated by this previous work to pro-
pose a shape matching strategy that did not begin with
this fundamental assumption. The spin image represen-
tation in [11] does not require segmentation of the data
into surfaces despite the template being a single surface.
The spin image is a novel shape attribute at each point on
the template surface as is shape context [2]. In the lat-
ter, a joint histogram of inter-point angles and distances
is used to develop an attribute vector at each point. The
attribute vector is the shape context and is the quantity
that is compared. The shape context approach solves for
point correspondences using a weighted bipartite match-
ing algorithm. And, in a move that is strikingly remi-
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niscent of our previous TPS-RPM approach to non-rigid
point matching [3], the template point-set is repeatedly
warped using a thin-plate spline. The main drawback in
the shape context approach and in all of our own pre-
vious work is the fundamental disconnect between the
spline used for warping and the representation of the
template point-set [17]. Unlike much earlier approaches
such as [1, 20], in the work of [2, 3], there is no rela-
tional object model used for warping. While the shape
context is a relational attribute, it plays no role in warp-
ing. In both cases, the thin-plate spline forces the tem-
plate points to become correlated during warping [17],
but this correlation is completely independent of any un-
derlying relational object representation. In contrast, the
work in [20] which is based on work in [21, 23] was the
first to use correlated ways of movement of different fea-
tures to assign correspondence. This paper is a spiritual
cousin of [20] with the principal differences being the
correspondence model and the minimization algorithms.
Finally, very recent work in stereo matching [24] and
object recognition [6] using Bayesian belief propagation
[14] share a lot in common with this work.

After surveying the previous work in registration and
recognition, it should be clear that we are focused on i)
developing a common framework for both registration
and recognition problems which ii) utilizes a relational
template representation that is not restricted to merely a
single curve or surface, iii) solves for correspondences
and deformations using the underlying relational repre-
sentation iv) resulting in a shape distance which can be
used for non-rigid registration and recognition.

3 A Relational Correspondence
and Deformation Approach to
Non-rigid Shape Matching

In this section, we formulate the relational correspon-
dence and deformation cost function for deforming a
template graph onto an unlabeled data point-set. After
formulating the cost function, we turn our attention to
the prior in Section 3.2. Our notation is summarized in
Table 1.

3.1 The relational shape matching (RSM)
cost function

As mentioned in Section 2, one of the main motivations
in this work is to move away from using non-rigid spa-
tial mappings that are essentially unrelated to the object
(or objects) that are being deformed. To this end, we
assume that the template object is represented by an un-
labeled point-set X (in R2 or in R3) and an undirected
graph G(V,E) (which characterizes the interconnection
topology). In this setup, a closed digital curve would

have a topology consisting of two neighbors for each
point—one neighbor being the next point along the curve
and the other neighbor being the previous point. Obvi-
ously, our use of a general graph G allows us to go be-
yond curves and surfaces as object representations. With
this representation, the deformation of the object onto an
unstructured data point-set can be posed as a joint cor-
respondence and deformation problem. The relational
matching cost function is written as

Erelational(M,U, s,R) =
∑
ijab

MiaMjbGijDijab

−γ
∑
ijab

MiaMjbGij , (1)

whereDijab = ||√sR[(xi+ui)−(xj +uj)]− 1√
s
(ya−

yb)||2 with Mia ∈ {0, 1}, and
∑

i Mia ≤ 1 and∑
aMia ≤ 1 being the constraints. In (1), we assume

the existence of missing/extra points on both sides (tem-
plate and data) and consequently, the need for outlier
rejection arises. The parameter γ > 0 is a robustness
parameter. The unknown variables in (1) are the corre-
spondenceM, the rotationR and scale s parameters and
the deformation U. We use lowercase bold characters to
denote vectors (such as xi) and uppercase characters to
denote matrices [such as X = (x1,x2, . . . ,xN1)]. The
relational shape matching cost function (1) attempts to
deform a template (X,G) onto data (Y ) using a defor-
mation (U ) and pose (s,R) in the presence of unknown
correspondence (M). Please note that (1) is invariant un-
der translations of X and Y. Typically, the graph G is
quite sparse and this (as we shall see) plays a major role
in the design of efficient minimization algorithms. We
sometimes refer to the relational shape matching cost
function as the likelihood since the deformation “prior”
is quite important in this approach.

