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Abstract. We address the question of how to choose between different
likelihood functions for motion estimation. To this end, we formulate
motion estimation as a problem of Bayesian inference and compare the
likelihood functions generated by various models for image formation. In
contrast to alternative approaches which focus on noise in the measure-
ment process, we propose to introduce noise on the level of the velocity,
thus allowing it to vary around a given model. We show that this ap-
proach generates additional normalizations not present in previous like-
lihood functions. We numerically evaluate the proposed likelihood in a
variational framework for segmenting the image plane into domains of
piecewise constant motion. The evolution of the motion discontinuity set
is implemented using the level set framework.

1 Introduction

The problem of estimating motion from an image sequence has been addressed
by minimizing appropriate cost functionals, which depend on the gray values of
the image sequence and its spatial and temporal derivatives. Since the seminal
work of Horn and Schunck [5], a wealth such variational methods have been
proposed (cf. [9,14,7,15]). Commonly these functionals consist of a fidelity term
which measures how well the local gray values are in accordance with a specific
motion, and of a prior which enforces a certain regularity of the estimated motion
field.

Yet, the question remains: Which cost functional is appropriate for the given
task? As for the regularity term, it clearly depends on the prior knowledge about
what kinds of motion fields can be expected. In particular, one can impose
smoothness of the estimated motion fields [5], smoothness with discontinuities
[12,15], parametric [1] and piecewise parametric motion models [2], or higher-
level regularity constraints derived from fluid mechanics [6].

In this paper, we are concerned with the fidelity term. This likelihood can be
derived from a generative model of image formation (cf. [16]). One makes certain
assumptions about how the image sequence is generated – for example one may
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assume that a static scene is transformed according to a certain velocity. As we
will see, it is of particular importance to address the question at which level
noise is allowed to enter this image formation process: Different models of noise
will induce different normalizations (i.e. scalings or weightings) of the data term
in the resulting cost functional.

Commonly noise is introduced as additive Gaussian noise to the measure-
ments [16,13,10]. In contrast, we argue that one should allow statistical varia-
tion of the quantity which is to be estimated and introduce noise directly on the
velocity. As a consequence, we derive a novel fidelity term for motion estimation.

Based on this fidelity term, we propose a variational method which permits
to segment the image plane into domains of piecewise constant motion. Segmen-
tation and motion estimate are obtained by minimizing the proposed energy
functional jointly with respect to the motion vectors for each region and with
respect to the boundary separating these regions. We implement this motion
boundary by the level set method [11], since this implicit representation facili-
tates topological changes of the evolving boundary such as splitting and merging.
Energy minimization amounts to alternating the two fractional steps of solving
an eigenvalue problem for the motion vectors in each region, and of evolving the
level set function which encodes the motion boundaries.

Numerical results demonstrate that the proposed likelihood function induces
accurate segmentations of the image plane based exclusively on the motion in-
formation extracted from two consecutive images of a sequence. Our approach
is computationally efficient and tracking applications are conceivable.

2 Motion Estimation as Bayesian Inference

Let Ω ⊂ R
2 denote the image plane and let I : Ω×R → R be a gray value image

sequence. In the following, we will assume that this image sequence represents
an unknown scene function s : Ω → R which undergoes a motion v : Ω → R

2

at each point x ∈ Ω.1 The motion field v can be estimated by maximizing the
conditional probability

P (v | I) =
P (I | v) P (v)

P (I)
, (1)

with respect to v. Here P (v) represents the prior on the velocity field.
The focus of the present paper lies on modeling the conditional probability

P (I | v) for an image sequence I given a velocity field v. To this end, we will
revert to generative models of image formation.

3 Generative Models with Measurement Noise

Let us assume that the image sequence is obtained from a scene function s :
Ω → R by applying a certain velocity field v:

I(x + vt, t) = s(x), (2)
1 Since we are only concerned with the velocity at a fixed time instance, we will ignore

the temporal variation of the velocity field.
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where s(x) = I(x, 0). Given a particular model of how noise enters this image
formation process, one can derive the conditional distribution P(I | v, s) for the
intensity function I given the velocity field v and the (unknown) scene function
s. The desired likelihood P(I | v) can then be obtained by marginalization with
respect to the scene function:

P(I | v) =
∫

P(I | v, s) P(s) ds. (3)

In the following, we will review three different approaches to introduce noise
into the above image formation process. In all three cases, the noise enters on
the level of the measurements. Each noise model entails a different likelihood
function P(I | v).

3.1 Additive Gaussian Noise in the Measurement Equation

Weiss and Fleet [16] suggested to introduce additive Gaussian noise to the mea-
surement equation: I(x+vt, t) = s(x)+ση, where η represents zero mean Gaus-
sian noise with variance 1. It follows that the conditional distribution is given
by

P(I | v, s) ∝ exp
(

− 1
2σ2

∫
(I(x + vt, t) − s(x))2 dx dt

)
. (4)

Assuming a uniform prior over the scene functions s and given a fixed time
interval for observation, the marginalization in (3) can be carried out analytically,
one obtains [16]:

P(I | v) ∝ exp
(

− 1
2σ2

∫
(I(x, t) − ŝ(x − vt))2 dx dt

)
, (5)

where the function ŝ(x) turns out to be the mean of I(x + vt, t) over the time
window of observation.

