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Abstract

This paper argues that many visual scenes are based on a ”Manhattan” three-dimensional
grid which imposes regularities on the image statistics. We construct a Bayesian model which
implements this assumption and estimates the viewer orientation relative to the Manhattan
grid. For many images, these estimates are good approximations to the viewer orientation
(as estimated manually by the authors). These estimates also make it easy to detect outlier
structures which are unaligned to the grid. To determine the applicability of the Manhattan
world model we implement a null hypothesis model which assumes that the image statistics
are independent of any three dimensional scene structure. We then use the log-likelihood ratio
test to determine whether an image satisfies the Manhattan world assumption. Our results
show that if an image is estimated to be Manhattan then the Bayesian model’s estimates of
viewer direction are almost always accurate (according to our manual estimates), and vice
versa.

1 Introduction

In recent years, there has been growing interest in the statistics of natural images (see Huang
and Mumford [16] for a recent review). Much of the interest in these statistics lies in their
usefulness for quantitatively describing the regularities of images. Image statistics are also
useful, however, for solving visual inference problems. They can be used to design statistical
edge detectors [12], to determine statistical image invariants [4], and to determine semantic
categories [18]. It is plausible that the receptive fields of neurons, adapt to these statistics
and exploit them for making inferences about the world, see [1].

This paper investigates the Manhattan world assumption [5], [6] where statistical image
regularities arise from the geometrical structure of the scene being viewed. It assumes that
the scene has a natural cartesian x, y, z coordinate system and the image statistics will be
determined by the alignment of the viewer with respect to this system. The Manhattan
world assumption is plausible for indoor and outdoor city scenes. But, as we will show, it
also applies to some scenes in the country and even to some paintings.



Informal evidence that human observers use a form of the Manhattan world assumption is
provided by the Ames room illusion, see Figure (1), where the observers appear to erroneously
make this assumption, thereby perceiving the sizes of objects in the room to be grotesquely
distorted. The Ames room is actually constructed in a shape that strongly violates the
Manhattan assumption but human observers, and our model (see top row of Figure (18)),
interpret the room as if it had a Cartesian structure.

Figure 1: The Ames room, a geometrically distorted room that nevertheless appears rectangular from a
special viewpoint. Despite appearances, the two people are the same size.

In particular, we demonstrate a Bayesian statistical model that exploits the Manhattan-
world assumption to determine the orientation of the viewer relative to the grid. This enables
us to to determine the orientation of the viewer in a scene, indoor or outdoor, from a single
image. It might, for example, be used as part of the “reptilian layer” of a vision system in
accordance with the active vision philosophy [2]. It gives a callibration methods that is an
alternative to well established techniques in computer vision based on calibration patterns [9]
or motion flow [10]. It is related to methods for callibration by estimating vanishing points,
see review in [8], but these methods require multiple images or manual labelling of detected
lines. The Bayesian model also allows us to detect outlier edges which are not aligned to the
dominant structures in the scene and which may simply object detection.

We evaluate our model by comparing its estimates of the viewer orientation with esti-
mates made manually by the authors (see [8] for recent comparisons of Manhattan-type
algorithms to alternative methods and groundtruth). This is demonstrated by figures in
the text (enabling the reader to make his/her own judgement). In addition, we construct a
null hypothesis model which assumes that the image statistics are independent of the three-
dimensional scene structure. This enables us to determine if an image obeys the Manhattan
world assumption by comparing the evidence of the Manhattan and the null hypothesis
model.

This paper is organized as follows. In Sections (2) and (3) we describe the geometry
of the problem and the connection between three-dimensional structures in the scene and
the corresponding properties of the image that are measured. Section (4) describes our
statistical model of images. Section (5) describes the full Bayesian model of Manhattan
world and Section (6) shows experimental results applying this model to a range of images
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and uses the null hypothesis model to estimate if an image is Manhattan. In Section (7) we
describe the application of the Manhattan model to finding outlier objects unaligned to the
Manhattan grid. Section (8) presents a consistency check the accuracy of the prior model.
Finally, Section (9) summarizes the paper.

2 The Geometry of the Problem

There has been an enormous amount of work studying the geometry of computer vision
[9, 17]. Techniques from projective geometry have been applied to finding the vanishing
points [3], [14]; see [20] for a recent review and analysis of these techniques. This work,
however, has typically proceeded through the stages of edge detection, Hough transforms,
and finally the calculation of the geometry. Alternatively, a sequence of images over time can
be used to estimate the geometry, see for example [21]. In this paper, we demonstrate that
accurate results can be obtained from a single image directly without the need for techniques
such as edge detection and Hough transforms, by exploiting the statistical regularities of
scenes.

For completeness, we give the basic geometry. The camera orientation is defined by a set
of camera axes aligned to the camera body which has been rotated relative to the Manhattan

xyz axis system. We define the camera axes by three unit vectors ~a, ~b and ~c. ~a and ~b specify
the horizontal and vertical directions, respectively, along the film plane in xyz coordinates.

