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KGBR Viewpoint–Lighting Ambiguity
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We address the visual ambiguities that arise in estimating object and scene structure from a set of images
when the viewpoint and lighting are unknown. We obtain a novel viewpoint–lighting ambiguity called the
KGBR that corresponds to a group of three-dimensional affine transformations on the object or scene geometry
combined with transformations on the object or scene albedo. Our analysis assumes orthographic projection
with an affine camera model. We include photometric cues, such as shadowing and shading, that we model
using Lambertian reflectance functions with shadows (cast and attached) and multiple light sources (but no
intereflections). We relate the KGBR to affine ambiguities in estimating shape and to the generalized bas-
relief ambiguity. © 2003 Optical Society of America

OCIS codes: 150.0150, 100.0100.

1. INTRODUCTION
When is it possible to estimate object and scene structure
from a series of images? (In the rest of this paper we will
usually discuss only objects but with the understanding
that all our results apply to scenes composed of many ob-
jects provided that we ignore intereflections.) This issue
is of practical importance particularly in situations where
the viewpoints and lighting conditions are unknown. It
arises in visual tasks such as binocular stereo, structure
from motion, structure from viewpoint, and reconstruc-
tion of a scene from a set of images. Phenomena such as
the convex-versus-concave ambiguity and the bas-relief
ambiguity (see Fig. 1) show that human observers often
do not estimate the correct shape. Indeed, human ob-
servers seem able to estimate shape only up to an affine
transform1 (see Fig. 2).

This issue has been studied in detail in cases where the
viewpoint changes but the shading and shadow cues are
ignored. The studies are based on pointlike features, cor-
responding to the output of feature detectors, which are
assumed to be independent of the lighting conditions. In
a classic paper, Koenderink and van Doorn2 showed how
structure from motion could be obtained up to a three-
dimensional affine ambiguity. Faugeras3 then obtained a
hierarchy of ambiguities depending on the knowledge of
the viewpoints and the calibration of the cameras. The
geometric ambiguities of scene reconstruction from mul-
tiple viewpoints are now well understood, and there are
calibration strategies for disambiguating them.4

Ambiguities have also been found for the opposite case
where shading and shadow cues are present but the view-
point is fixed (e.g., photometric stereo). This topic has re-
ceived less attention, but recent work by Belhumeur
et al.5 shows that there is a generalized bas-relief (GBR)
ambiguity (see Fig. 3) in the estimation of shape from
multiple images with unknown lighting and fixed view-
point. This ambiguity corresponds to a group of transfor-
mations that act on both the geometry and the albedo of
objects. The GBR ambiguity assumes that objects have
Lambertian reflectance functions but allows for shadows

(cast and attached) and multiple light sources (but no in-
tereflections). It includes the convex versus concave am-
biguity and the bas-relief ambiguity as special cases and
is of practical importance for photometric stereo.6 See
also Ref. 7 for other work on photometric ambiguities.

In this paper we propose that these two strands of work
should be combined by studying the ambiguities when
both the viewpoint and the lighting are unknown. In
particular, we were motivated by the need to understand
how the GBR photometric ambiguity5 related to the more
standard geometric ambiguities.4

Our main technical result is the KGBR viewpoint and
lighting ambiguity (see also Ref. 8). This viewpoint
makes the same photometric assumptions used for the
GBR.5 It consists of an affine transformation on the ge-
ometry of objects, as occurs in pure geometric
ambiguities,2–4 in conjunction with a transformation on
the albedo. We assume that the imaging is performed by
orthographic projection that allows for two-dimensional
affine warps in the image plane9 or, alternatively, by af-
fine cameras. By restricting the KGBR to a single view-
point, we obtain a novel and intuitive derivation of the
GBR ambiguity. More generally, we show that any
KGBR transformation can be decomposed as a GBR
transformation, a rotation, and a two-dimensional affine
transformation.

