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Abstract—We show that generic viewpoint and lighting assumptions resolve
standard visual ambiguities by biasing toward planar surfaces. Our model uses
orthographic projection with a two-dimensional affine warp and Lambertian
reflectance functions, including cast and attached shadows. We use uniform priors
on nuisance variables such as viewpoint direction and the light source. Limitations
of using uniform priors on nuisance variables are discussed.
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1 INTRODUCTION

THE generic viewpoint assumption has been suggested as a way to
resolve visual ambiguities [4], [11], [7] and has been used to explain
perceptual phenomena, e.g., [1] and references cited. The idea is that
some interpretations of an image correspond to accidental views and
are unstable, in the sense that small changes in the viewing position
would induce large changes in the image. The generic viewpoint
assumption favors those image interpretations which are stable with
respect to small changes of viewpoint. This generic assumption can
be extended to apply to other variables such as lighting.

A precise mathematical formulation of the generic viewpoint

assumption was proposed by Freeman [7]. He formulated the

interpretation problem as probabilistic inference, where the view-

point direction is treated as a nuisance parameter to be integrated out

[12]. More recently, Weinshall and Werman [13] analyzed the generic

viewpoint assumption using a different formulation than Freeman’s.

They represented objects as point features and showed that the

assumption causes a bias toward planar objects. They hypothesized

that this planar bias would also hold for Freeman’s formulation.
In this paper, we examine the effect of the generic viewpoint

assumption for resolving visual ambiguities using Freeman’s
formulation. In particular, we examine those shape and shading
ambiguities which have been found by analyzing the geometry of
point set features [10], [6], [9] and the photometric properties of
objects with Lambertian reflectance functions [2], [17]. We use
uniform priors on nuisance variables, such as viewpoint and
lighting, and discuss later the limitation of these priors. Our results
show that there is a bias toward planar surfaces when the generic
assumption is used for viewpoint, lighting, or a combination of
both. This proves Weinshall and Werman’s hypothesis and goes
further by including shading and shadowing effects.

Like Weinshall and Werman [13], we use orthographic projection
and allow for two-dimensional affine warps on the image plane. We
treat the affine warps either as nuisance parameters to be integrated
out, or as quantities to be estimated (both approaches yield a planar
bias if the warps have uniform priors). These two treatments
correspond to alternative ways to think of the warps. The warps
could, for example, correspond to the parameters of an affine camera
[9], which motivates integrating them out. Alternatively, estimating
the warps leads to an affine invariant measure of similarity between
images as advocated by Werman and Weinshall [14]. In either case,
the affine warp can be justified by: 1) assuming that the camera

parameters are only approximately known and/or 2) modifying the

orthographic projection equations to allow for perspective effects [9].
We first give the probabilistic formulation of the generic

viewpoint assumption in Section 2, define the ambiguities we will

be dealing with in Section 3, prove our results in Section 4, and

then close with a discussion in Section 5.

2 VISUAL AMBIGUITIES AND THE GENERIC

VIEWPOINT ASSUMPTION

This section describes the mathematical framework for visual

ambiguities and the generic viewpoint assumption. The framework

is general and applies to any probabilistic estimation problem [12].
We assume that the image formation process is specified by a

likelihood function P ðIjO; hÞ, where I is the observed image, O is

the object being viewed, and h is a nuisance variable (e.g.,

viewpoint or lighting).
Visual ambiguities arise when there are many different ways

of generating the same image. For example, if P ðIjO; hÞ =

P ðIjÔO; ĥhÞ, then it seems difficult to distinguish between O; h

and ÔO; ĥh. A large class of visual ambiguities (see Section 3)

correspond to a group of transformations that can be made on an

object and the nuisance variable. For example, suppose we have

P ðIjO; hÞ ¼ P ðIjftðOÞ; ftðhÞÞ, where ftð:Þ is an element of a group

of transformations on the object O and nuisance parameter h, and

t indexes the group element. Then, we state that the likelihood

function is invariant to the group of transformations fftð:Þg. Much

of the work on visual ambiguities, e.g., [10], [6], [2], [9], [17],

assumes that the image formation model is purely deterministic.