We can easily solve for the rotation and scale parame-
ters in (1) by directly minimizing the cost function w.r.t.
R and s respectively. This is one of the reasons why
we have elected to not formulate (1) in an intrinsic [22]
manner. For instance, we could have attempted to match
distances ||(xi + ui)− (xj +uj)|| and ||ya − yb|| w.r.t.
unknown scale (and no rotation), deformation and cor-
respondence variables. However, since distances do not
have the orientation information possessed by a vector
[of the form (xi + ui) − (xj + uj)], we elected not to
do so. Nonetheless, when we eliminate the rotation and
scale parameters from (1) by minimizing w.r.t. them, the
resulting equivalent cost function is invariant under simi-
larity transformations of both the template and data. The
solution for the global scale parameter is

ŝ =

√ ∑
ijab GijMiaMjb||ya − yb||2∑

ijab GijMiaMjb||(xi + ui)− (xj + uj)||2 .
(2)
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Table 1: Matrix and index notation for variables and constants
Variables and Constants Index notation Matrix notation Dimension

Template xi, ∀i ∈ {1, . . . , N1} X D ×N1

Data ya, ∀a ∈ {1, . . . , N2} Y D ×N2

Deformation ui, ∀i ∈ {1, . . . , N1} U D ×N1

Correspondence Mia, i ∈ {1, . . . , N1}, a ∈ {1, . . . , N2} M N1 ×N2

Template graph Gij , i ∈ {1, . . . , N1}, j ∈ {1, . . . , N1} G N1 ×N1

Rotation Euler angles or quaternions R D ×D
Regularization µ scalar

Robustness γ scalar
Scale s scalar

Since the relational shape matching cost function is con-
vex w.r.t. s, this is the global solution. Please note that
the use of a regularizing prior which imposes a penalty
on large or small values of scale would alter this solution.
Solving for the rotation matrix (in 2D) results in

tan(θ̂) =

∑
ij Gij [Z

(1)
ij W

(2)
ij − Z(2)

ij W
(1)
ij ]∑

ij Gij [Z
(1)
ij W

(1)
ij + Z

(2)
ij W

(2)
ij ]

(3)

where Zij
def= zi − zj , Wij

def= wi − wj , zi
def=

xi + ui and wi
def= (My)i =

∑
aMiaya, ∀i. The su-

perscripts in (3) indicate 2D components of the vectors
Zij , Wij , zi, zj and wi, wj . Substituting the solutions
for s and R back in (1), we obtain the following similar-
ity transformation-invariant cost function

Eeffective(M,U) = 2
√
EA − 2

√
E2

B + E2
C (4)

where

EA =
∑
ijab

GijMiaMjb||Zij ||2
∑
ijab

GijMiaMjb||ya−yb||2,

EB =
∑
ij

Gij [Z
(1)
ij W

(1)
ij + Z

(2)
ij W

(2)
ij ],

and EC =
∑
ij

Gij [Z
(1)
ij W

(2)
ij − Z(2)

ij W
(1)
ij ].

Note that the scale parameter s is not unilaterally applied
to the templateX but is bilaterally applied to bothX and
Y . (This is why we were able to eliminate both rotation
and scale parameters—they were decoupled in the cost
function). It is somewhat difficult to see why (4) is in-
variant under rotation.

With perfect hindsight, it would have been possible
to design such an intrinsic shape matching cost function
at the very outset. However, we prefer to use the non-
intrinsic relational shape matching cost function in (1)
for the simple reason that it is a much more tractable

quadratic cost function w.r.t. U and as we will show, it is
a much more tractable cost function w.r.t. the correspon-
dencesM as well.

