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Abstract

A general framework for defining generative models of images is Markov random

fields (MRF’s), with shift-invariant (homogeneous) MRF’s being an important spe-

cial case for modeling textures and generic images. Given a dataset of natural im-

ages and a set of filters from which filter histogram statistics are obtained, a shift-

invariant MRF can be defined (as in Zhu [12]) as a distribution of images whose

mean filter histogram values match the empirical values obtained from the data set.

Certain parameters in the MRF model, called potentials, must be determined in or-

der for the model to match the empirical statistics. Standard methods for calculating

the potentials are computationally very demanding, such as Generalized Iterative

Scaling (GIS), an iterative procedure that converges to the correct potential val-

ues. We define a fast approximation, called BKGIS, which uses the Bethe-Kikuchi

approximation from statistical physics to speed up the GIS procedure. Results are

demonstrated on a model using two filters, and we show synthetic images that have

been sampled from the model. Finally, we show a connection between GIS and our

previous work on the g-factor.
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1 Introduction

It is increasingly important to learn generative models for vision from real data. A gen-

eral framework for defining generative models of images is Markov random fields (MRF’s),

which may be used to define a probability distribution on an entire image pixel lattice. An

MRF probability distribution is defined in terms of clique potential functions, referred to

as ”potentials,” which are functions of local clusters of pixels (”cliques”) that enforce the

desired statistical relationships among the pixel intensity values in these clusters. An im-

portant sub-class of MRF’s are those that are shift-invariant (homogeneous), i.e. those for

which the potential functions are the same from clique to clique. Shift-invariant MRF’s can

be used for modeling statistically homogeneous patterns such as textures and generic images.

Pioneering work by Zhu, Wu, and Mumford [12] introduced the Minimax Entropy Learning

scheme which enabled them to learn shift-invariant MRF distributions for images based on

filter histograms obtained from a dataset of images. This work gave an elegant connection

between generative models on images (eg. [12],[11]) and empirical studies of the statistical

properties of images, for example see [7],[6], [5].

Learning MRF distributions from empirical image data requires calculating the values of the

potential functions that result in a distribution which is consistent with the empirical data.

(This corresponds to the classic problem of estimating the parameters of a log-linear model.)

Standard methods for calculating the potentials are computationally very demanding, such

as Generalized Iterative Scaling (GIS), an iterative procedure due to Darroch and Ratcliff

[3] that is guaranteed to converge to the correct potential values. GIS may be thought of as

a form of steepest descent in which each iteration updates the potential values. For the type

of MRF we consider in this paper, shift-invariant MRF’s defined in terms of histograms of

filter responses, each iteration of GIS requires calculating the mean filter histogram values, or

histogram expectations, given the current value of the potentials. Calculating the histogram

expectations is the computational bottleneck of GIS, since closed-form expressions for these

expectations are intractable, and estimating expectations by methods such as MCMC is very

slow.
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To speed up this bottleneck, we apply recent work on the Bethe-Kikuchi approximation

[9], which is a standard approximation in statistical physics [4], to estimate the histogram

expectations at each step of GIS. We name this algorithm BKGIS. Since the Bethe-Kikuchi

approximation is a variational procedure that requires constrained optimization, we employ

the recently devised CCCP algorithm [10] to perform the required constrained optimization.

We apply the CCCP algorithm in a way that exploits the homogeneous structure of the

MRF, resulting in an algorithm that converges quickly to a solution of the Bethe-Kikuchi

approximation. We demonstrate our work by learning MRF models for generic images and

generating corresponding image samples.

In addition, we show a direct relationship between the GIS algorithm and a previous method,

called the multinomial approximation, proposed for estimating potentials using an indepen-

dence assumption [2]. We show that this previous approach corresponds to the first iteration

of the GIS algorithm with uniform initial conditions. This means that a single iteration

of GIS can be sufficient to get a good approximation to the MRF potentials. The same

relationship holds for BKGIS.

In Section (2), we briefly review Markov random fields and Minimax Entropy Learning.

Section (3) introduces the Generalized Iterative Scaling algorithm and demonstrates that

the first iteration of GIS corresponds to the multinomial method. In Section (4) and (4.2) we

describe the BKGIS algorithm which uses the Bethe-Kikuchi approximation and a CCCP

algorithm to speed up GIS. Section (5) gives results. Finally, in Appendices A and B we

review the multinomial approximation method and show how its properties can be computed

efficiently.