This special case can be obtained from our formulation by setting

the likelihood function to be a delta function (e.g., P ðIjO; hÞ =

�ðI ÿ F ðO; hÞÞ for some function F ð:; :Þ, where �ð:Þ is the Dirac

delta function). But, these ambiguities will also remain even if we

allow for noise in the imaging model, see Section 4.
The Generic Viewpoint Assumption (GVA) [4], [11], [7] is a

method for resolving these ambiguities. First, the problem is

expressed as Bayesian estimation by placing prior distributions

P ðOÞ; P ðhÞ onO and h. The task of estimatingO and h from I can be

formulated as Bayesian inference using the posterior distribution:

P ðO; hjIÞ ¼ P ðIjO; hÞP ðOÞP ðhÞR
dĥh dÔO P ðIjÔO; ĥhÞP ðÔOÞP ðĥhÞ

: ð1Þ

Freeman’s proposal is to estimate O alone after integrating out

the nuisance parameter h. This corresponds to the standard

procedure for dealing with nuisance variables in statistics [12]. It

reduces to estimating O from:

P ðOjIÞ ¼
Z
dh P ðO; hjIÞ: ð2Þ

Freeman’s insight [7] is that the integration over h is often

sufficient to resolve many visual ambiguities even if the prior

distributions on O and h are uniform. (For these priors, the

posterior distribution P ðO; hjIÞ is ambiguous if the likelihood

is, i.e., P ðO; hjIÞ ¼ P ðftðOÞ; ftðhÞjIÞ provided P ðIjO; hÞ =

P ðIjftðOÞ; ftðhÞÞÞ. If uniform priors are assumed, then the

generic viewpoint assumption reduces to simply integrating

the likelihood function to obtain P ðOjIÞ ¼ ð1=ZÞ
R
dh P ðIjO;hÞ,

where Z is a constant and solving for:

O� ¼ arg max
O

Z
dhP ðIjO; hÞ: ð3Þ

To understand how the GVA works using uniform priors,

suppose we have an ambiguity so that P ðIjO; hÞ = P ðIjftðOÞ; ftðhÞÞ.
We calculate:
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P ðIjOÞ ¼ 1

Z

Z
dh P ðIjO; hÞ;

P ðIjftðOÞÞ ¼
1

Z

Z
dĥhP ðIjftðOÞ; ĥhÞ

¼ 1

Z

Z
dh

@f

@h

���� ���� P ðIjO; hÞ;
ð4Þ

where we have used the substitutions ĥh ¼ ftðhÞ and P ðIjO; hÞ ¼
P ðIjftðOÞ; ftðhÞÞ to make the integrands of P ðIjOÞ and P ðIjftðOÞÞ
as similar as possible. The only difference in the integrands is the
factor @f

@h

�� ��, which is the Jacobian of the transformation on the
nuisance variable, ĥh ¼ ftðhÞ. This Jacobian term is the mechanism
by which the GVA resolves the ambiguity.

This analysis has assumed uniform prior distributions. This is
attractive because these priors embody complete ignorance about
O and h. Moreover, this seems a natural choice of prior for the
viewpoint, the light source, and other nuisance variables. How-
ever, the same analysis can be repeated if the priors are non-
uniform. In this case, the posterior before integration, P ðO; hjIÞ, will
be unambiguous unless the prior densitiesP ðOÞ; P ðhÞ are invariant
to the ambiguities (which, of course, the uniform distribution is).
But, the posterior after integration, P ðOjIÞ, will be unambiguous
unless the prior distributions are invariant, P ðfðhÞÞ @f@h

�� ��dh ¼ P ðhÞdh.
In the next few sections, we will analyze the GVA for a large

class of ambiguities assuming uniform priors on viewpoint and
light source direction. For these ambiguities, we will show that the
Jacobian factor @f

@h

�� �� will cause a bias to planar surfaces.