We study the effect of the KGBR ambiguity on specific
vision problems involving multiple images. Suppose that
the object and lighting remain fixed but the viewpoint
varies. Then all the linear ambiguities that arise in
multiple-view geometry4 persist despite the new photo-
metric information. We cannot, for example, use photo-
metric information to resolve geometric ambiguities in
binocular stereopsis (without, of course, using non-
Lambertian models). On the other hand, photometric
cues may be able to resolve ambiguities in cases where
the object moves and the viewpoint and the lighting are
fixed, such as structure from motion.

In Section 2 we define the KGBR and prove that it pre-
serves the shading and shadow properties on the surfaces
of objects as the lighting changes. In Section 3 we con-
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sider viewpoint projection and prove that there is a joint
viewpoint–lighting ambiguity on the images of objects.
In Section 4 we derive the GBR as a special case of the
KGBR and give a general decomposition of the KGBR in
terms of elementary transformations. In Section 5 we
give examples of the KGBR. In Section 6 we describe the
implications of the KGBR for structure from motion and
structure from viewpoint.

2. KGBR ON SURFACES OF OBJECTS
In this section, we define the KGBR transform on the sur-
face and albedo of objects together with the corresponding
transform on the lighting. For objects with Lambertian
reflectance functions, the image intensity at a fixed point
on the surface is independent of the direction of the
viewer. This feature enables us to study the shading and
shadows as if they were painted onto the surface. In Sec-
tion 3 we will see what this implies about the projection of
the object to different viewpoints.

Let the object have surface position r 5 r(u, v), sur-
face normal n(u, v), and albedo a(u, v) as functions of
intrinsic coordinates (u, v) defined on the surface; see
Fig. 4. We assume m light-source vectors $s1 ,..., sm%.

Definition 1. A KGBR transform K transforms
$r(u, v),n(u, v),a(u, v),s1 ,..., sm ,v% to $r̂(u, v),
n̂(u, v),â(u, v), ŝ1 ,..., ŝm ,v̂%, where

r̂~u, v ! 5 Kr~u, v !, n̂~u, v ! 5
K21,Tn~u, v !

uK21,Tn~u, v !u
,

(1)

â~u, v ! 5 a~u, v !uK(
j51

M

SjuuK21,Tn~u, v !u, (2)

ŝi 5
1

uK(
j51

m

Sju

Ksi • i 5 1 ,..., m. (3)

The matrix K of the KGBR can take any form. It gives
an affine transformation on the three-dimensional surface
that can involve squashing, skewing, or rotating the sur-
face (or any combination of these operations). The form
of n̂(u, v) in Eq. (2) is derived directly from the transfor-
mation on the surface shape r(u, v) [recall that n̂(u, v)
must be orthogonal to the surface tangent vectors
r̂u(u, v) and r̂v(u, v) that transform by the KGBR]. The
normalization factor uK( j51

m sju for transforming the light
sources [see Eq. (2)] is chosen to ensure that the total
lighting S j51

m ŝj has unit magnitude.
The definition of the KGBR transform is motivated by

the following result.
Theorem 1. If two objects and their lighting are re-

lated by a KGBR, then their shading and shadows are
preserved as functions of the surface coordinates (u, v).
The shading is given by a Lambertian model I(u, v)
5 S j51

m max$a(u, v)n(u, v) • sj,0% with cast shadows re-
moved; see Fig. 5.

Proof. From Eqs. (1)–(3), we obtain

Fig. 1. Left panel: convex versus concave ambiguity. A con-
vex object lit from above looks like a convex object lit from below.
Right panel: the bas-relief ambiguity. The perception of shape
is relatively insensitive to a linear scaling in the viewing direc-
tion.

Fig. 2. Cube viewed from direction (0.51, 0.63, 0.58) (far-left
panel) and the same cube undergoing affine transformations (re-
maining panels) seen from the same viewpoint.

Fig. 3. If the lighting conditions are unknown, then it is impos-
sible to distinguish between two objects related by a GBR
transform.5 For any image of the first object, under one illumi-
nation condition, we can always find a corresponding illumina-
tion condition that makes the second object appear identical (i.e.,
we can generate an identical image). We show two objects un-
der three different, but corresponding, lighting conditions.