~c is the unit vector that points along the line of sight of the camera, so that ~a×~b = ~c. The
projection from a 3-d point ~r = (x, y, z) to 2-d film coordinates ~u = (u, v) (centered at the
physical center of the film) is given by:

u =
−f~r · ~a

~r · ~c
, v =

−f~r ·~b

~r · ~c
. (1)

where f is the focal length of the camera. Here the film coordinates are chosen such that

the u-axis is aligned to ~a and the v-axis is aligned to ~b.
The camera orientation relative to the Manhattan xyz axis system may be specified by

three Euler angles α, β, and γ. We can think of starting with the vectors ~a, ~b and ~c aligned
to the xyz axes and applying three successive rotations to the coordinate frame defined by
these vectors (i.e. active transformations rather than passive coordinate transformations).
The first angle is the compass angle (or azimuth) α, which rotates the camera about the z
axis, yielding a transformed coordinate system x′y′z′. Next, the camera is rotated around
the y′ axis by the elevation angle β, yielding the next coordinate system x′′y′′z′′. This has
the effect of elevating the line of sight from the xy plane. Finally, a twist angle γ applies
a rotation γ about the x′′ axis, producing a twist in the plane of the film. We use ~Ψ to
denote all three angles (α, β, γ) of the camera orientation. (In previous work we made the
assumption that β = γ = 0 and only allowed the compass angle α to vary, which was a
reasonable approximation for many images in our database.)

To derive expressions for ~a, ~b and ~c as functions of ~Ψ we follow a standard procedure
[15] of constructing rotation matrices Rx(γ), Ry(β), Rz(α) and defining the overall rotation

matrix R(~Ψ) = Rz(α)Ry(β)Rx(γ). The resulting expression is
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R(~Ψ) =





cos α cos β − sin α cos γ + cos α sin β sin γ sin α sin γ + cos α sin β cos γ
sin α cos β cos α cos γ + sin α sin β sin γ − cos α sin γ + sin α sin β cos γ
− sin β − cos β sin γ cos β cos γ





(2)

We then obtain that ~a = R(~Ψ)(1, 0, 0)T , ~b = R(~Ψ)(0, 1, 0)T and ~c = R(~Ψ)(0, 0, 1)T .

3 Mapping Manhattan Lines to Image Gradients

Straight lines in the x, y, z directions in the Manhattan world project to straight lines in the
image plane. Our Bayesian model, see section (5), will use estimates of the orientations of
these lines on the image plane, provided by image gradient information, to find the camera
orientation which is most consistent with these orientation measurements. We now derive
the orientation in the image plane of an x, y, or z line projected at any pixel location (u, v)

as a function of camera orientation ~Ψ. The calculation proceeds by first calculating the
x, y, z vanishing point positions in the image plane as a function of ~Ψ. The resulting (u, v)
coordinates for the x, y, z vanishing points are (−fax/cx,−fbx/cx), (−fay/cy,−fby/cy) and
(−faz/cz,−fbz/cz), respectively.

Next, it is a straightforward calculation to show that a point in the image at ~u = (u, v)
with intensity gradient direction (cos θx, sin θx) is consistent with an x line in the sense that
it points to the vanishing point if tan θx = −(ucx + fax)/(vcx + fbx). This calculation is
for an ideal edge for which the intensity gradient direction (cos θx, sin θx) points exactly
perpendicularly to the x vanishing point; our Bayesian model will exploit the fact that the
orientation of true intensity gradients fluctuates about the ideal direction (see Section (5)
by modeling these fluctuations statistically. Observe also that this equation is unaffected
by adding ±π to θx and so it does not depend on the polarity of the edge. We get similar
expressions for y and z lines: tan θy = −(ucy + fay)/(vcy + fby) for intensity gradient
direction (cos θy, sin θy) and tan θz = −(ucz +faz)/(vcz +fbz) for intensity gradient direction
(cos θz, sin θz). See Figure 2 for an illustration of this geometry.

4 Pon and Poff : Characterizing Edges Statistically

A key element of our approach is that we do not use a binary edge map. Such edge maps
make premature decisions based on too little information. The poor quality of some of
the images we used – underexposed and overexposed – makes edge detection particularly
difficult. Our algorithm showed significant decrease in performance when we adapted it to
run on edge maps unless the edge detection threshold is varied from image to image.