3 GEOMETRIC AND PHOTOMETRIC AMBIGUITIES

There is a well-known ambiguity in the estimation of shape
corresponding to an affine transformation on the shape in
conjunction with a transformation on the viewpoint and camera
parameters [10], [6], [9]. More recently, this ambiguity was
extended to include photometric effects by additional transforma-
tions on the object albedo and the lighting conditions [2], [17].
These photometric effects include shadows and shading modeled
by Lambertian reflectance functions. We refer to the combined
transformation on shape and albedo as a KGBR transformation
[17]. These transformations form a group.

More formally, suppose we represent the surface and albedo of
an object O by f~rrð~uuÞ; að~uuÞ : ~uu 2 Ug, where ~rrð~uuÞ represents surface
position, að~uuÞ is the surface albedo, and ~uu 2 U are coordinates on
the surface of the object. Let the viewpoint be specified by a unit
vector ~vv and the lighting by a point source ~ss.

The KGBR assumes that the reflectance function is Lambertian,
which implies that the intensity of a surface point ~uu is independent
of the viewpoint and given by Ið~uuÞ ¼ maxf0; að~uuÞ~nnð~uuÞ �~ssg. The key
point of the KGBR is that we can keep the intensity Ið~uuÞ constant as
we transform the geometry of the surface by an affine transforma-
tion provided we also transform the albedo and the lighting [2], [17].
The intensity can be thought of as being painted onto the surface
(because Lambertian reflectance is independent of viewpoint) and,
so, the standard affine ambiguities [10], [6], [9] can be extended to
this photometric case.

A KGBR transformation [17] is specified by a three-dimensional
matrix K. It transforms an object O, f~rrð~uuÞ; að~uuÞ : ~uu 2 Ug, to an
object ÔO, f~̂rr̂rrð~uuÞ; âað~uuÞ : ~uu 2 Ug, and transforms the light source and
viewpoint from ~ss;~vv to ~̂sŝss;~̂vv̂vv, where:

~̂rr̂rrð~uuÞ ¼ K~rrð~uuÞ; ~̂nn̂nnð~uuÞ ¼ Kÿ1;T~nnð~uuÞ
jKÿ1;T~nnð~uuÞj

; 8 ~uu 2 U; ~̂vv̂vv ¼ K~vv

jK~vvj ; ð5Þ

âað~uuÞ ¼ að~uuÞjKÿ1;T~nnð~uuÞjj det Kj; 8 ~uu 2 U; ~̂sŝss ¼ K~ss

jdet Kj : ð6Þ

Equation (5) gives the geometric transformation on the object
shape and viewpoint (the transformation on the surface normals ~nn
is induced by the transformation on the surface points ~rr).
Equation 6 gives the transformation on the albedo and light

source. The transformed viewpoint ~̂vv̂vv is a unit vector. Observe that
maxf0; að~uuÞ~nnð~uuÞ �~ssg ¼ maxf0; âað~uuÞ~̂nn̂nnð~uuÞ �~̂sŝssg and, so, the intensity at
each point ~uu is preserved by the transformation.

We define ~xxð~uu;O;~vvÞ to be the orthographic projection of point ~uu
on the surface of object O to the image plane when viewed from
viewpoint ~vv. Similarly, we define ~uuð~xx;O;~vvÞ to be the point ~uu on the
surface of object O, which projects to point ~xx in the image under
viewpoint ~vv.

Then, the geometry of orthographic projection implies that
~xxð~uu; ÔO;~̂vv̂vvÞ ¼ A~xxð~uu;O;~vvÞ, provided that O;~vv and ÔO;~̂vv̂vv are related by
(5), where A is two-dimensional matrix, which is a function of K. It
can be shown [17] that det A ¼ j det Kj

jK~vvj (intuitively: the transforma-
tion K on the space induces a change, det A, in the area of the
image plane which equals the change in volume of space, jdet Kj,
divided by the contraction, jK~vvj, in the viewing direction).