Fig. 4. We define intrinsic coordinates (u, v) on the surface of
the object.

Fig. 5. The cast shadow boundaries, and hence the cast shad-
ows, are preserved by the KGBR. Similar results were shown
for the GBR.5
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max$â~u, v !n̂~u, v ! • ŝj,0%

5 max$a~u, v !n~u, v ! • sj,0% ; j 5 1 ,..., m, (4)

and so the shading (and attached shadows) are preserved.
The conditions for a point r(u2 , v2) to be on the

shadow boundary for light source sj cast by r(u1 , v1)
(with normal n(u1 , v1)) are that n(u1 , v1) • sj 5 0 and
r(u2 ,v2) 2 r(u1 , v1) } sj ; see Fig. 5.5 These conditions
are preserved by the KGBR; see Eqs. (1)–(3). Hence if a
point (u, v) is in shadow on surface r(u, v) from light
source sj , then it is also in shadow on surface r̂(u, v)
from light source ŝj .

There are variations of the KGBR for which Theorem 1
will also hold. For example, the formulation in Defini-
tion 1 has been chosen to ensure that the magnitude of
the light source ( j51

m sj is preserved by the KGBR. This
choice, however, has the undesirable property that the
transformation on the albedo is dependent on the light
sources. An alternative is to transform si ° Ksi /F(K)
i 5 1 ,..., m and a(u, v) ° a(u, v)F(K)uK21,Tn(u, v)u,
where F(K) is a function of the KGBR K. One possibility
is to set F(K) 5 udet Ku, which improves on the choice
F(K) 5 det K described in previous work.8 The modulus
sign is necessary for handling cases where det K is nega-
tive; such cases which occur, for example, in the convex-
versus-concave ambiguity.

3. KGBR VIEWPOINT–LIGHTING
AMBIGUITY
Section 2 has established that shading and shadow prop-
erties at points (u, v) on a surface are preserved by a
KGBR transformation. We now determine what happens
as we project the surface onto an image plane.

Our projection model assumes an affine camera or or-
thographic projection with a two-dimensional affine
transform on the image coordinates. These projection
models are equivalent because of the two-dimensional af-
fine transform, but they lead to slightly different math-
ematical formulations. They can be derived as approxi-
mations to perspective projection4 which results from (i)
assuming that the camera parameters are only approxi-
mately known and (ii) modifying the orthographic projec-
tion equations to allow for perspective effects (by making
assumptions about the shape of the viewed object and its
position relative to the camera).

Definition 2. A projection is specified by three vectors
c1 , c2 , v that we call camera parameters. For the ortho-
graphic camera these vectors are constrained to be or-
thogonal unit vectors. For the affine camera we con-
strain only c1 , c2 to be orthogonal to v. So in both cases,
we have v } c1 3 c2 ; see Fig. 6. A point (u, v) on the
surface r(u, v) is projected to a point @ p1(u, v), p2(u, v)#
in the image plane by

p1~u, v ! 5 c1 • r~u, v !, p2~u, v ! 5 c2 • r~u, v !.
(5)

As stated above, the use of the Lambertian reflectance
function means that the image intensity of a point on the
surface is independent of the viewpoint. Therefore the
intensity at an image point @ p1(u, v), p2(u, v)# is equal
to the intensity I(u, v) of the corresponding point (u, v)

on the surface of the object. Theorem 1 has already
shown that shading and shadows are preserved under a
KGBR at each surface point (u, v). Hence the remain-
ing analysis is concerned only with the geometry of pro-
jection. In particular, we can rederive existing results for
pointlike features2–4 by replacing the the surface with a
discrete set of N points $ri :i 5 1 ,..., N% and setting the
images to be I( p1 , p2) 5 ( i51

N d (p1 2 c1 • ri)d (p2 2 c2
• ri), where d (x) is the Dirac delta function.

We now define how the camera parameters change un-
der a KGBR.