Instead we use the power of statistics. Following work by Konishi et al. [12] [13], we
determine probabilities Pon(E~u) and Poff (E~u) for the probabilities of the response E~u of
an edge filter at position ~u in the image conditioned on whether we are on or off an edge.
These distributions were learned by Konishi et al for the Sowerby image database which
contain one hundred presegmented images (see [13] for the similarity of these statistics
from image to image). The more different Pon is from Poff then the easier edge detec-
tion becomes, see Figure 3. A suitable measure of difference is the Chernoff Information [7]
C(Pon, Poff) = −min0≤λ≤1 log

∑

y P λ
on(y)P 1−λ

off (y). This is motivated by theoretical studies
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Figure 2: Examples of projection. Left Panel: Geometry of an x line projected onto the (u, v) image plane.
θ is the normal orientation of the line in the image. Right Panel: the vanishing point due to two square
boxes aligned to the Manhattan grid. In both cases the camera is assumed to point in a horizontal direction,
and so the x vanishing point lies on the u axis.

of the detectability of edge contours [22]. Moreover, empirical studies [13] showed that the
Chernoff Information for this task correlates strongly with other performance measures based
on the ROC curve. Konishi et al tested a variety of different edge filters and ranked them
by their effectiveness based on their Chernoff information. For this project, we chose a very

simple edge detector
∣

∣

∣

~∇Gσ=1 ∗ I
∣

∣

∣
– the magnitude of the gradient of the grayscale image I

filtered by a Gaussian Gσ=1 with standard deviation σ = 1 pixel units – which has a Chernoff
of 0.26 nats or 0.37 bits (1 bit = loge 2 nats ≈ 0.69 nats). More effective edge detectors are
available – for example, the gradient at multiple scales using color has a Chernoff of 0.51
nats or 0.74 bits. But we do not need these more sophisticated detectors.

We extend the work of Konishi et al by putting probability distributions on how accurately
the edge filter gradient estimates the true perpendicular direction of the edge, see figure (4).
These were learned for this dataset by measuring the true orientations of straight-line edges
and comparing them to those estimated from the image gradients.

This gives us distributions on the magnitude and direction of the intensity gradient
Pon( ~E~u|θ), Poff( ~E~u), where ~E~u = (E~u, φ~u), θ is the true normal orientation of the edge,
and φ~u is the gradient direction measured at point ~u. We make a factorization assump-
tion that Pon( ~E~u|θ) = Pon(E~u)Pang(φ~u − θ) and Poff( ~E~u) = Poff (E~u)U(φ~u). Pang(.) (with
argument evaluated modulo 2π and normalized to 1 over the range 0 to 2π) is based on
experimental data, see Figure 4, and is peaked about 0 and π. In practice, we use a simple
box function model: Pang(δθ) = (1− ε)/4τ if δθ is within angle τ of 0 or π, and ε/(2π − 4τ)
otherwise (i.e. the chance of an angular error greater than ±τ is ε ). In our experiments
ε = 0.1 and τ = 6◦. By contrast, U(.) = 1/2π is the uniform distribution.

5 Bayesian Model

We now devise a Bayesian model which combines knowledge of the three-dimensional ge-
ometry of the Manhattan world with statistical knowledge of edges in images. The model
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Figure 3: Poff (y) (left) and Pon(y)(right), the empirical histograms of edge responses off and on edges,

respectively. Here the response y =
∣

∣

∣

~∇I
∣

∣

∣ is quantized to take 20 values and is shown on the horizontal axis.

Note that the peak of Poff (y) occurs at a lower edge response than the peak of Pon(y). These distributions
were very consistent for a range of images.
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Figure 4: Distribution Pang(.) of edge orientation error (displayed as an unnormalized histogram, modulo
180◦). Observe the strong peak at 0◦, indicating that the image gradient direction at an edge is usually very
close to the true normal orientation of the edge. We modelled this distribution using a simple box function.
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assumes that, while the majority of pixels in the image convey no information about camera
orientation, most of the pixels with high edge responses arise from the presence of x, y, z
lines in the three-dimensional scene. The edge orientations measured at these pixels provide
constraints on the camera angle, and although the constraining evidence from any single
pixel is weak, the Bayesian model allows us to pool the evidence over all pixels (both on and
off edges), yielding a sharp posterior distribution on the camera orientation. An important
feature of the Bayesian model is that it does not force us to decide prematurely which pixels
are on and off (or whether an on pixel is due to x, y or z), but allows us to sum over all
possible interpretations of each pixel.

5.1 Evidence at one pixel

The image data ~E~u at pixel ~u is explained by one of five models m~u: m~u = 1, 2, 3 mean the
data is generated by an edge due to an x, y, z line, respectively, in the scene; m~u = 4 means
the data is generated by a random edge (not due to an x, y, z line); and m~u = 5 means the
pixel is off-edge. The prior probability P (m~u) of each of the edge models was estimated
empirically to be 0.02, 0.02, 0.02, 0.04, 0.9 for m~u = 1, 2, . . . , 5.