We define the images of the two objects to be Isyn and ÎIsyn using
a Lambertian reflectance function with cast and attached shadows:

Isynð~xx;O;~vv;~ssÞ ¼ fð~xx;O;~vv;~ssÞmaxf0; a ~uuð~xx;O;~vvÞð Þ~nn ~uuð~xx;O;~vvÞð Þ �~ssg;

ÎIsynð~xx; ÔO;~̂vv̂vv;~̂sŝssÞ ¼ fð~xx; ÔO;~̂vv̂vv;~̂sŝssÞmaxf0; âa ~uuð~xx; ÔO;~̂vv̂vvÞ
� �

~̂nn̂nn ~uuð~xx; ÔO;~̂vv̂vvÞ
� �

�~̂sŝssg;

ð7Þ

where fð~xx;O;~vv;~ssÞ is a binary-valued function which takes value 0
if point ~xx is in shadow and takes value 1; otherwise, see analysis in
[2], [17].

Then, it follows from (5) and (6) that ÎIsynðA~xxÞ ¼ Isynð~xxÞ for all
points ~xx in the image plane and, hence, the images of objects O and
ÔO are identical up to the affine transformation A [17]. This is
illustrated in Fig. 1.

4 THE GENERIC VIEWPOINT AND LIGHTING

ASSUMPTION

We express the problem of estimating the object as probabilistic
inference. We define a generative model P ðIjO;~vv;~ss;WÞ, where W
represents the two-dimensional affine warp, by:

P ðIjO;~vv;~ss;WÞ ¼ F ðfIð~xxÞg; fIsynðW~xx;O;~vv;~ssÞgÞ; ð8Þ

for some function F ð:; :Þ. Equation (8) takes the synthesized image,
see (7), then adds noise (linearly or nonlinearly), and relates it to the
observed image I by an affine warp W. One possibility is
F ðfIð~xxÞg; fIsynð~xxÞgÞ ¼

Q
~xx � Ið~xxÞ ÿ Isynð~xxÞ
ÿ �

, which is the imaging
model when there is no noise and no warp.

The affine image warp W is required in order for the affine
geometry ambiguities to exist [10], [6], [9] and is also required for
the generic viewpoint analysis of Weinshall and Werman [13].
Following these theories, we also make no prior assumptions about
the warp and, in our probabilistic terminology, let it have a
uniform prior distribution (or, equivalently, we put no prior on W
and estimate it by maximum likelihood). The use of a uniform
prior for variables such as W is discussed in Section 5.
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Fig. 1. Object O (left panel) with lighting conditions ~ss seen from viewpoint ~vv gives
an identical image (up to affine warp) of object ÔO (right panel) under lighting ~̂sŝss
viewed from direction ~̂vv̂vv.



We formulate two versions of the generic assumption which
differ in the way they treat the affine warp W. They correspond to
estimating the quantities Q1ðIjOÞ and Q2ðIjOÞ defined by:

Q1ðIjOÞ ¼
Z
d~ss d~vv dWP ðIjO;~vv;~ss;WÞ; ð9Þ

Q2ðIjOÞ ¼
Z
d~ss d~vvmax

W
P ðIjO;~vv;~ss;WÞ: ð10Þ

The definition of Q1ðIjOÞ, see (9), treats W as a nuisance
parameter to be integrated out. For example, one could think of W

as being the (unknown) parameters of an affine camera. Q1ðIjOÞ is
proportional to the probability P ðIjOÞ obtained by placing uniform
priors on ~ss;~vv;W, computing P ðI;WjO;~vv;~ssÞ, and then integrating
out ~ss;~vv;W.

The definition ofQ2ðIjOÞ, given by (10), is motivated by Werman
and Weinshall’s notion of affine invariant similarity [14], where two
images are considered to be identical if their images are the same up
to an affine transform W. It can be checked that Q2ðIjOÞ has this
property and, to the author’s knowledge, is the only way we can
obtain such a quantity from our probabilistic formulation. (Suppose
that images I and ÎI are related by an affine transform ŴW so that
ÎIð~xxÞ ¼ IðŴW~xxÞ. Then, P ðÎIjO;~vv;~ss;WÞ ¼ P ðIjO;~vv;~ss;WŴW

ÿ1Þ and, so,
Q2ðÎIjOÞ ¼ Q2ðIjOÞ.)