3.2 A deformation prior

The relational shape matching cost function in (1) at-
tempts to find the best pairwise least-squares fit between
template and data point-sets. However, since the number
of deformation variables (ui, ∀i ∈ {1, . . . , N1}) scales
with the cardinality of the template, there are numerous
solutions. To see this, first restrict the correspondences
such that there are no outliers in point-sets X and Y .
Then, by inspection, we see that there is a solution for U
for each of the N1! = N2! = N ! correspondences. One
such solution is

ûi =
1
s

∑
a

MiaR
Tya − xi. (5)

This “solution” also sends the original cost to zero if it
is assumed that we have the correct solution for s andR.
Clearly, we need to regularize the cost function by pe-
nalizing excessively large deformations. In most of our
previous work, we used a thin-plate spline (or a Gaus-
sian radial basis function spline) to regularize the spatial
mapping. The spline essentially imposed a penalty on
large deformations of the plane (in 2D). The choice of
prior reflects our emphasis on an object model as op-
posed to a spatial mapping.

Our prior is a pragmatic choice. Since the rela-
tional shape matching cost function is based on pair-
wise matching, the prior should reflect that. Instead of
merely penalizing large deformations, we choose to pe-
nalize large relative deformations. This is done via a
prior cost function of the form

Eprior(U) =
∑
ij

Gij ||ui − uj ||2 = 2 trace(UTLU)

(6)
where Lij = niδij − Gij is the (i, j)th entry of the

Laplacian of the graph G where n i
def=

∑
j Gij . The
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Laplacian of a graph is a non-negative definite matrix.
The first zero eigenvalue along with the eigenvector
e = 1

N1
[1, 1, . . . , 1]T corresponds to the translation in-

variance of U. If a second eigenvalue of the Laplacian
is also zero, then the graph is bipartite [7]. The prior in
(6) is invariant under translation and rotation of U. With
this prior in place, we may write the overall RSM cost
function as

ERSM(M,U, s,R) = Erelational(M,U, s,R)+µEprior(U).
(7)

In (7), the regularization parameter µ > 0 determines
the tradeoff between the relational shape matching cost
and the degree of deformation.

How does this prior constrain the set of possible so-
lutions for U? Recall from (5) that the relational shape
matching term allowed arbitrary deformations with no
penalty. To get a better understanding of this prior in the
context of the relational shape matching cost, we again
switch to the no outlier scenario:

∑
aMia = 1 and∑

i Mia = 1. When this is done, the relational shape
matching cost is drastically simplified and we may write
(after some straightforward algebraic manipulations)

Eequiv(U) = trace(sUTLU + 2sUTLX

−2UTLMYRT + µUTLU). (8)

Here Eequiv(U) is a rewrite of ERSM(M,U, s,R) but
focusing solely on those terms that depend on U . We
are doing this in order to better understand the nature of
the prior vis-a-vis the relational shape matching cost. In
(8), the first and fourth terms are convex w.r.t. U and the
second and third terms are linear w.r.t. U. Consequently,
we can evaluate the set of fixed points for U by differen-
tiating (8) w.r.t. U and setting the result to zero. When
this is done, we get

LÛ =
1

s+ µ
L(MYRT − sX). (9)

Since L is non-negative definite, we cannot invert the
above solution forU.However, we can clearly see the in-
fluence of the regularization parameter µ in the solution;
larger the value of µ, smaller the resulting deformation
and vice versa. The role played by the Laplacian matrix
L is very interesting. The Laplacian imposes a correla-
tion structure on U which is driven by the topology of
G. This is to be expected since both the likelihood and
the prior induce correlations in U via G.