Definition 3. The camera parameters of the affine
camera transform by:

ĉ1 5 K21,Tc1 , ĉ2 5 K21,Tc2 , v̂ 5
Kv

uKvu
. (6)

The camera parameters of the orthographic camera trans-
form as

ĉ1 5 A11K21,Tc1 1 A12K21,Tc2 ,

ĉ2 5 A21K21,Tc1 1 A22K21,Tc2 , v̂ 5
Kv

uKvu
, (7)

where the parameters A11 , A12 , A21 , A22 are functions of
K (their exact form is given in Theorem 5) chosen to en-
sure that ĉ1 , ĉ2 , v̂ are orthogonal unit vectors.

These transformations ensure that the viewpoint direc-
tion vector v̂ is orthogonal to the projections vectors ĉ1 ,
ĉ2 . For the orthographic camera, the transformation in
Eq. (7) must, of course, correspond to a rotation. Theo-
rem 5 shows how this rotation is a function of the KGBR
transformation K.

We now show that there is a viewpoint–lighting ambi-
guity; see Fig. 7. Our results are given in Theorems 2
and 3 for the affine camera and for orthographic projec-
tion, respectively.

Theorem 2. If two objects’ geometry and albedo are
related by a KGBR transform K, then for any viewpoint
and illumination condition of one object there exists a
viewpoint, affine camera setting, and illumination condi-
tion for the second object such that the images of the two
objects are identical.

Proof. We use Definitions 1, 2, and 3 to specify the
KGBR transformations on the objects and the affine cam-
eras. It follows from projection equations (5) that points
labeled (u, v) on the two objects project to the same point
@c1 • r(u, v), c2 • r(u, v)# 5 @ ĉ1 • r̂(u, v), ĉ2 • r̂(u, v)#

Fig. 6. For the orthographic camera (left) the vectors v, c1 , c2
are orthogonal unit vectors. For the affine camera (right) c1 , c2
are constrained to be orthogonal only to the unit vector v.
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in the two images. By Theorem 1 it follows that the im-
ages of the two objects are identical.

We next extend our result to orthographic projection (it
is also straightforward to deal with scaled orthographic
by relaxing the conditions on A11 , A12 .A21 , A22).

Theorem 3. If two objects are related by a KGBR
transform K, then for any viewpoint and illumination
condition of one object there exists a viewpoint and illu-
mination condition for the second object such that the im-
ages of the two objects are identical up to the affine trans-
formation

A2 5 FA11 A12

A21 A22
G

given by camera transformation equation (7).
Proof. Use Definitions 1, 2, and 3 to specify the KGBR

transformations on the objects and the orthographic cam-
eras. It follows from projection equations (5) that points
labeled (u, v) on the two objects project to points in the
images related by the two-dimensional affine transforma-
tion A2 :

S ĉ1 • r̂~u, v !

ĉ2 • r̂~u, v ! D 5 FA11 A12

A21 A22
G S c1 • r~u, v !

c2 • r~u, v ! D . (8)

It follows from Theorem 1 that the images of the two ob-
jects are identical up to affine warping.

We note that Werman and Weinshall9 loosened the no-
tion of image similarity by proposing an affine-invariant
measure on the set of images. Two images I(p) and Î(p)
are identical up to a two-dimensional affine transforma-
tion A2 provided that Î(p̂) 5 I(p), where p̂ 5 A2p.

Theorems 2 and 3 summarize the KGBR lighting–
viewpoint ambiguity. In the following sections we will
explore the ambiguity and, in particular, determine the
relationship between the KGBR transform K and the two-
dimensional affine warp A2 .

We have avoided the special case where K is not invert-
ible. In this degenerate case, Eq. (1) implies that one ob-
ject is planar. If the second object is also planar then the
theorems above are easy to prove. If the second object is
nonplanar, however, then the results no longer hold.
This is because all views of the planar object are equiva-
lent to within an affine transformation and therefore cor-
respond only to a single view of the nonplanar object (the
front-on view). Thus for almost all views of the nonpla-
nar object there is no corresponding view of the planar ob-

ject. This applies both for the affine camera and for
orthographic/scaled-orthographic projections.