Using the factorization assumption mentioned before, we assume the probability of the
image data ~E~u has two factors, one for the magnitude of the edge strength and another for
the edge direction:

P ( ~E~u|m~u, ~Ψ, ~u) = P (E~u|m~u)P (φ~u|m~u, ~Ψ, ~u) (3)

where P (E~u|m~u) equals Poff (E~u) if m~u = 5 or Pon(E~u) if m~u 6= 5. Also, P (φ~u|m~u, ~Ψ, ~u) equals

Pang(φ~u−θ(~Ψ, m~u, ~u)) if m~u = 1, 2, 3 or U(φ~u) if m~u = 4, 5. Here θ(~Ψ, m~u, ~u)) is the predicted
normal orientation of lines determined by the equation tan θx = −(ucx +fax)/(vcx +fbx) for
x lines, tan θy = −(ucy + fay)/(vcy + fby) for y lines, and tan θz = −(ucz + faz)/(vcz + fbz)
for z lines. The structure of the probability distribution for all the variables relevant to one
pixel (i.e. ~E~u, m~u, ~Ψ) is graphically depicted in the Bayes net shown in Figure 5.

m
u

E
uu

Figure 5: Bayes net for all variables pertaining to a single pixel. The net represents the structure of the joint
probability of the image gradient direction φ~u and magnitude E~u at pixel ~u, the assignment variable m~u at
that pixel and the camera orientation ~Ψ. (The dependence of φ~u on the pixel location ~u is not shown since
we assume ~u is known.)

In summary, the edge strength probability is modeled by Pon for models 1 through 4 and
by Poff for model 5. For models 1,2 and 3 the edge orientation is modeled by a distribution
which is peaked about the appropriate orientation of an x, y, z line predicted by the compass
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angle at pixel location ~u; for models 4 and 5 the edge orientation is assumed to be uniformly
distributed from 0 through 2π.

Rather than decide on a particular model at each pixel, we marginalize over all five
possible models (i.e. creating a mixture model):

P ( ~E~u|~Ψ, ~u) =

5
∑

m~u=1

P ( ~E~u|m~u, ~Ψ, ~u)P (m~u) (4)

In this way we can determine evidence about the camera orientation ~Ψ at each pixel without
knowing which of the five model categories the pixel belongs to.

5.2 Evidence over all pixels: finding the MAP

To combine evidence over all pixels in the image, denoted by { ~E~u}, we assume that the

image data is conditionally independent across all pixels, given the camera orientation ~Ψ:

P ({ ~E~u}|~Ψ) =
∏

~u

P ( ~E~u|~Ψ, ~u) (5)

Conditional independence is a key assumption of the Manhattan model (depicted in the
Bayes net in Figure 6). By neglecting coupling of image gradients at neighboring pixels, the
conditional independence assumption makes an approximation that yields a model for which
MAP inference is tractable (see equation 6). Note also that the conditional independence
assumption provides a way of combining evidence across pixels without an explicit grouping
process (e.g. by which pixels could be grouped into straight line segments). Conditional
independence is, of course, an approximation of the form used in many statistical inference
algorithms. Indeed, there exist theoretical studies [23] which prove that, for certain types of
problem, approximate models can give results almost as good as the correct models. We did
implement a Manhattan model which included spatial interactions, but the results did not
improve significantly and the model was far slower to implement.

The posterior distribution on the camera orientation is thus given by:
∏

~u P ( ~E~u|~Ψ, ~u)P (~Ψ)/Z

where Z is a normalization factor and P (~Ψ) is a uniform prior on the camera orientation.
To find the MAP (maximum a posterior) estimate, we need to maximize the log posterior

term (ignoring Z, which is independent of ~Ψ):

log[P ({ ~E~u}|~Ψ)P (~Ψ)] = log P (~Ψ) +
∑

~u

log[
5

∑

m~u=1

P ( ~E~u|m~u, ~Ψ, ~u)P (m~u)] (6)

We denote the MAP estimate by ~Ψ∗. To find the MAP, our algorithm evaluates the log
posterior numerically for the compass direction for a quantized set of ~Ψ values. (The condi-
tional independence assumption makes the form of the log posterior simple enough that it
can be evaluated for any given ~Ψ value by summing over only 5 terms for each pixel.) One
such set of quantized values that works for a range of images is given by searching over all
combinations of α from −45◦ to 45◦ in increments of 4◦, elevation β from −40◦ to 40◦ in
increments of 2◦, and twist γ from −4◦ to 4◦ in increments of 2◦. In our preliminary work [5]
we assumed that the camera was pointed horizontally, so we effectively set β = 0 and γ = 0
and searched for all α from −45◦ to 45◦ in increments of 2◦.
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Figure 6: Bayes net for all variables in the Manhattan model. The net represents the structure of the joint
probability of the image gradient vector ~E~uij

at pixel ~uij (the pixel at row i and column j), the assignment

variable m~uij
at that pixel and the camera orientation ~Ψ. The box represents the entire image, with an

image gradient vector ~E~uij
and assignment variable m~uij

at each pixel location. The structure of the net

graphically illustrates the assumption that the image gradient vectors ~E~u are conditionally independent from
pixel to pixel.

A coarse-to-fine search strategy was employed to speed up the search for the MAP es-
timate, which succeeded for most images for which the true values of β and γ were close
to 0. The first stage of the search was to find the best value of α from 45◦ to 45◦ in in-
crements of 4◦, while setting β = 0 and γ = 0. The best value of α that was obtained,
αc, was used to initialize a medium-scale search, which searched over all (α, β, γ) of the
form (αc + i∆αm, j∆βm, k∆γm), where i, j, k ∈ {−1, 0, 1} and ∆αm = 2◦, ∆βm = 5◦ and
∆γm = 5◦. The best Euler angles thus obtained, (αm, βm, γm), were then used to initialize a
fine-scale search, which searched over all (α, β, γ) of the form (αm, βm + j∆βf , γm + k∆γf),
where j, k ∈ {−2,−1, 0, 1, 2} and ∆βf = 2.5◦ and ∆γf = 2.5◦.