2 Shift-Invariant Markov Random Fields

Suppose we have training image data which we assume has been generated by an (unknown)

probability distribution PT (~x), where ~x represents an image. A Markov random field (MRF)

may be used to construct a generative model of PT (~x), and one procedure for defining an

appropriate MRF is given by Minimax Entropy Learning (MEL) [12]. The MEL procedure
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approximates PT (~x) by selecting the distribution with maximum entropy constrained by

observed feature statistics < ~φ(~x) >= ~ψobs. This gives the exponential form P (~x|~λ) = e
~λ·~φ(~x)

Z[~λ]
,

where ~λ is a vector of parameters, called the potentials, chosen such that
∑

x P (~x|λ)φ(~x) =

~ψobs. This procedure is equivalent to performing maximum likelihood estimation of ~λ given

the exponential form.

We will treat the special case where the statistics ~φ are the histogram of a shift-invariant

filter {fi(~x) : i = 1, ..., N}, where N is the total number of pixels in the image. So ψa =

φa(~x) = 1
N

∑N
i=1 δa,fi(~x) where a = 1, ..., Q indicates the (quantized) filter response values.

The potentials become ~λ · ~φ(~x) = 1
N

∑Q
a=1

∑N
i=1 λ(a)δa,fi(~x) = 1

N

∑N
i=1 λ(fi(~x)). Hence P (~x|~λ)

becomes a MRF distribution with clique potentials given by λ(fi(~x)). This determines a

shift-invariant Markov random field with the clique structure given by the filter responses

{fi}.

Multiple filters may be used simultaneously. We denote each of the M filters by f
(k)
i (~x),

where the superscript k ranges from 1 through M and labels the filter. In this case the

distribution becomes

P (~x|~λ(1), . . . , ~λ(M)) =
e
∑M

k=1
~λ(k)·~φ(k)(~x)

Z[~λ(1), . . . , ~λ(M)]
, (1)

where ~λ(k) labels the M potentials and ~φ(k) labels the M statistics. The potentials are chosen

so that < ~φ(k)(~x) >= ~ψ
(k)
obs for each k. (The choice of which filters should be used is prescribed

by a feature selection stage based on a minimum entropy principle, which favors filters that

lower the entropy of the distribution on images as much as possible.)

Estimating the value of the potentials ~λ is computationally very demanding. Standard pro-

cedures entail performing steepest descent on ~λ, with stochastic sampling of the entire dis-

tribution P (~x|~λ) required at each iteration. The goal of this paper is to introduce the BKGIS

algorithm for rapidly estimating the potentials based on Generalized Iterative Scaling and

the Bethe-Kikuchi approximation.
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3 Generalized Iterative Scaling

In this section we introduce Generalized Iterative Scaling (GIS)[3] and explain the connection

between it and the multinomial approximation, which is an approximation described in

the Appendix A that gives a rapid procedure for estimating potentials. GIS is an iterative

procedure for calculating clique potentials that is guaranteed to converge to the maximum

likelihood values of the potentials given the desired empirical filter marginals (e.g. filter

histograms). We show that estimating the potentials by the multinomial approximation is

equivalent to the estimate obtained after performing the first iteration of GIS.

The GIS procedure calculates a sequence of distributions on the entire image (and is guar-

anteed to converge to the correct maximum likelihood distribution), with an update rule

given by P (t+1)(~x) ∝ P (0)(~x)
∏Q
a=1{

ψobs
a

ψ
(t)
a

}φa(~x), where ψ(t)
a =< φa(~x) >P (t)(~x) is the expected

histogram for the distribution at time t. This implies that the corresponding clique potential

update equation is given by:

λ(t+1)
a = λ(t)

a + logψobsa − logψ(t)
a . (2)

We note that the GIS procedure exploits the fact that the filter histograms ψobsa and ψ(t)
a

are normalized to 1. If two or more filters are used it can be shown that the GIS update

procedure must be modified to the following form:

λk,(t+1)
a = λk,(t)a + (1/M)(logψk,obsa − logψk,(t)a ) (3)

for M filters, where the superscript k ranges from 1 through M and labels the filter.