Finally, an attractive conceptual picture of the KGBR
lets the viewer and the light source be at finite distance
from the object. In this case, we let v and s be vectors
representing the viewer position and the light-source po-
sition, respectively. They can transform by s ° Ks and
v ° Kv, exactly like surface points r(u, v) on the object.
In other words, the KGBR simply corresponds to an affine
transformation on the space. But because the light
source is at finite distance from the object, we cannot use
the Lambertian model except as an approximation (be-
cause there will be an inverse-square-law fall-off of inten-
sity with distance from the light source). Therefore the
theorems will hold in the limit only as the light source po-
sition tends to infinity. [For this transformation the al-
bedo will transform as a(u, v) ° a(u, v)uK21,Tn(u, v)u].

4. DECOMPOSITION OF THE KGBR AND
ITS RELATIONS TO THE GBR
This section investigates the structure of the KGBR. We
first describe the GBR ambiguity and rederive it as a spe-
cial case of the KGBR. Then we proceed to give a general
decomposition of the KGBR transform in terms of a GBR
transform, a three-dimensional rotation, and a two-
dimensional affine transform. This decomposition ex-
plains the form of the two-dimensional affine transforma-
tion A2 required for transforming the orthographic
camera images; see Definition 3 and Theorem 3.

The GBR was originally derived by assuming a fixed
viewpoint with orthographic projection.5 Objects are
represented by their albedoes a(x, y) and surface nor-
mals n(x, y) by use of a coordinate system x, y in the
image plane. The imaging model is Lambertian, so
that I(x, y) 5 ( j max$a(x, y)n(x, y) • sj, 0%, and cast
shadows are removed. To derive the GBR, observe that
the image is invariant to the transformations
a(x, y)n(x, y) ° Ga(x, y)n(x, y) and sj ° G21,Tsj ; j,
where G is any invertible matrix. Belhumeur et al.5

prove that the surface integrability condition (i.e., the re-
quirement that the surface normals be consistent with a
real surface) restricts G to be of form

F 1 0 2m/l

0 1 2n/l

0 0 1/l
G

for constants m, n, l. Moreover, if the surface is repre-
sented by z 5 f(x, y), then the transformation on the
surface normals corresponds to a transformation on the
surface f(x, y) ° lf(x, y) 1 mx 1 ny. Therefore a
GBR transform G on the surface normals corresponds to a
transformation G21,T on the surface points.

We now rederive the GBR from the KGBR by requiring
that the images of objects be identical when viewed from
a specific viewpoint. This requirement means that the
GBR transforms are only a subgroup of the KGBR trans-
forms. It can be argued that our result is more intuitive
than the original proof, briefly summarized in the previ-
ous paragraph, because it bypasses the surface-
integrability constraint.

Fig. 7. Joint viewpoint–lighting ambiguity. If two objects are
related by a KGBR, then for any view of one there is a corre-
sponding view of the other that is identical (after adjusting the
setting of the affine camera) or identical up to a two-dimensional
affine warp (for orthographic projection). The lighting is also
transformed by the corresponding KGBR.
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Theorem 4. If two objects are related by a KGBR K

and there exists a special viewpoint v* such that the im-
ages of the two objects are identical, then K must be of
form G21,T, where G is a GBR.

Proof. Let the two objects be r(u, v) and r̂(u, v)
5 Kr(u, v). If there exists a special viewpoint (with or-
thographic projection) such that the images are identical,
then we can find vectors c1* , c2* such that

c1* • r~u, v ! 5 c1* • Kr~u, v !, ;u, v,

c2* • r~u, v ! 5 c2* • Kr~u, v !, ;u, v. (9)

This implies that KT has two unit eigenvectors (unless
the surface is a plane). Hence by a suitable choice of co-
ordinate system we can express K and K21,T as

K 5 F 1 0 0

0 1 0

m n l
G , K21,T 5 F 1 0 2m/l

0 1 2n/l

0 0 1/l
G , (10)

where l, m, n are constants. This shows that K21,T is of
GBR form.5 Conversely, if KT has two unit eigenvalues,
then we can define the projections to be their correspond-
ing eigenvectors.