3.2 Additive Gaussian Noise on the Temporal Derivative

If the velocity in (2) is sufficiently small and the intensity function sufficiently
smooth, then one can perform a first-order Taylor expansion which yields the
well-known optic flow constraint equation:

vT ∇I + It = 0. (6)

Due to this approximation, the resulting conditional density no longer depends
on the unknown scene function such that the marginalization in (3) becomes
trivial. Simoncelli [13] suggested to introduce additive Gaussian noise to the
temporal derivative in (6). This yields the conditional probability

P(I | v) ∝ exp
(

− 1
2σ2

∫
(vT ∇I + It)2 dx dt

)
, (7)

which has become a popular likelihood function for motion estimation since the
work of Horn and Schunck [5].
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3.3 Additive Gaussian Noise on Spatial and Temporal Derivatives

Extending the above model, one can assume that both the spatial and the tem-
poral derivative in (6) are corrupted by zero-mean additive Gaussian noise. As
shown in [10], this assumption results in a conditional probability of the form

P(I | v) ∝ exp
(

− 1
2σ2

∫
(vT ∇I + It)2

1 + |v|2 dx dt

)
. (8)

Compared to the previous likelihood, this introduces an additional normalization
with respect to the length of the homogeneous velocity vector. However, it was
pointed out in [8] that the noise on the spatio-temporal derivatives may not be
independent, since the latter are calculated from digitized images.

4 A Generative Model with Noise on the Velocity Field

The above generative models incorporate noise on different levels of the mea-
surement process. In the following, we will argue that it may be favorable to
consider noise models for the quantity which is to be estimated, namely the
velocity field itself. Consider the general case of an image sequence in which
different regions are moving according to different velocity models (for example
parametric motion models). In order to partition the image plane into regions of
homogeneous velocity, we need to be able to measure how well a certain velocity
is in accordance with a given model.

To this end, we assume that the true velocity v̂ may deviate from the model
velocity v according to a noise model of the form:

v̂ = v + g(v) σ η̄, (9)

where ση̄ ∈ R
2 is 2-d Gaussian noise of width σ, scaled by a factor g(v) =√

1 + |v|2/|vo|2, which implies that the noise increases with the magnitude of the
velocity and is non-zero for zero velocity. For simplicity, we set the normalization
constant to v0 = 1. As in equation (2), we assume that the image sequence is
generated from a static scene s(x) deformed according to the velocity field v̂.
Assuming the noise to be sufficiently small and the intensity function to be
sufficiently smooth, we can perform a Taylor expansion with respect to the noise:

s(x) = I(x + v̂t, t) ≈ I(x + vt, t) + t g(v) σ η̄T ∇I. (10)

Rearranging terms, we obtain:

I(x + vt, t) − s(x)
t g(v) |∇I| ≈ ση, (11)

where η denotes 1-d Gaussian noise. This corresponds to a likelihood function
of the form:

P (I | s, v) ∝ exp

(
− 1

2σ2

∫
(I(x + vt, t) − s(x))2

t2 g2(v) |∇I|2 dx dt

)
. (12)
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Compared to the likelihood (4) for additive noise in the measurement equation,
this likelihood includes normalizations with respect to the spatial gradient, the
magnitude of the homogeneous velocity and time.

For sufficiently small velocity v, we can expand the intensity function even
further:

I(x + v̂t, t) ≈ I(x, 0) + t g(v) σ η̄ T ∇I + t vT ∇I + t It. (13)

Making use of the fact that s(x) = I(x, 0), we obtain a conditional probability
which is independent of the underlying scene function s:

P(I | v) ∝ exp
(−1

2σ2

∫
(vT ∇I+It)2

g2(v)|∇I|2 dxdt

)
= exp

(−1
2σ2

∫
(v̄T ∇3I)2

|v̄|2|∇I|2 dxdt

)
. (14)

Here ∇3I ∈ R
3 and v̄ ∈ R

3 represent the spatio-temporal image gradient and
the homogeneous velocity vector, respectively.

Note that, compared to the likelihood for noise on the spatial and tempo-
ral derivative in equation (8), this likelihood function includes an additional
normalization with respect to the image gradient. A similar likelihood function
(normalized with respect to the spatio-temporal gradient rather than the spa-
tial one) was derived in [2] based on purely geometric considerations. Here the
likelihood function with both normalizations is derived from a generative model
with noise on the velocity field as introduced above.

In numerical evaluation, we found that these normalizations are important in
the case of motion segmentation which differs from motion estimation in that one
needs to associate each image location with one or the other motion hypothesis.