If we initialize GIS so that the initial distribution is the uniform distribution on images,

i.e. P (0)(~x) = L−N , then the distribution after one iteration is P (1)(~x) ∝ e
∑

a
φa(~x) log(ψobs

a /αa),

where the {αa} components are the mean histogram under a distribution of uniformly random

images. These can be computed efficiently, see Appendix A for details. In other words, the

distribution after one iteration is the MEL distribution with clique potential given by the

multinomial approximation.
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4 The BKGIS Algorithm

We could iterate GIS to improve the estimate of the clique potentials beyond the accuracy

of the multinomial approximation. Indeed, with sufficient number of iterations we would be

guaranteed to converge to the correct potentials. The main difficulty lies in estimating ψ(t)
a

for t > 0. At t = 0 this expectation is just the mean histogram with respect to the uniform

distribution, αa, which can be calculated efficiently as shown in Appendix A.

In this section, we define a new algorithm called BKGIS. This algorithm updates the poten-

tials using equation (2) by approximating the expectations ψ(t)
a for t >) using a Bethe-Kikuchi

approximation technique [9]. Our technique, which was inspired by the Unified Propagation

and Scaling Algorithm [8], is described in two stages. Firstly, see ubsection (4.1), we derive

the Bethe-Kikuchi free energy [9] for our 2-d image lattice, and simplify it using the shift

invariance of the lattice (which enables the algorithm to run swiftly). Secondly, see sub-

section (4.2), we use the Convex-Concave Procedure (CCCP) [10] procedure to obtain an

iterative update equation to estimate the histogram expectations.

4.1 The Bethe-Kikuchi Free Energy

We first define the Bethe-Kikuchi free energy and then apply it to the case of two filters, ∂/∂x

and ∂/∂y, on a 2-d image lattice. We write the MRF probability distribution on the image ~x

in the form P (~x) =
∏
i,j Ψi,j(xi, xj)/Z, where the product

∏
i,j is over all pairs of neighboring

pixels xi and xj (with the restriction i < j to avoid double-counting the interactions). This

form is a general way of re-expressing the MEL distribution for filters whose support is two

pixels. In other words, fi(~x) is a function only of two pixels for each i, i.e. fi(~x) = f(xi, xj)

where xj is the appropriate neighbor of pixel xi. The Bethe-Kikuchi free energy is

F =
∑

i,j

∑

xi,xj

bij(xi, xj) log
bij(xi, xj)

Ψij(xi, xj)

−
∑

i

(qi − 1)
∑

xi

bi(xi) log bi(xi) (4)
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where bi(xi) are the unary marginals on individual pixels, bij(xi, xj) are the binary marginals

on neighboring pairs of pixels and qi is the number of pixels directly coupled to pixel i (qi = 4

in the case of the filters ∂/∂x and ∂/∂y applied to a 2-d lattice).

Lagrange multipliers must be added to the Bethe-Kikuchi free energy to enforce the nor-

malization of the unary marginals bi(xi) and their consistency with the binary marginals

bi,j(xi, xj). We write these constraints as follows:

∑

i

γi(
∑

x

bi(x)− 1)

+
∑

i,j

∑

y

µij(y)(
∑

x

bi,j(x, y)− bj(y))

+
∑

i,j

∑

x

µji(x)(
∑

y

bi,j(x, y)− bi(x)) (5)

where γi, µi,j(y) and µj,i(x) are Lagrange multipliers (and as before we restrict i < j).

When the Bethe-Kikuchi free energy is minimized with respect to the marginals {bi(xi)} and

{bij(xi, xj)}, such that the Lagrange multiplier constraints are satisfied, then the marginals

approximate the true marginals of the distribution P (~x) =
∏
i,j Ψi,j(xi, xj)/Z, namely {P (xi, xj)}

and {P (xi)}. The marginal estimates may then be used to calculate the histogram expec-

tations required by the GIS update equation (2), since by shift invariance we have that

< φa(~x) >=
∑
xi,xj

P (xi, xj)δa,fi(xi,xj) for any i (and appropriate neighbor j).