We now go further by showing how to decompose any
KGBR in terms of a GBR, a rotation, and a two-
dimensional affine transformation. The proof assumes
orthographic cameras with a two-dimensional transform,
but the result is a property of matrices (i.e., linear alge-
bra) and so is independent of the choice of camera.

Theorem 5. Any KGBR transform K can be decom-
posed as K 5 FG21,TA3 , where F is a rotation, A3 is
given by

A3 5 FA2 0

0 1G ,
and

A2 5 FA11 A12

A21 A22
G

is the two-dimensional affine warp that K induces on the
orthographic projection. If the images are identical un-
der orthographic projection (i.e., A3 5 I), then K
5 FGT,21.

Proof. Equation (7) of Definition 3 specifies how an or-
thographic camera transforms under a KGBR transfor-
mation K. This transformation can be reexpressed as

K21,Tc1 5 B11ĉ1 1 B12ĉ2 , K21,Tc2 5 B21ĉ1 1 B22ĉ2 ,

(11)

where the matrix

B2 5 FB11 B12

B21 B22
G

is the inverse of

A2 5 FA11 A12

A21 A22
G .

But this transformation must also correspond to a ro-
tation F of the coordinate axes (because the vectors c1 ,
c2 , v must remain orthonormal unit vectors) and hence
can be written as

ĉ1 5 Fc1 , ĉ2 5 Fc2 , v̂ 5 Fv. (12)

By combining Eqs. (11) and (12), we obtain

K21,Tc1 5 F~B11c1 1 B12c2!,

K21,Tc2 5 F~B21c1 1 B22c2!. (13)

Without loss of generality, let c1 5 (1, 0, 0) and c2
5 (0, 1, 0). Then Eqs. (13) determine the first two col-
umns of the matrix K21,T in terms of B2 and F but places
no constraints on the third column. We can therefore ex-
press

K21,T 5 FFB11 B21 a

B12 B22 b

0 0 g
G 5 FGB3 , (14)

where a, b, g are constants and

G 5 F 1 0 a

0 1 b

0 0 g
G

is a GBR transform5 and

B3 5 FB11 B12 0

B21 B22 0

0 0 1
G .

The first result follows from Eq. (14) by taking the in-
verse. If the images are identical under orthographic
projection, then A3 5 I, by definition, and the second re-
sult follows directly.

Theorem 5 shows how to decompose a KGBR transform
into its components. Observe that if images of a KGBR
transform are identical under orthographic projection
(i.e., A3 5 I), then the KGBR reduces to a GBR and a ro-
tation. It is the two-dimensional affine transformation
A2 (and hence A3) that is necessary for K to be a full
three-dimensional affine transformation.

It is possible to take K and decompose it into its parts.
For example, the following theorem shows how to deter-
mine A2 from K. More precisely, the theorem distin-
guishes between those properties of A2 that are depen-
dent on the choice of coordinate systems in the two
viewing planes and those properties that are invariant to
this choice. These invariant properties are then related
to K.

Theorem 6. The affine transformation A2 changes as
A2 ° CA2FT, where C and F are two-dimensional rota-
tion matrices corresponding to changing the coordinate
systems in the two viewing planes. The properties of A2
that are invariant to these rotations are specified in terms
of K by det A2 5 det K/uKvu and Trace $A2A2

T%
5 Trace$KKT% 2 uKTKvu2/uKvu2.

Proof. First observe that we have the freedom to
change the axes c1 , c2 by a rotation F in the first viewing
plane and similarly rotate ĉ1 , ĉ2 by a similar rotation C
in the second viewing plane. Hence, using Eqs. (7), we
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have the freedom to send A2 ° CA2FT. Next we choose
the coordinate system so that v 5 (0, 0, 1) and use the
decomposition of K given by Theorem 5. It follows that

det K 5 det G21,T 3 det A3 5 l det A2 and uKvu 5 l, and
hence det A2 5 det K/uKvu. Finally, multiplying Eqs. (7)
by KT and taking the dot product of each yields Trace

Fig. 8. Top row, original object; bottom row, object after a KGBR (see text). Left panels, the objects look the same when viewed from
direction (1, 0, 0) up to an affine warp on the images. But they look very different when viewed from direction (1/A2, 0, 1/A2) (center
panels) and direction (1/2, 1/2, 1/A2) (right panel).