We should mention the issues of algorithmic speed. At present the algorithm takes half
a minute using the course-to-fine search strategy) on images of size 640× 480. Optimizing
the code and subsampling the image will allow the algorithm to work significantly faster.
Other techniques involve rejecting image pixels where the edge detector response is so low
that there is no realistic chance of an edge being present. This would mean that at least 70%
of the image pixels could be removed from the computation. We observe that the algorithm
is entirely parallelizable. Stochastic gradient-descent techniques may also be employed for
significant speed-ups [11].
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6 Experimental Results for Determining Manhattan Structure

Our model has been tested on four datasets of images: indoor scenes, outdoor city scenes,
outdoor rural scenes and miscellaneous non-Manhattan scenes. Images from the first two
datasets were taken by an unskilled photographer unfamiliar with the goals of the study; the
outdoor rural scenes were obtained from a database of scenes of English countryside; and
the non-Manhattan scenes were downloaded from the web.

We tested our model is two ways. Firstly, we compared the vanishing points estimated by
the algorithm to manual estimates made by the authors. Secondly, we implemented a null
hypothesis model and used a log-likelihood test to estimate whether an image does, or does
not, obey the Manhattan world assumption. The null hypothesis model removes the image
intensity depedence on any three-dimensional scene structure.

Our experiments show that the algorithms’ estimates are usually close to the manual
estimates for the first three domains, see section (6.1,6.2,6.3). Moreover, images in these
domains are almost always estimated as obeying the Manhattan world assumption while
the miscellaneous images are typically estimated as not obeying the assumption, see Sec-
tion (6.4).

6.1 Estimating Viewpoint for Indoor Scenes

On this dataset, the camera was held roughly horizontal but no special attempt was made
to align it precisely. The camera was set on automatic so some images are over- or under-
exposed.

Figure 7: Estimates of the compass angle and geometry obtained by our algorithm. The estimated orien-
tations of the x and y lines are indicated by the black line segments drawn on the input image. At each
point on a subgrid two such segments are drawn – one for x and one for y. Left panel: Observe how the x
directions align with the wall on the right hand side and with features parallel to this wall. The y lines align
with the wall on the left (and objects parallel to it). Right panel: Observe that the x, y directions align with
the appropriate walls despite the poor quality of the image (i.e. under-exposed).

A total of twenty-five images were tested. Since the camera was held roughly horizontal,
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we set β = 0 and γ = 0 and searched for the optimal value of α (the results are similar
when searching simultaneously over all three camera angles α, β and γ). On twenty-three
images, the angles estimated by the algorithm was within 5◦ of the manual estimate made
by the authors. On two images, the orientation of the camera was far from horizontal and
the estimation was poor. Examples of successes, demonstrating the range of images used,
are shown in Figures 7,8. The log posteriors for typical images, plotted as a function of α,
are shown in Figure 9 and are sharply peaked.

Figure 8: Another indoor (left panel) scene, its exterior (right panel), and another indoor scene (right panel).
Same conventions as above. The vanishing points are estimated to within 5◦ (perfectly adequate for our
purposes). Note poor quality of the indoor image (i.e. over-exposed). (Indoor 23,8 and Outdoor 12).
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Figure 9: The log posteriors as a function of α (from −45◦ to 45◦ along the horizontal axis) for images Indoor
17 (left) and Indoor 15 (right). These results are typical for both the indoor and outdoor dataset. (For these
plots it was assumed that the camera is roughly horizontal so only the angle α needs to be varied.)
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6.2 Estimating Viewpoint for Outdoor City Scenes

We next tested the accuracy of estimation on outdoor city scenes. Again we used twenty-
five test images (taken by the same photographer as for the indoor scenes). In these scenes
the vast majority of the results (twenty-two) were accurate up to 10◦ (with respect to the
manual estimates made by the authors). On three of the images the angles were worse than
10◦. Inspection of these images showed that the log posterior had multiple peaks, one peak
corresponding to the true compass angle (to within 10◦), as well as false peaks which were
higher. The false peaks typically corresponded to the presence of structured objects in the
scene (e.g. stairway railings) which did not align to Manhattan structure.

Figure 10: Results on four outdoor images. Same conventions as before. Observe the accuracy of the x, y
projections in these varied scenes despite the poor quality of some of the images.

On twenty-two of the twenty-five images, however, the algorithm gave estimates accurate
to 10◦ (compared with the authors’ manual estimates). See Figure 10 for a representative
set of images on which the algorithm was successful. We also demonstrate the algorithm
on two aerial views of cities downloaded from the web, see Figure 11. On these images we
searched for all three camera angles α, β and γ simultaneously, which was necessary since
the camera was tilted from the horizontal.
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Figure 11: Aerial views of Manhattan, left and Vancouver, right. Note that the camera is tilted from the
horizontal in both cases.