We can discretize the expression for the x and y derivative filters as xi+∆h−xi and xi+∆v−xi,

respectively, where xi+∆h denotes the pixel just to the right of pixel xi and xi+∆v denotes

the pixel just above pixel xi. Since these filters introduce only nearest-neighbor interactions

on the lattice, we can group these interactions into horizontal and vertical interactions, and

we can express the Bethe-Kikuchi free energy as

F =
∑

i

∑

xi,xi+∆h

bhi
(xi, xi+∆h) log

bhi
(xi, xi+∆h)

Ψhi
(xi, xi+∆h)

+
∑

i

∑

xi,xi+∆v

bvi
(xi, xi+∆v) log

bvi
(xi, xi+∆v)

Ψvi
(xi, xi+∆v)

−3
∑

i

∑

xi

bi(xi) log bi(xi) (6)
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plus the Lagrange multiplier terms.

Exploiting the shift invariance of the lattice we get that bi(xi) = b(xi), bhi
(xi, xi+∆h) =

bh(xi, xi+∆h), bvi
(xi, xi+∆v) = bv(xi, xi+∆v), and similarly that ψhi

(xi, xi+∆h) = ψh(xi, xi+∆h),

ψvi
(xi, xi+∆v) = ψv(xi, xi+∆v). As a result, the Bethe-Kikuchi free energy per pixel can be

re-expressed as

F/N =
∑

x,y

bh(x, y) log
bh(x, y)

Ψh(x, y)

+
∑

x,y

bv(x, y) log
bv(x, y)

Ψv(x, y)
− 3

∑

x

b(x) log b(x) (7)

plus the following Lagrange multiplier terms:

γ(
∑

x

b(x)− 1) +
∑

x

µh,1(x)(
∑

y

bh(x, y)− b(x))

+
∑

y

µh,2(y)(
∑

x

bh(x, y)− b(y))

+
∑

x

µv,1(x)(
∑

y

bv(x, y)− b(x))

+
∑

y

µv,2(y)(
∑

x

bv(x, y)− b(y)). (8)

4.2 CCCP Updates

We use the CCCP procedure [10] to write simple update equations which will lower the

Bethe-Kikuchi free energy monotonically, and hence allow us to estimate the marginals ψ(t)
a .

We express the Bethe-Kikuchi free energy equation (7) plus Lagrange multiplier terms in

equation (8) as a sum of a concave energy function Eave and a convex energy function Evex:

Eave = −4
∑

x

b(x) log b(x), (9)
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Evex =
∑

x,y

bh(x, y) log
bh(x, y)

Ψh(x, y)

+
∑

x,y

bv(x, y) log
bv(x, y)

Ψv(x, y)
+

∑

x

b(x) log b(x)

+Lagrange constraints. (10)

The CCCP update equation is given by:

~∇Evex(~z
(t+1)) = −~∇Eave(~z

(t)) (11)

where ~z denotes the vector of all marginals bh(., .), bv(., .), b(.), such that the Lagrange

multiplier constraints are satisfied at each time t. This update equation gives rise to a

“double-loop” algorithm consisting of an outer loop, in which the marginals are updated as

a function of their previous values and of the Lagrange multipliers, and an inner loop, in

which the Lagrange multipliers are updated.

The outer loop updates are obtained directly from equation (11):

b(t+1)(x) = e3[b(t)(x)]4e−γ+µh1(x)+µh2(x)+µv1(x)+µv2(x) (12)

b
(t+1)
h (x, y) = ψh(x, y)e

−1e−µh1(x)−µh2(y) (13)

and

b(t+1)
v (x, y) = ψv(x, y)e

−1e−µv1(x)−µv2(y) (14)

The inner loop equations update one Lagrange multiplier at a time so as to properly impose

the Lagrange constraints (several iterations of the inner loop may be required to satisfy the

constraints). They are obtained by writing the constraint conditions in terms of the above

outer loop expressions for the marginal updates. The γ update is obtained from the condition
∑
x b(x) = 1:

eγ
new

=
∑

x

e3[b(x)]4eµh1(x)+µh2(x)+µv1(x)+µv2(x) (15)
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where γnew is shorthand for γ(τ+1), the Lagrange multipliers on the right-hand side are the

values at time τ , and b(x) is shorthand for b(t)(x). (The time superscript τ counts updates

within the inner loop, while the superscript t counts updates within the outer loop.)