Fig. 9. Top row, original object (with albedo); bottom row, object after a KGBR (see text). Left panels, the objects look the same when
viewed from direction (1, 0, 0) up to an affine warp on the images. But they look very different when viewed from direction
(1/A2, 0, 1/A2) (center panels), and direction (1/2, 1/2, 1/A2) (right panel).
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$A2A2

T% 5 uKTĉ1u2 1 uKTĉ2u2. This can be expressed as
Trace $A2A2

T% 5 Trace$KKT% 2 uKTv̂u2 [because ĉ1 , ĉ2 , v̂
are orthogonal unit vectors, see Eq. (7)]. The result fol-
lows by setting v̂ 5 Kv/uKvu.

5. EXAMPLES OF THE KGBR
We now show a few simple example of the KGBR.

The object is a face on a planar background rotated by
euler angles (0.2, 0.5, 0.3). The albedo is initially set to
be constant. We obtain a second object by applying a
KGBR composed of an identity rotation, a GBR G chosen
so that

G21,T 5 F 1 0 0

0 1 0

1.2 1.3 4
G ,

and a two-dimensional warp

A2 5 F1 0

0 2G .
The two objects look identical from viewpoint (0, 0, 1) but
are clearly very different when viewed from other direc-
tions; see Fig. 8.

We also modify the first object by changing its albedo
to be a(x, y) 5 1 1 0.5 exp(20.01$(x 2 52)2 1 ( y
2 52)2%), where x 5 1 ,.., 64 and y 5 1 ,..., 64. Ob-
serve that from extreme views, (see right-hand panels of
Fig. 9), the albedo starts being interpreted as the geom-
etry of the surface.

6. IMPORTANT CASES
There are three variables factors: the lighting, the ob-
server, and the object. Suppose we move one and fix the
others. This gives (I) photometric stereo when we move
the lighting, (II) structure from viewpoint when we move
the viewer, and (III) structure from motion when we move
the object. For photometric stereo we know that the
KGBR ambiguity reduces to the GBR. We now study
what happens to the ambiguity for structure from view-
point and structure from motion. If photometric effects
are ignored, then these two shape cues have the same am-
biguities. We will ignore special cases such as, for ex-
ample, when the objects are planar and/or the KGBR is a
pure rotation. So our results will apply to generic objects
and KGBR transformations

Following recent work4 we use affine transformations
to model changes of viewpoint and motion. This reduces
to the standard definitions if the transformation is re-
stricted to being a rotation. Otherwise, it corresponds to
a rotation, or viewpoint change, combined with an affine
distortion on the object. This affine distortion can be con-
sidered to arise from failure to calibrate the camera(s).4

Our result for structure from viewpoint shows that
there are ambiguities if we allow for affine changes of
viewpoint, but these ambiguities disappear if we restrict
ourselves to pure rotations.

Theorem 7. Let O and Ô be two objects related by a
KGBR transform K. Then for any affine change of view-

point M of O there exists a corresponding affine change of
viewpoint N 5 K21,TMKT for Ô such that the images are
identical up to a constant two-dimensional affine transfor-
mation. If M and N are both rotation matrices, then they
must both commute with KKT and hence must be the
identity matrix unless K is nongeneric.