4 An optimization algorithm based
on the Bethe Approach

In this section, we focus on algorithms for minimizing
the objective function in (7). A motivation for this en-
tire approach is the excellent fit between the relational

shape matching cost function and new and exciting work
in the interface between Bayesian networks and statisti-
cal physics [30, 29, 31]. In fact, we were emboldened
to design the relational shape matching cost function
mainly due to a fundamental advance that has recently
been made in algorithms for Bayesian networks. In this
section, we describe this advance and relate it to our new
cost functions.

4.1 Bayesian Belief Propagation and the
Bethe free energy

In our previous work [4], we have designed efficient al-
gorithms for point matching by relaxing the notion of
binary correspondence (as a permutation matrix and out-
liers) to that of a doubly substochastic matrix. We have
empirically shown that this relaxation allows us to effi-
ciently solve for correspondences and non-rigid defor-
mations. The principal drawback in this previous work
is the inability to take relationships between the point
features into account during matching. In this work, we
have designed new cost functions which incorporate a
set of relationships (G) between the template features.
This representation matches up well with recent work in
Bayesian networks [29].

Assume for the moment that the template graph is a
tree T . Also, assume that the correspondences are now
no longer binary but are “soft” in the sense of taking val-
ues in the interval [0, 1]. The soft correspondences will
be denoted by {pia}. Also, assume that the constraints
on the correspondences {pia} are relaxed in the follow-
ing way; pia > 0,

∑
a pia = 1. For the sake of expo-

sition, assume that there are no outliers and that N1 =
N2 = N . The new constraints on {pia} have relaxed
the original binary correspondence to that of a “fuzzy”
correspondence. Also, the earlier two way constraints
(
∑

iMia = 1,
∑

aMia = 1) have given way to a one
way constraint (

∑
a pia = 1). With this change in repre-

sentation, we can conceive of the correspondence matrix
as the marginal probability of node “i” in a Bayesian net-
work with each node having a = {1, 2, . . . , N} possibil-
ities. Since the structure of the Bayesian network is a tree
T , we can use the “vanilla” Bayesian belief propagation
algorithm [14] to find the optimum solution for the cor-
respondence matrix M now reconceived as a marginal
probability {pia} (for fixed settings of the deformation
U ). In addition to the marginal distribution {p ia} we
also have the pairwise joint distribution {pijab} which
can be interpreted as the set of pairwise relational “soft”
correspondences indicating the degree or extent to which
point “i” matches to point “a” AND point “j” matches to
point “b.”

While the Bayesian belief propagation algorithm
is guaranteed to converge to the correct marginal
distribution—which in our case is the set of “soft” cor-
respondences {pia}—this result is only true for graphs
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with no loops or trees [14]. Recently, it was shown that
the Bayesian belief propagation algorithm converges to
the saddle points of the so-called Bethe free energy if
it converges at all [30]. The Bethe free energy for the
relational shape matching cost function is written as

F ({pijab, pia}, U, s, R) =
1
α

∑
ijab

Gijpijab log
pijab

piapjb

+
1
α

∑
ia

pia log pia

−
∑
ijab

Gijpijab log ψijab(U, s,R)

(10)
where

ψijab(U, s,R) = e
γ−||√sR[(xi+ui)−(xj+uj)]− 1√

s
(ya−yb)||2

(11)
and has the interpretation of minimizing the mutual in-
formation on the links while maximizing the marginal
entropy (MIME) [18]. The parameter α weighs the en-
ergy and entropy terms. Now that there is a cost func-
tion (the Bethe free energy) associated with a particu-
lar algorithm (belief propagation), alternative minimiza-
tion strategies can be considered [31, 18]. Rather than
describe the development of algorithms for the general
Bethe free energy, we immediately specialize to the re-
lational shape matching (RSM) cost function. The full
Bethe free energy for the RSM cost function after taking
into account the outlier rejection issue as well is