The marginal consistency constraint
∑
y bh(x, y) = b(x) yields the update for µh1:

e2µ
new
h1

(x) = e2µh1(x) ψh(x, y)e
−1−µh1(x)−µh2(y)

e3[b(x)]4e−γeµh1(x)+µh2(x)+µv1(x)+µv2(x)
(16)

(The same superscript convention is used as before.) Similarly, the marginal consistency

constraints
∑
y bv(x, y) = b(x),

∑
x bh(x, y) = b(y) and

∑
x bv(x, y) = b(y), respectively, give

rise to the other update equations:

e2µ
new
v1 (x) = e2µv1(x) ψv(x, y)e

−1−µv1(x)−µv2(y)

e3[b(x)]4e−γeµh1(x)+µh2(x)+µv1(x)+µv2(x)
(17)

e2µ
new
h2

(y) = e2µh2(x) ψh(x, y)e
−1−µh1(x)−µh2(y)

e3[b(y)]4e−γeµh1(y)+µh2(y)+µv1(y)+µv2(y)
(18)

e2µ
new
v2 (y) = e2µv2(x) ψv(x, y)e

−1−µv1(x)−µv2(y)

e3[b(y)]4e−γeµh1(y)+µh2(y)+µv1(y)+µv2(y)
. (19)

Note that the Lagrange multiplier update equations above are calculated sequentially rather

than in parallel (convergence is not guaranteed for paralled updates). Several iterations

(empirically, about five to ten suffice for our application) of the inner loop are performed

to update the Lagrange multipliers, followed by one iteration of the outer loop equations to

estimate the marginals. This procedure is repeated until convergence is obtained (empirically,

about fifteen repetitions suffice).

5 Results

The BKGIS algorithm, as defined above, is slightly unstable because the histogram expecta-

tions are estimated only approximately. To circumvent this problem, we modified the basic

GIS update equation so that it makes more conservative updates and avoids instabilities:
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λk,(t+1)
a = λk,(t)a + β(1/M)(logψk,obsa − logψk,(t)a ) (20)

where β < 1 is a coefficient that sets the scale of the update (β = 1 corresponds to standard

GIS). We chose β = 0.2 as a compromise between stability and speed of convergence.

To test the modified BKGIS algorithm on the MEL distribution with the ∂/∂x and ∂/∂y

filters, we initialized the potentials ~λ(x) and ~λ(y) to the values given by the multinomial

approximation (see Appendix). The modified GIS update equations converged (though with

some oscillation) after about 15 iterations (using 10 outer loop iterations and 10 inner loop

iterations in CCCP). The algorithm took about thirty seconds (on a Pentium 400 MHz PC)

to complete its iterations.

Figure (1) shows the empirical ∂/∂x filter response marginal obtained from natural images

(taken from the Sowerby database of rural images), the potential determined by the multino-

mial approximation, and the error between the empirical marginal and the marginal obtained

using the multinomial potential (estimated using the Bethe-Kikuchi method). Note that the

long, heavy tails characteristic of filter marginals obtained from natural images are obscured

here due to the coarse quantization of filter response values a. (Results are almost identical

for the ∂/∂y filter.) The multinomial potentials correspond to the first iteration of BKGIS

when it is initialized with uniform potentials.

In our experiments we initialized BKGIS with the multinomial potentials. After running the

algorithm, the potential was only slightly changed, but the error was reduced, as shown in

Figure (2). (Note that the vertical axis scale is about an order of magnitude larger in the

first figure relative to the second.)

The potentials obtained by BKGIS were used to generate samples by an MCMC sampler,

which are shown in Figure (3).

We point out that our error measure compares the observed marginals with the marginals

estimated using the Bethe-Kikuchi approximation. But there are more accurate error mea-

sures for determining how well we have estimated the clique potentials. Observe that our

error measure involves two types of approximations. Firstly, the BKGIS algorithm makes
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Fig. 1. Top panel, observed marginal for ∂/∂x filter response values obtained from natural images.

(Horizontal axis indicates value of ∂/∂x filter response, vertical axis indicates empirical probability.)