6.3 Estimating Viewpoint for Outdoor Rural Scenes

We also applied the Manhattan model to less structured scenes in the English countryside
(see [6] for a first report). Figure (12) shows two images of roads in rural scenes and two
fields. These images come from the Sowerby database.

But some scenes, see Figure (13), contain so little Manhattan structure that the Manhat-
tan model may base its inference on chance alignments of various parts of the scene.

The next four images, see Figure (14), were either downloaded from the web or digitized
(the painting). These are the mid-west broccoli field, the Parthenon ruins, the painting of the
French countryside, and the ski scene. On all of the images in this section, the Manhattan
algorithm searched for all three camera angles α, β and γ simultaneously. In almost all of
these cases, the Manhattan model makes reasonable inferences despite the absence of strong
Manhattan structure, and in some cases despite the absence of strong straight-line edges.

6.4 Manhattan World and the Null Hypothesis

We now propose a test to determine whether an image obeys the Manhattan world assump-
tion. Our previous results, see sections (6.1,6.2,6.3), show that on several image classes we
can detect accurate vanishing points (with respect to our manual estimates) but there are
many images, such as underwater images, for which the Manhattan world assumption is
highly implausible.

We proceed by constructing a null hypothesis model and then use model selection to
estimate whether an image obeys the Manhattan world assumption. The null hypothe-
sis model is constructed by modifying our Manhattan model of equation (3) by setting

P (φ~u|m~u, ~Ψ, ~u) = U(φ~u) where U(.) is the uniform distribution. This give our null hypothe-
sis model to be:
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Figure 12: Results on rural images in England without strong Manhattan structure. Same conventions as
before. Two images of roads in the countryside (left panels) and two images of fields (right panel).

Figure 13: Example of a scene with low Manhattan structure. The hill silhouettes are mistakenly interpreted
as x lines.
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Figure 14: Results on an American mid-west broccoli field, the ruins of the Parthenon, a digitized painting
of the French countryside and a ski scene.
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Pnull({ ~E~u}) =
∏

~u

[P (edge)Pon(E~u) + P (not− edge)Poff (E~u)]U(φ~u), (7)

where P (edge) =
∑4

i=1 P (mi) = 0.1 and P (not− edge) = P (m5) = 0.9. In other words, we
no longer distinguish between different types of edges and no longer assume that the image
statistics reflect any three-dimensional scene structure.
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Figure 15: We plot the loglikehood ratio log(Pmanhat({ ~E~u})/Pnull({ ~E~u}) of the (approximated) Manhattan
model with respect to the null hypothesis. The vertical axis is the log-likelihood ratio and the horizontal
axis is the index label of the images. We indicate indoor, outdoor, Sowerby, and miscellaneous images by
circles, crosses (×), triangles, and pluses (+) respectively.

To do model comparison for an image with statistics { ~E~u}, we compute the evidence

log Pmanhat({E~u}) = log
∑

~(Ψ)
P ({ ~E~u}|~Ψ)P (~Ψ) of the Manhattan model and subtract the

evidence log Pnull({ ~E~u}) of the null model. This gives the log-likelihood ratio between the

two models. We approximate the evidence by log Pmanhat({E~u}) ≈ log P ({ ~E~u}|~Ψ
∗)P (~Ψ∗),

where ~Ψ∗ = arg max~Ψ P ({ ~E~u}|~Ψ)P (~Ψ). This approximation is a lower bound to the true
evidence and we argue that it is a good approximation because of the sharpness of the peaks
in the posterior P ({ ~E~u}|~Ψ)P (~Ψ), see figure (9) (this figure plots the log posterior, so the
posterior is considerably sharper).

The experimental results, i.e. the plots of log Pmanhat({E~u})/Pnull({E~u}) in figure (15),
show that all the images reported in section (6.1, 6.2,6.3), satisfy the Manhattan world
assumption (according to our model selection test). It is therefore not surprising that the
algorithms estimates of the vanishing point were accurate for these images. The figure also
shows a plausible trend: indoor images best satisfy the Manhattan world assumption followed
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by outdoor images and then by rural images. The figure also shows ten miscellaneous images
which are not expected to satisfy the Manhattan world assumption. These images include
an underwater image, see figure (16), and almost all have log-likelihoods than are less than
zero and considerably lower than those for indoor, outdoor, and rural scences. The main
exception is the fourth image which is a photograph of a helicopter, see figure (13), and
where the hill silhouettes are mistakenly interpreted as horizontal x lines.