Before proceeding to our main results, we need an intermediate
result on how the integration variables d~vv; d~ss in (9) and (10)
transform under a KGBR. The variable ~vv is a solid angle (because
the magnitude of~vv is set to unity). Their transformation is given by
the following lemma.

Lemma 1. If the viewpoint and lighting are related by ~̂vv̂vv ¼ K~vv=jK~vvj and
~̂sŝss ¼ K~ss=jdet Kj, then the solid angles are related by d~̂vv̂vv ¼
det Kd~vv=jK~vvj3 and d~̂sŝss ¼ d~ss=j det Kj2.

Proof. Let ~vvð�; �Þ to be a unit vector representing viewpoint

where �; � are coordinates on the unit sphere. The solid angles

on the original and transformed viewpoints are d~vv ¼ j~vv� �
~vv� jd�d� and d~̂vv̂vv ¼ j~̂vv̂vv� � ~̂vv̂vv�jd�d�, respectively, where subscripts

�;� denote derivatives with respect to � and �. Because ~vv is a

unit vector, it follows that ~vv� �~vv ¼ ~vv� �~vv ¼ 0, so that ~vv� �~vv� / ~vv
and, hence, j~vv� �~vv� j ¼ ~vv � f~vv� �~vv�g. Similarly, we compute

j~̂vv̂vv� � ~̂vv̂vv�j ¼ ~̂vv̂vv � f~̂vv̂vv� � ~̂vv̂vv�g. By setting ~̂vv̂vv ¼ K~vv=jK~vvj, we obtain
1
jK~vvj3 ðK~vvÞ � fK~vv� �K~vv�g ¼ det K

jK~vvj3~vv � f~vv� �~vv�g, which proves the

first statement. The result for ~ss is a direct calculation. tu

We now obtain our main result on generic viewpoint and
lighting.

Theorem 1. Let two objects O and ÔO be related by a KGBR K where one

eigenvalue of K is arbitrarily small (corresponding to flattening O in

the direction of the corresponding eigenvector). Then Q1ðIjÔOÞ ! 1
and Q2ðIjÔOÞ ! 1 as det K! 0. Therefore, Q1ðIjOÞ << Q1ðIjÔOÞ
and Q2ðIjOÞ << Q2ðIjÔOÞ, provided det K is sufficiently small and,

so, the flatter object is preferred and both criteria favor planar surface.

Proof. Apply a KGBR transform K to O. Equations (5) and (6)
imply that IsynðW~xx;O;~vv;~ssÞ ¼ IsynðAW~xx; ÔO;~̂vv̂vv;~̂sŝssÞ. Hence ,
P ðIjO;~vv;~ss;WÞ ¼ P ðIjÔO;~̂vv̂vv;~̂sŝss;AWÞ. Using the KGBR transform
to change variables, we express Q1ðIjÔOÞ as:

Q1ðIjÔOÞ ¼
Z
d~ss d~vv d ~WW

1

j det Kj2
det K

jK~vvj3
det K

jK~vvj P ðIjO;~vv;~ss;WÞ

¼
Z
d~ss d~vv d ~WW

1

jK~vvj4
P ðIjO;~vv;~ss;WÞ;

ð11Þ

where we have used Lemma 1 to obtain the transformation on
the integrands, and we know that the Jacobian from W to ŴW ¼
AW is given by det A, which equals det K=jK~vvj as discussed in
Section 3 and shown in [17].

The difference between the integrands of Q1ðIjÔOÞ and
Q1ðIjOÞ, see (9), is the term 1=jK~vvj4 in Q1ðIjÔOÞ. This term will
be dominated by those values of ~vv which are in the direction of
the smallest eigenvalue of K. As this eigenvalue tends to zero
(i.e., the object gets flattened and det K! 0), we see that
Q1ðIjÔOÞ ! 1 and, so, Q1ðIjÔOÞ >> Q1ðIjOÞ.