F ({pijab, pia}, U, s, R) =
1
α

∑
ijab

Gijpijab log
pijab

piapjb

+
1
α

∑
ia

pia log pia − κ

α

∑
ia

pia log pia

−
∑
ijab

Gijpijab log ψijab(U, s,R)

+
∑
ij

Gij

∑
b

λijb[
∑

a

pijab − pjb]

+
∑
ij

Gij

∑
a

λjia[
∑

b

pijab − pia]

+
∑

i

η
(1)
i (

∑
a

pia+r(1)i −1)+
∑

a

η(2)
a (

∑
i

pia+r(2)a −1)

(12)
where the constraints

∑
b

pijab = pia,
∑

a

pijab = pjb,

N1∑
i=1

pia ≤ 1,
N2∑
a=1

pia ≤ 1

(13)

have been implemented using Lagrange parameters λ
and η. Note the presence of slack variables (outlier pro-
cesses) r(1)and r(2) in (12). The parameters α and κ
determine the “softness” of the correspondences. The
original Bethe free energy has κ set to zero since binary-
valued probabilities are not a concern in Bayesian net-
works. As κ is increased, any descent algorithm will
convergence to closer to integer solutions. We have con-
siderable experience with such “self-annihilation” cost
functions [16]. The following algorithm has none of
the drawbacks of the Bayesian belief propagation algo-
rithm. When we restrict ourselves to just the probabil-
ities, it has been shown to converge to a fixed point of
(12) [31, 18]. The addition of the rotation, scale and
deformation variables does not change this since we are
essentially presenting an alternating algorithm which al-
ternates between estimating the rotation, scale and de-
formation parameters and the correspondences.

In the relational shape matching (RSM) algorithm,
the slack variables r(1) and r(2) alter the constraints
slightly from the original Bethe energy. The second nor-
malization implements the constraint

∑
i pia ≤ 1. This

constraint has no analog in Bayesian networks but as
shown in our previous work [8], it has a considerable
effect on solution quality. The inner loop is executed un-
til

econstraint
def=

∑
ij

Gij

∑
a

(
∑

b

pijab − pia)2

+
∑
ij

Gij

∑
b

(
∑

a

pijab − pjb)2

+
∑

i

(
∑

a

pia + r
(1)
i − 1)2

+
∑

a

(
∑

i

pia + r(2)a − 1)2 < ethr (14)

Since we are only guaranteed to approach a local mini-
mum of the enhanced Bethe cost function in (12), an im-
portant concern is solution quality. The RSM algorithm
is shown below.

4.2 Computational complexity considera-
tions

Since the core of the correspondence algorithm involves
updating joint probabilities {pijab} as well as marginal
probabilities {pia}, the degree of each vertex ofG plays
an important role in computational complexity consider-
ations. Assume that the degree of each vertex is not fixed
and can be O(N). In that case, G is dense and the per
iteration complexity is O(N 4) which is too high. How-
ever, one of the main attractions of Bayesian networks is
working with sparse graphs. If the degree at each vertex
is O(1) as in curves and surfaces, then the per iteration
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• The Relational Shape Matching (RSM) Algorithm

• Initialize {pijab, pia, ri, sa}. Set U = 0, s = 1 and θ = 0.

• Begin A: Outer K Loop:

– s =
√ ∑

ijab GijMiaMjb||ya−yb||2∑
ijab GijMiaMjb||(xi+ui)−(xj+uj)|

– tan(θ) =
∑

ij Gij [(z
(1)
i −z

(1)
j )(w

(2)
i −w

(2)
j )−(z

(2)
i −z

(2)
j )(w

(1)
i −w

(1)
j )]∑

ij Gij [(z
(1)
i −z

(1)
j )(w

(1)
i −w

(1)
j )+(z

(2)
i −z

(2)
j )(w

(2)
i −w

(2)
j )]

– Conjugate-gradient algorithm for U since cost function is quadratic in U .