It is also interesting to plot the evidence, log(Pmanhat({ ~E~u}), for the Manhattan model
alone, see figure (16). (As above, we approximate this sum by the dominant contribution

given by ~Ψ∗). The evidence is useful for indicating trends to determine what classes of images
fit the Manhattan world assumption. To avoid biases caused by different images sizes, we
normalize the evidence by the image size and plot L/N . (Our conditional independence
assumption, if correct, implies that the evidence scales linearly with the number of pixels).
Observe that the data is very high dimensional and so the probabilities of any image will be
very small.
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Figure 16: Evidence per pixel (approximated), 1/N log(Pmanhat({ ~E~u}), evaluated in three domains: indoor
images (labeled by o’s), outdoor urban images (labeled by x’s), and miscellaneous images (labeled by +’s).
A representative image from each domain is shown below. The trend is that the evidence per pixel decreases,
on average, as we go from images with strong Manhattan structure to images without Manhattan structure.
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7 Outliers in Manhattan world

We now describe how the Manhattan world model may help for the task of detecting target
objects in background clutter. To perform such a task effectively requires modelling the
properties of the background clutter in addition to those of the target object. It has recently
been appreciated [19] that simple models of background clutter based on Gaussian proba-
bility distributions are often inadequate and that better performance can be obtained using
alternative probability models [24].

The Manhattan world assumption gives an alternative, and complementary, way of prob-
abilistically modelling background clutter. The background clutter will correspond to the
regular structure of buildings and roads and its edges will be aligned to the Manhattan grid.
The target object, however, is assumed to be unaligned (at least, in part) to this grid. There-
fore many of the edges of the target object will be assigned to model 4 by the algorithm. This
enables us to significantly simplify the detection task by removing all edges in the images
except those assigned to model 4. (Of course, further processing is required to group these
outlier edges into coherent targets).

Figure 17: Bikes (top row) and robots (bottom row) as outliers in Manhattan world. The original image
(left) and the edge maps (center) computed as log Pon(E~u)/Poff (E~u) – see Konishi et al 1999 – displayed
as a grayscale image where black is high and white is low. In the right column we show the edges assigned
to model 4 (i.e. the outliers) in black. Observe that the edges of the bike and robot are now highly salient
(and would make detection simpler) because most of them are unaligned to the Manhattan grid.

This idea is demonstrated in Figures 17, 18, where the targets are a bike, a robot and
people. At each pixel, our algorithm decides whether the most likely interpretation is model 4
or any of the other models. More precisely, it decides ”outlier” if P (m~u = 4| ~E~u, ~Ψ∗)/P (m~u 6=

4| ~E~u, ~Ψ
∗) > T and ”non-outlier” otherwise, where T ≈ 0.4 and ~Ψ∗ is the MAP estimate of

the camera orientation. Observe how most of the edges in the image are eliminated as target
object candidates because of their alignment to the Manhattan grid. The bike, robot and
people stand out as outliers to the grid.

The Ames room, see the top row of Figure (18), is a geometrically distorted room which
is constructed so as to give the false impression that it is built on a Cartesian coordinate
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Figure 18: People in Manhattan world: the Ames room twins (top) and a co-author (bottom). Same
conventions as in preceding figure. The Ames room actually violates the Manhattan assumption but human
observers, and our algorithm, interpret it as if it satisfied the assumptions. In fact, despite appearances, the
two people in the Ames room are really the same size.

frame when viewed from a special viewpoint. Human observers assume that the room is
indeed Cartesian despite all other visual cues to the contrary. This distorts the apparent
size of objects so that, for example, humans in different parts of the room appear to have
very different sizes. In fact, a human walking across the room will appear to change size
dramatically. Our algorithm, like human observers, interprets the room as being Cartesian
and helps identify the humans in the room as outlier edges which are unaligned to the
Cartesian reference system.

This simple example illustrates a method of modelling background clutter which we refer
to as scene clutter because it is effectively the same as defining a probability model for the
entire scene. Observe that scene clutter models require external variables – in this case the
~Ψ camera orientation – to determine the orientation of the viewer relative to the scene axes.
These variables must be estimated to help distinguish between target and clutter. This
differs from standard models used for background clutter [19],[24] where no external variable
is used.

8 Consistency Check of the Prior

Ideally, the parameters defining the model assignment prior P (m~u) should be learned based
on the ground-truth classification of pixels in Manhattan-type images into the five model
categories. However, no such ground-truth information is available, so we determined the
parameters on the basis of both measurements and guesswork. In the segmentations supplied
with the Sowerby dataset images about 10% of all pixels are edges. It is plausible to assume
that 40% of all edges are outliers (model 4) and that x, y and z edges occur in roughly
equal proportions. Hence we arrived at the prior frequencies 0.02, 0.02, 0.02, 0.04, 0.9 for
m~u = 1, 2, . . . , 5.

In this section we describe a consistency check for the prior frequencies by estimating the
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frequencies of each model assignment using the above prior and conditioning on image data.
Our results show, see table (1), that the estimated frequencies of the different edge types are
similar to our prior frequencies. This is only a crude check because, clearly, our estimated
frequencies will be biased towards our choice of prior frequencies.