The argument is similar for Q2ðIjOÞ. The definitions imply
that maxW P ðIjO;~vv;~ss;WÞ ¼ maxŴW P ðIjÔO;~̂vv̂vv;~̂sŝss;ŴWÞ. Then, we
obtain

Q2ðIjÔOÞ ¼
Z
d~ss d~vv

1

jdet Kj2
det K

jK~vvj3
max

W
P ðIjO;~vv;~ss;WÞ; ð12Þ

which will also tend to infinity as det K tends to zero. Hence,

Q2ðIjÔOÞ >> Q2ðIjOÞ provided det K is sufficiently small. tu
Theorem 1 states that the flatter object is far more stable to

changes in the lighting and viewpoint. Mathematically, this is due

to the Jacobian factors which relate the variables d~ss; d~vv; dW to

d~̂sŝss; d~̂vv̂vv; dŴW, see Section 2. These Jacobian factors dominate the

integrals in (11) and (12). Small changes of the viewpoint ~vv and

lighting ~ss for object O will correspond to large changes of the

viewpoint ~̂vv̂vv and lighting ~̂sŝss of the flatter object ÔO, see Fig. 2.

Therefore, the viewpoints and lighting of the second object are far

more stable and are preferred by the GVA.
To understand this further, let the two smallest eigenvalues

of K be �1; �2, with 0 < �1 << �2, corresponding to eigenvectors
~ee1;~ee2. Then, the integrals in (11) and (12) will be dominated by
viewpoint ~vv close to ~ee1. To see what happens as we vary the
viewpoint, let ~vv ¼ cos �~ee1 þ sin �~ee2 and calculate ~̂vv̂vv ¼ f~ee1 þ ð�2=�1Þ
tan �~ee2g=f1þ ð�2=�1Þ2 tan2 �g1=2. Because �1=�2 << 1, small
changes of viewpoint ~vv of the first object (i.e., small �)
correspond to large changes of viewpoint ~̂vv̂vv of the second object
(particularly when tan � >> �1=�2). Indeed, if � is small, so that
~vv �~ee1, but tan � >> �1=�2, then a Taylor series expansion in
ð�1=�2 tan �Þ yields the viewpoint of the second object to be
~̂vv̂vv �~ee2 þ ð�1=�2 tan �Þ~ee1 þOð�1=�2 tan �Þ2, which is almost per-
pendicular to ~ee1. Therefore, changes in the viewing angle � of
object O correspond to large changes in the viewpoint of
object ÔO.

Now, suppose we ignore the photometric effects and represent

objects as isolated feature points and replace f~rrð~uuÞ : ~uu 2 Ug by

f~rri : i ¼ 1; . . . ; Ng. We replace Isyn by an imaging model where we

set Isynð~xxÞ ¼
PN

i¼1 �ð~xxÿ~xxði;~vvÞÞ, with ~xxði;~vvÞ being the projection of

the point~rri from view~vv. We define ~QQ1ðIjOÞ; ~QQ2ðIjOÞ by modifying

(8) to remove dependence on ~ss, and (9) and (10) to remove the

integration with respect to ~ss.

Theorem 2. Let two sets of point features O and ÔO be related by a matrix

K where one eigenvalue of K is arbitrarily small (corresponding to

flattening O in the direction of the corresponding eigenvector). Then,
~QQ1ðIjÔOÞ ! 1 and ~QQ2ðIjÔOÞ ! 1 as det K 7!0. Hence, ~QQ1ðIjOÞ <
< ~QQ1ðIjÔOÞ and ~QQ2ðIjOÞ << ~QQ2ðIjÔOÞ, for sufficiently small det K,

so the flatter object is preferred and the most probable interpretation of

the image is a planar surface.
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Fig. 2. Small changes of viewpoint of object O (left panel) correspond to large

changes of viewpoint for object ÔO (right panel). Here, ~vv1;~vv2;~vv3 correspond to
~̂vv̂vv1;~̂vv̂vv2;~̂vv̂vv3, respectively.



Proof. Same as for Theorem 1, except we only need to change the
variables ~vv and W. tu
This result is the analog to Weinshall and Werman [13], but

obtained using Freeman’s formulation of the generic viewpoint
assumption.