Middle panel, potential determined by multinomial approximation, shown as −λ
(x)
a along vertical

axis with a = filter response of ∂/∂x filter displayed along horizontal axis. Bottom panel displays

error, i.e. difference between observed marginal and the marginal obtained using the multinomial

potential, along vertical axis, as a function of a along horizontal axis.

use of the Bethe-Kikuchi approximation for estimating the potentials. Secondly, we used the

Bethe-Kikuchi approximation to estimate the marginals when evaluating the performance

of the algorithm. Alternatively, we could evaluate the potentials calculated by BKGIS by

estimating the marginals by MCMC and comparing them to the observed marginals. This,

however, requires running the MCMC algorithm for a long time to get accurate estimations.

12



15 10 5 0 5 10 15
4

2

0

2

4

6

8

10

Filter response

P
ot

en
tia

l

15 10 5 0 5 10 15
1

0.5

0

0.5

1

1.5

2

2.5
x 10

3

Filter response

E
rr

or
 in

 m
ar

gi
na

l

Fig. 2. Top panel, potential obtained from BKGIS. Bottom panel shows error, which is smaller

than than that obtained using multinomial potential (previous figure). (Same axes as in the last

two panels of the previous figure, except that the vertical scale for the error is smaller than the

version in the previous figure.)

Fig. 3. Stochastic image samples, obtained by an MCMC algorithm, of the MRF distribution whose

potentials have been determined by BKGIS.

6 Discussion

This paper applied the Generalized Iterative Scaling algorithm [3] to the problem of learning

MRF potentials [12] from image histograms. We introduced a new algorithm called BKGIS

which used a Bethe-Kikuchi approximation [4],[9] and a CCCP algorithm [10] to speed up a

crucial stage of the GIS algorithm. In addition, we demonstrated that the first iteration of
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GIS, or BKGIS, corresponds to an approximate method for estimating potentials [2].

We note that our method can be generalized to apply to any set of filters (of arbitrary form,

linear or non-linear) by using higher-order Kikuchi [9] approximations. (The Bethe approxi-

mation is directly applicable only for filters whose support size is two pixels.) However, this

generalization comes at the cost of a computational complexity that increases exponentially

in the support size of the filters. An alternative scheme is to introduce auxiliary variables

that allow the use of the Bethe approximation for any size filters, with a computational cost

that is linear in the size of the filters. It remains to be seen if this technique is practical,

both in terms of computational complexity and the quality of the underlying Bethe approx-

imation. Finally, we point out that our method is formulated for MRF’s defined in terms of

filter marginals, and it is straightforward to extend the method to handle joint histograms of

two or more filters. (However, is unclear how to extend the method to distributions defined

in terms of moments of filters.)
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Appendix A: The g-Factor and the Multinomial Approximation

This section defines the g-factor function, which was introduced in earlier work [1,2] to

establish connections between the distribution on images, P (~x|~λ), with the corresponding

distribution induced on features. The g-factor also motivated the multinomial approximation,

which was used to determine an efficient procedure for approximating the potentials.

The g-factor g(~ψ) is defined as follows:
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g(~ψ) =
∑

~x

δ~φ(~x), ~ψ. (21)

Here L is the number of grayscale levels of each pixel, so that LN is the total number of

possible images. The g-factor is essentially a combinational factor which counts the number

of ways that one can obtain statistics ~ψ, see figure (4). Equivalently, we can define an

associated distribution P̂0(~ψ) = 1
LN g(~ψ), which is the default distribution on ~ψ if the images

are generated by uniform noise (i.e. completely random images).

x

.

space space

= number of images

   with histogram

g(  ) x

Fig. 4. The g-factor g( ~ψ) counts the number of images ~x that have statistics ~ψ. Note that the

g-factor depends only on the choice of filters and is independent of the training image data.

We can use the g-factor to compute the induced distribution P̂ (~ψ|~λ) on the statistics deter-

mined by MEL:

P̂ (~ψ|~λ) =
∑

~x

δ~ψ,~φ(~x)P (~x|~λ) =
g(~ψ)e

~λ·~ψ

Z[~λ]
(22)

where the partition function is:

Z[~λ] =
∑

~ψ

g(~ψ)e
~λ·~ψ. (23)

Observe that both P̂ (~ψ|~λ) and logZ[~λ] are sufficient for computing the parameters ~λ. The

~λ can be found by solving either of the following two (equivalent) equations:
∑

~ψ P̂ (~ψ|~λ)~ψ =

~ψobs, or ∂ logZ[~λ]

∂~λ
= ~ψobs, which shows that knowledge of the g-factor and e

~λ·~ψ are all that is

required to do MEL.