Our check is based on the following observation: assume a Bayesian model P (X|Y ) =
P (Y |X)P (X)/P (Y ), where Y is the observables and X is the variable to be estimated.
Let {Yi} be a set of samples from P (Y ). Then

∑

i P (X|Yi) =
∑

i P (Yi|X)P (X)/P (Yi) ∼
∑

Y P (Y )P (Y |X)P (X)/P (Y ) = P (X) as the number of samples tends to infinity. Hence
the posterior averaged over a set of representative samples should converge to the prior. Now
because our images are large, and we are assuming conditional independence, it is plausible
that we get sufficient number of samples from each image to ensure that the estimated edge
frequencies in each image are roughly equal to the prior frequencies (this is an ergodic, or
self-averaging, assumption).

We can compute the empirical frequency hk of each model assignment k (h1 is the empirical
frequency of x lines, h2 is the empirical frequency of y lines, etc.) in an image. We define hk

as the mean frequency of model k in the image, conditioned on all the image data and the
MAP estimate of the camera orientation:

hk =< (1/N)
∑

~u

δk,m~u
>P ({m~u}|{ ~E~u},~Ψ∗)= (1/N)

∑

~u

P (m~u = k| ~E~u, ~u, ~Ψ∗),

where P (m~u = k| ~E~u, ~u, ~Ψ∗) = P (m~u = k)P ( ~E~u|m~u = k, ~u, ~Ψ∗)/Z and Z =
∑5

k′=1 P (m~u =

k′)P ( ~E~u|m~u = k′, ~u, ~Ψ∗).
We show results on 23 indoor images in Table 1. The empirical frequencies are fairly

consistent with the prior model frequencies, although in many of the images the frequency of
z lines appears to be higher than the x and y frequencies. Averaging the empirical frequencies
across an entire domain might be a useful way to adapt the Manhattan prior to new domains.

Image 1 2 3 4 5 6 7 8 9 10 11 12

h1 0.015 0.018 0.027 0.018 0.032 0.021 0.016 0.025 0.025 0.026 0.025 0.020

h2 0.023 0.019 0.014 0.032 0.036 0.030 0.028 0.045 0.044 0.030 0.025 0.028

h3 0.024 0.072 0.051 0.019 0.017 0.056 0.035 0.065 0.070 0.033 0.063 0.068

h4 0.025 0.038 0.033 0.031 0.035 0.036 0.033 0.054 0.056 0.055 0.035 0.038

h5 0.912 0.854 0.875 0.900 0.879 0.856 0.888 0.812 0.806 0.857 0.852 0.800

Image 13 14 15 16 17 18 19 20 21 22 23

h1 0.017 0.032 0.029 0.026 0.033 0.022 0.026 0.010 0.018 0.018 0.023

h2 0.028 0.055 0.026 0.027 0.044 0.020 0.022 0.028 0.056 0.024 0.020

h3 0.057 0.035 0.028 0.052 0.066 0.036 0.052 0.044 0.083 0.033 0.108

h4 0.035 0.065 0.041 0.035 0.065 0.043 0.041 0.026 0.060 0.033 0.049

h5 0.862 0.813 0.875 0.859 0.793 0.879 0.859 0.892 0.783 0.892 0.800

Table 1: Empirical estimates of prior model frequencies for 23 indoor images.

Another useful consistency check on the prior is to calculate the MAP estimate of the
model assignment at each pixel conditioned on the entire image. To evaluate this we calculate
the most likely model assignment at each pixel given the image data there and the global
MAP estimate ~Ψ∗ of the camera orientation. More precisely, at each pixel u we find the
value of m~u that maximizes P (m~u| ~E~u, ~Ψ

∗). We show results on two images in Figure 19,
which demonstrates that pixels are being classified appropriately.
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Figure 19: Detection of x, y, z lines. In each row, the original image on far left is followed by images showing
the locations of pixels inferred to be on x, y and z lines, respectively, from center left to far right.

9 Summary and Conclusions

We developed a Bayesian model for exploiting the Manhattan world assumption and showed
that it gave good estimates of vanishing points (e.g. viewpoint) as compared to manual
estimation. In addition, the model is able to detect outlier edges, which are not aligned to
the Manhattan world grid, and which may be useful for detecting objects. We formulated
a null hypothesis model and used model comparison to test whether an image obeyed the
Manhattan World assumption. This demonstrated that the Manhattan world assumption
applies to a range of images, rural and otherwise, in addition to urban scenes.

Our work adds to the growing literature on the statistics of natural images and is, perhaps,
the first to determine statistical regularities which depend explictly on the three-dimensional
scene structure. We expect that there are many further image statistical regularities of this
type which might be exploited by biological and artificial vision systems.

More recently, Isard and MacCormick have made use of the Manhattan world assumption
as a component of a surveillance system [11] and have implemented a stochastic search
algorithm which is faster than the algorithms we use in this paper. Subsequently Deutscher,
Isard and MacCormick [8] improved the Manhattan formulation to estimate focal length as
well as camera orientation and demonstrated reasonably accuracy, although the approach
was less accurate than standard methods requiring calibration patterns or motion estimation.
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