Now, suppose we fix the viewpoint to be~vv ¼ ð0; 0; 1Þ and allow
the lighting to vary. In this case, the KGBR ambiguity [17] reduces
to the GBR ambiguity [2]. This means that we can only transform
objects by a matrix K determined by constants ð�; �; �Þ and of form

K ¼
1 0 0
0 1 0
� � �

0@ 1A:
We use the original imaging model with fixed viewpoint, see

(7). We use the GBR transforms (i.e., restrict K to be of the form
above), which are performed only on the object geometry, albedo,
and light source direction. (There is no need for a two-dimensional
affine warp for this case.) We define Q̂Q1ðIjOÞ; Q̂Q2ðIjOÞ by
modifying (8) to remove dependence on ~vv and W, and (9) and
(10) to remove the integration with respect to ~vv and W.

Theorem 3. Let two objects O and ÔO be related by a GBR matrix K,
where the eigenvalue � of K in the direction ð0; 0; 1Þ is arbitrarily
small (corresponding to flattening O in this direction). Then,
Q̂Q1ðIjÔOÞ ! 1 and Q̂Q2ðIjÔOÞ ! 1 as det K! 0. Hence, for

sufficiently small det K, we have Q̂Q1ðIjOÞ << Q̂Q1ðIjÔOÞ and
Q̂Q2ðIjOÞ << Q̂Q2ðIjÔOÞ, so the flatter object is preferred.

Proof. Same as for Theorem 1, except we only need to change the
variable ~ss. tu
The three theorems show that the generic assumption causes a

bias toward planar interpretations when we take into account the
standard ambiguities [10], [6], [2], [9], [17]. This result is fairly
intuitive. If an object is flat, then its appearance is determined
entirely by its albedo and is independent of the lighting conditions
(up to a scale factor) or the viewpoint (up to two-dimensional
affine warps). Hence, a flat planar interpretation (e.g., a painting) is
the most stable percept.

What happens if we have a prior distribution P ðOÞ on the object
shape or albedo? These priors can be taken outside the integrals in
(9) and (10) and, after taking logarithms, we obtain
logP ðIjOÞ þ logP ðOÞ. The first term will, as we have shown, bias
toward planar surfaces. The second term will bias toward surfaces
which best satisfy the prior P ðOÞ. Therefore, there will remain a
tendency to bias perception toward objects that are flatter than the
prior. This tendency is smaller the stronger the prior. For example, a
prior on face shape will probably resist this flattening tendency
better than a more generic prior on surface smoothness.

5 DISCUSSION

Our analysis in this paper shows biases toward planar objects.
Interestingly, psychophysical experiments show biases of this type
[8]. It is unclear, however, whether such a bias is useful for a machine
vision system. It would seem better to leave ambiguities unresolved.

One can question the use of uniform distributions as priors for
the generic viewpoint assumption. Uniform distributions are
attractive choices to model ignorance. But, probabilists have
debated whether lack of knowledge of a variable is best expressed
by placing a uniform distribution on it [3]. For example, suppose
we wish to estimate depth using binocular stereo. The depth d is
inversely proportional to the disparity � and assume that we lack
knowledge of both. We can attempt to express this ignorance by
placing a uniform prior either on the depth or on the disparity. But,
placing a uniform prior on the depth d is not equivalent to placing
a uniform prior on the disparity �, see Fig. 3. Implementing the
generic viewpoint assumption by placing a uniform distribution
on the nuisance variable will give different results depending on
how the problem in question is represented.

Alternative results will be obtained if we use another formula-
tion of the generic view assumption based on decision theory [5],
[15]. This introduces the loss function as an additional factor of
choice. Results in this case seem to depend on the specific choice of
loss function. This goes against the apparent simplicity of the
generic viewpoint assumption.

Although the generic viewpoint assumption is very intuitive,
there seem to be limitations on what it can achieve. Prior
distributions on object shape and properties seems a more
reasonable way to resolve ambiguities. Nevertheless, the generic
viewpoint assumption has considerable intuitive plausibility and
remains a useful guide for choices of priors.
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Fig. 3. (a) The uniform prior for a variable x and (b) the corresponding prior for

y ¼ 1=x (b). A uniform prior on x is not equivalent to a uniform prior on 1=x.
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