Observe from equation (22) that we have P̂ (~ψ|~λ = 0) = P0(~ψ). In other words, setting ~λ = 0

corresponds to a uniform distribution on the images ~x.
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The Multinomial Approximation

We now consider the case where the statistic is a single histogram. Our results, of course, can

be directly extended to multiple histograms. We describe the multinomial approximation of

the g-factor and discuss the procedure it prescribes for estimating the potentials.

We rescale the ~λ variables by N so that we have:

P (~x|λ) =
eN

~λ·~φ(~x)

Z[~λ]
, P̂ (~ψ|λ) = g(~ψ)

eN
~λ·~ψ

Z[~λ]
, (24)

We now consider the approximation that the filter responses {fi} are independent of each

other when the images are uniformly distributed. This is the multinomial approximation. It

implies that we can express the g-factor as being proportional to a multinomial distribution:

g(~ψ) = LN
N !

(Nψ1)!...(NψQ)!
αNψ1

1 ...α
NψQ

Q (25)

where
∑Q
a=1 ψa = 1 (by definition) and the {αa} are the means of the components {ψa} with

respect to the distribution P̂0(~ψ). As we will describe later, the {αa} will be determined by

the filters {fi}. See Coughlan and Yuille, in preparation, for details of how to compute the

{αa}.

This approximation enables us to calculate MEL analytically.

Theorem With the multinomial approximation the log partition function is:

logZ[~λ] = N logL +N log{
Q∑

a=1

eλa+logαa}, (26)

and the “potentials” {λa} can be solved in terms of the observed data {ψobs,a} to be:

λa = log
ψobs,a
αa

, a = 1, ..., Q. (27)

We note that there is an ambiguity λa 7→ λa+K where K is an arbitrary number (recall that
∑Q
a=1 ψ(a) = 1). We fix this ambiguity by setting ~λ = 0 if ~α = ~ψobs.

Proof. Direct calculation, using the fact that ∂ logZ[~λ]

∂~λ
= ~ψobs.
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Our simulation results show that this simple approximation gives the typical potential forms

generated by Markov Chain Monte Carlo (MCMC) algorithms for Minimax Entropy Learn-

ing.

Appendix B

Computing the Mean and Covariance of g(~φ)

We need to calculate the mean and covariance of g(~φ) in order to estimate the vector ~λ.

In this section we present an exact method for calculating the mean and covariance that

requires only knowledge of the combinatorics of individual and pairwise filter responses,

without needing to enumerate all possible images I or statistics ~φ.

As before, we will treat g(~φ) as an un-normalized probability distribution derived from a

uniform distribution Pg(I) on the set of all possible images. All expectations < . >g will be

taken with respect to the uniform distribution Pg(I).

Case I: a single filter

First we consider a single filter. The mean is ~c =< ~φ(I) >g=
1
N
<

∑
x
~bx(I) >g, and by trans-

lation invariance this becomes ~c =<~bx(I) >g for any x. Equivalently, ~c =
∑
~bx(I) Pg(

~bx(I))~bx(I),

i.e. the mean is an average over all possible filter responses at x. (A technique for computing

Pg(~bx(I)) is presented in the next section.)

The covariance is defined as C =< (~φ(I)−~c)(~φ(I)−~c)T >g=
1
N2 <

∑
x(~bx(I)−~c)

∑
y(~by(I)−

~c)T >g, where ~φ(I) is defined in terms of the binary representations ~b(i)x (I) (introduced in Sec-

tion 3). Dropping the image argument I for simplicity, we get C = 1
N2

∑
{~bx},∀x

Pg({~bx}, ∀x)
∑

x(~bx−

~c)
∑

y(~by−~c)
T where the expression {~bx}, ∀x denotes the set of filter responses at every pixel

(expressed in the histogram representation ~bx). The sums over pixel locations x and y can be

divided into two categories: pairs of pixels x and y whose filter responses are independent of
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each other (i.e. the pixels are far enough apart that the kernel centered at x does not overlap

with the kernel centered at y), and those whose filter responses are correlated because of

kernel overlap. For each pixel x0 we define the neighborhood N(x0) to be the set of pixels

whose kernel overlaps with the kernel of x0.