– pijab = (ψijab(U, s,R))α = exp{−α(||√sR[(xi + ui)− (xj + uj)]− 1√
s
(ya − yb)||2 − γ)}

– pia = pni+κ
ia

– Begin B: Inner L Loop: Do B until econstraint < ethr.

∗ Simultaneously update {pijab} and {pia} below.

∗ pijab ← pijab

√
pia∑
b pijab

∗ pia ←
√
pia

∑
b pijab

∗ Simultaneously update {pijab} and {pjb} below.

∗ pijab ← pijab

√
pjb∑

a pijab

∗ pjb ←
√
pjb

∑
a pijab

∗ Normalize {pia} across rows and columns

∗ pia ← pia∑ N2
a=1 pia+ri

, ri ← r
(1)
i∑N2

a=1 pia+ri

∗ pia ← pia∑ N1
i=1 pia+sa

, sa ← r(2)
a∑ N1

i=1 pia+sa

– End B

• End A

complexity of our relational shape matching algorithm is
O(N3) which is acceptable for offline applications such
as registration and atlas construction in brain mapping
and is unacceptable for recognition. The main culprit
behind the O(N 3) complexity is the update of all pijab

where (a, b) ∈ {1, . . . , N2} × {1, . . . , N2}. This can
be reduced by restricting the number of possibilities for
each edge in G(V,E). We briefly outline this route to a
speedup of RSM. For each edge (i, j), if we obtain an
O(1) set of pairs (a, b) in Y , then the set of possibili-
ties for the edge (i, j) is drastically reduced. If the set of
possibilities for each edge (i, j) ∈ E is O(1), then the
per iteration complexity of the correspondence engine in
RSM is O(N2). [From a solution quality standpoint, it
makes sense to begin withO(N) edge values and rapidly
shrink it to O(1) but we have not yet implemented this
feature]. Consequently, for the RSM cost function, the
per iteration complexity can be reduced to as low as
O(N2). Our current implementation (discussed in the
next section) uses this O(1) restriction.

5 Results

In this section, we apply the RSM algorithm developed
in the previous section to three examples: i) a hand-
drawn template and hand-drawn data; ii) points sampled
from a fish silhouette and a synthetically generated de-
formation of the same; and iii) two subcortical struc-
tures in a T1 MRI image and a synthetically generated
deformation of the same. The results are shown in Fig-
ures 1-3. We have not yet tested the outlier rejection
capabilities of the RSM algorithm. The first two exam-
ples are simpler than the third and in these cases, the
correspondences found by RSM are nearly exact. We
merely thresholded the {pia} matrix and displayed the
results. The third example is much more difficult due
to a relatively large deformation of the subcortical struc-
tures. The correspondences (displayed by thresholding)
are correct for the most part with multiple correspon-
dences seen at the bottom of the figure. Please note
the small topology difference at the bottom left between
the two graphs which was deliberately induced. This is
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Figure 1: A hand-drawn template is shown on the left
with roughly corresponding hand-drawn data shown on
the right. The template graph is a symmetrized two
nearest neighbor graph while the data graph is a sym-
metrized three nearest neighbor graph. The correspon-
dences found by the RSM algorithm are shown as dotted
lines.

meant to illustrate the relative robustness of using prob-
abilistic correspondences (as in the Bethe free energy)
rather than binary correspondences which are more typ-
ically used.

6 Discussion

To our knowledge, this is the first time that a relational
shape matching framework has been constructed with
pairwise correspondences and the deformation as the ba-
sic variables. The Bayesian network framework is ex-
traordinarily well suited to handle the MAP objective
functions arising from this formulation. We also stress
that we were extremely careful to avoid formulating the
objective function as an inexact, weighted graph match-
ing problem. Essentially, the Bayesian network searches
for the most probable set of matching deformed template
relationships in the data but not vice versa. While our
experiments are at the proof of concept stage, they serve
to demonstrate a concrete application of the relational
shape matching Bayesian network framework.
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