5 Variational Motion Segmentation

In the previous section, we derived the fidelity term (14) for motion estimation.
In the present section, we will incorporate this fidelity term into a variational
framework for motion segmentation. To this end, we revert to the Bayesian
approach introduced in Section 2 and specify a prior P(v) on the velocity field
which enforces the formation of piecewise constant velocity fields. Extensions to
models of piecewise parametric motion are conceivable (cf. [3]), they are however
beyond the scope of this paper.

We discretize the velocity field over a set of disjoint regions Ri ⊂ Ω with
constant homogeneous velocity v̄i ∈ R

3. We now assume the prior probability on
the velocity field to only depend on the length of the boundary C separating these
regions. Maximizing the conditional probability (1) is equivalent to minimizing
its negative log likelihood. Up to a constant, the latter is given by the energy:

E(C, {v̄i}) =
n∑

i=1

∫

Ri

(v̄T
i ∇3I)2

|v̄i|2 | ∇I|2 dx + ν |C|. (15)

Since we only consider the spatio-temporal image derivatives at a given time
instance calculated from two consecutive frames of the sequence, the tempo-
ral integration in the likelihood (14) disappears. For an extension of a related
approach to the problem of spatio-temporal motion segmentation we refer to [4].
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6 Energy Minimization

In order to generate a segmentation of the image plane into areas of piecewise
constant motion, we minimize energy (15) by alternating the two fractional steps
of updating the motion vectors v̄i and evolving the motion boundary.

For fixed boundary C, minimization with respect to v̄i results in the eigen-
value problem:

v̄i = arg min
v̄

v̄T Mi v̄

v̄T v̄
, with Mi =

∫

Ri

∇3I
T ∇3I

| ∇I|2 dx (16)

The solution of (16) is given by the eigenvector corresponding to the smallest
eigenvalues of Mi, normalized such that its third component is 1.

Conversely, for fixed motion vectors, the gradient descent equation on the
boundary C is given by:

dC

dt
= (ej − ek) · n − νκ, (17)

where n denotes the normal vector on the boundary, κ denotes the curvature,
the indices ‘k’ and ‘j’ refer to the regions adjoining the contour, and ei is the
energy density given by the integrand in the functional (15).

We implemented this evolution using the level set method [11], since it is
independent of a particular parameterization and permits to elegantly model
topological changes of the boundary such as splitting and merging. For details,
we refer to [2].

7 Numerical Results

7.1 Simultaneous Segmentation and Motion Estimation

Figure 1 presents several steps during the energy minimization for two consec-
utive images from a sequence showing a rabbit which moves to the right. By
minimizing a single cost functional both the boundaries and the estimated mo-
tion are progressively improved. The final segmentation gives both an accurate
reconstruction of the objects location and an estimate of the motion of object
and background.

7.2 Segmenting Multiple Motion

The cost functional (15) permits a segmentation into multiple differently moving
regions. Figure 2 shows segmentation results obtained for an image sequence
showing two cars moving to the top right, while the background is moving to
the bottom left. The original sequence was recorded with a static camera by D.
Koller and H.-H. Nagel.2 To increase its complexity, we artificially translated the
2 KOGS/IAKS, Univ. of Karlsruhe, http://i21www.ira.uka.de/image sequences/
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Fig. 1. Motion segmentation obtained by minimizing functional (15) simultaneously
with respect to the motion models and the separating motion boundary. During min-
imization the boundary location and estimated motion are progressively improved.
Thus the object’s location and motion are simultaneously reconstructed. In contrast
to the approach proposed in [3], the present formulation does not require a posterior
normalization of the driving terms in the evolution equation.

Fig. 2. Evolution of motion boundary (top) given by the zero crossing of the level set
function (bottom) for moving cars on moving background. While the two cars cannot
be segmented based on intensity criteria such as edges or gray value homogeneity, the
motion segmentation gives an accurate reconstruction of the object location and its
motion (bottom right).

second frame thereby simulating a moving camera. An accurate reconstruction
of the object location and an estimate of the motion of objects and background
(bottom right) is obtained by minimizing the proposed functional. Due to the
representation of the boundary as the zero level set of the function shown in the
bottom row, the boundary is free to undergo splitting and merging.

8 Conclusion

We addressed the question of choosing appropriate likelihood functions for vari-
ational motion segmentation. Motion segmentation differs from gray value seg-
mentation in that the velocity field is not identical with the measured signal, but
rather a derived quantity. For this reason, we argued that one needs to break with
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the “signal plus noise paradigm”. We proposed a novel model of image formation
in which the velocity is permitted to vary statistically. In contrast to alternative
models, we assume that the effect of noise in the measurements is dominated
by the effect caused by variations of the true velocity around a particular model
velocity. As a consequence, the resulting likelihood function contains additional
normalizations with respect to the velocity magnitude and the image gradient.
This novel likelihood function is shown to induce highly accurate segmentations
of the image plane, obtained purely on the basis of motion information.
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