Now C may be written

C =
1

N2

∑

{~bx},∀x

P ({~bx}, ∀x)[
∑

x0

∑

y∈N(x0)

(~bx0 − ~c)(
~by − ~c)

T +
∑

x0

∑

y/∈N(x0)

(~bx0 − ~c)(
~by − ~c)

T ].

We will show that the second (non-overlap) term vanishes. For each x0 and y, we can

sum over ~bx for every pixel but x0 and y. All that remains is a sum over ~bx0 and ~by, but

Pg(~bx0 ,
~by) = Pg(~bx0)Pg(

~by) and the expression drops out since < ~bx0 >g=<~by >g= ~c. Thus

we have C = 1
N2

∑
x0

∑
{~bx},∀x

Pg({~bx}, ∀x)
∑

y∈N(x0)(~bx0 − ~c)(
~by − ~c)

T .

Now, because of translation invariance, each term in the sum over x0 is equivalent. Thus we

can choose any x0 for convenience and rewrite the covariance as

C = N
1

N2

∑

{~bx},x∈N(x0)

P ({~bx},x ∈ N(x0))
∑

y∈N(x0)

(~bx0 − ~c)(
~by − ~c)

T

=
1

N

∑

y∈N(x0)

∑

~bx0

∑

~by

P (~bx0,
~by)(~bx0 − ~c)(

~by − ~c)
T .

(A technique for computing Pg(~bx0 ,
~by) is shown in the next section.)

Computing Probabilities of Single and Pairwise Filter Responses

The calculations of the mean and covariance of g(~φ) require explicit knowledge of Pg(f
(i)
x )

and Pg(f
(i)
x , f (j)

y ), i.e. the fraction of all possible images that produce a filter response f (i)
x

or joint filter responses f (i)
x and f (j)

y (these responses are correlated when the kernel of the

first overlaps the kernel of the second). In this section we present an efficient method of

computing these filter response probabilities that applies to a large class of filters: any non-

linear scalar function of a linear filter whose kernel contains integer coefficients. Many filters

used in computer vision, image analysis and texture analysis are included in this category,
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such as ∂I/∂x, |∇I|,∇2I, and G ? I.

Response of one linear filter

First we consider the case of a single linear filter with kernel k: fx(I) = (k ? I)(x), where

the coefficients of k are integers. The filter response at any arbitrary image location x,

which we will write simply as f , is a linear combination of those pixel intensities lying

within the kernel: f =
∑

x′ k(x′)I(x − x′). For combinatoric purposes we can regard the

pixel intensities as i.i.d. variables drawn from a uniform distribution on {0, 1, . . . , Q − 1}

(i.e. all pixel intensities 0 through Q − 1 are equally likely). For each pixel location x′

within the kernel, the quantity v(x′) = k(x′)I(x − x′) is thus a random variable with

distribution Pg(v(x
′)) = (1/Q)

∑Q−1
q=0 δqk(x′),v(x′), i.e. v(x′) may assume any of the values

{0, k(x′), 2k(x′), . . . , (Q− 1)k(x′)} with equal probability, and no other values are possible.

Since the quantities v(x′) are independent from one x′ to the next, the probability of any

filter response f =
∑

x′ v(x′) equals the convolution of the probabilities on each v(x′):

Pg(f) = Pg(v(x
′
1)) ? Pg(v(x

′
2)) ? . . . ? Pg(v(x

′
K)),

where x′
1 through x′

S′ are the K pixels that lie in the kernel. These convolutions can be

performed numerically using vectors of length Q|k(x′)|+ 1 to represent Pg(v(x
′)), yielding a

vector of length fmax (i.e. the maximum possible filter response) to represent Pg(f).

Non-linear generalization

We can generalize the calculation of Pg(f) (or the scalar case Pg(f), which may be regarded

as a special case of this pair-wise response probability) to the case where the filter responses

are defined as non-linear functions of linear filter responses: f = h(fL), where fL is obtained

by linear convolution of I with k, and h(.) is a non-linear vector function. The probability

we seek, Pg(f), is induced by the probability we already know how to calculate, Pg(fL):

Pg(f) =
∑

fL
Pg(fL)δh(fL),f . This sum is straightforward to calculate numerically: initialize

Pg(f) to 0 everywhere, and for each fL calculate f = h(fL) and add Pg(fL) to Pg(f).
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