Proof. Let the object O have shape r(u, v), surface
normals n(u, v), albedo a(u, v), and light source s. Let
the first viewpoint be specified by $c1 ,c2% and the second
by $Mc1 , Mc2%, where M is an affine transform. It is
straightforward to calculate the projections of the surface
before, (x1, y1), and after, (x2, y2), the change of view-
point:

x1~u, v ! 5 c1
Tr~u, v !, y1~u, v ! 5 c2

Tr~u, v !,

I1~u, v ! 5 max$a~u, v !nT~u, v !s, 0%,

x2~u, v ! 5 c1
TMTr~u, v !,

y2~u, v ! 5 c2
TMTr~u, v !,

I1~u, v ! 5 max$a~u, v !nT~u, v !s, 0%. (15)

Now let object Ô be related to O by a KGBR transfor-
mation K; see Eqs. (1)–(3). Let the initial viewpoint be
given by $ĉ1 ,ĉ2% and the second by $Nĉ1 ,Nĉ2%, where N is
an affine transform. The projections before x̂1, ŷ1 and af-
ter x̂2, ŷ2 change of viewpoint are

x̂1~u, v ! 5 ĉ1
TKr~u, v !, ŷ1~u, v ! 5 ĉ2

TKr~u, v !,

Î1~u, v ! 5 max$a~u, v !nT~u, v !s, 0%,

x̂2~u, v ! 5 ĉ1
TNTKr~u, v !,

ŷ2~u, v ! 5 ĉ2
TNTKr~u, v !,

Î1~u, v ! 5 max$a~u, v !nT~u, v !s, 0%. (16)

From Theorem 2 we have ĉ1 5 K21,Tc1 and ĉ2
5 K21,Tc2 . Combining these with Eqs. (15) and (16) im-
plies that K21NTK 5 MT or, equivalently, that N
5 K21,TMKT. If M is a rotation matrix then MMT

5 I, where I is the identity matrix, which implies that
KKT 5 NTKKTN. If N is also a rotation matrix then
NT 5 N21, and so N commutes with KKT. But it is im-
possible for a rotation matrix to commute with a symmet-
ric matrix, like KKT, unless one or both are degenerate.10

A similar argument shows that M must commute with
KKT. We conclude that it is impossible for both M and N
to be rotation matrices except for nongeneric KGBRs.

We now consider the case of structure from motion.
Here we find that the photometric cues can disambiguate
the geometric ambiguities (except for nongeneric special
cases).

Theorem 8. Let O and Ô be specified as for Theorem
7. If we transform O by an affine transformation M, then
there is no affine transformation on Ô that yields the
same image (unless O is a degenerate surface or the
KGBR is a pure rotation).

Proof. Transforming O by an affine transformation M
induces a map on the surface positions and the surface
normals by r°Mr and n°M21,Tn/uM21,Tnu. The projec-
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tion (x1, y1) before the affine transformation is given by
Eqs. (15) (top two lines), and the projection (x2, y2) after
is given by

x2~u, v ! 5 c1
TMr~u, v !, y2~u, v ! 5 c2

TMr~u, v !,

I2~u, v ! 5 maxH a~u, v !nT~u, v !M21s

uM21,Tn~u, v !u
, 0J . (17)

Suppose that object Ô is transformed by an affine
transformation N. This is equivalent to a KGBR trans-
form NK acting on the geometry of O but a KGBR trans-
form K on the albedo of O. The projection ( x̂1, ŷ1) before
the transformation is given by Eqs. (16) and the projec-
tion ( x̂2, ŷ2) after by

x̂2~u, v ! 5 ĉ1
TNKr~u, v !, ŷ2~u, v ! 5 ĉ2

TNKr~u, v !,

Î2~u, v !

5 maxH a~u, v !uK21,Tn~u, v !unT~u, v !K21N21Ks

uN21,TK21,Tn~u, v !u
, 0J .

(18)

Comparing Eqs. (17) and (18), we find that correspond-
ing points (u, v) on the two objects are projected to
the same positions in the two viewpoints provided
that K21NK 5 M. But their intensities will not corre-
spond unless uN21,TK21,Tn(u, v)u 5 uK21,Tn(u, v)u
3 uM21,Tn(u, v)u. This is equivalent to
uK21,TM21,Tn(u, v)u 5 uK21,Tn(u, v)u 3 uM21,Tn(u, v)u.
This can be solved directly provided that K is a rotation
matrix [since both sides reduce to uM21,Tn(u, v)u]. Oth-
erwise no solutions exist (except for nongeneric objects).
Hence the ambiguity occurs only if K is a rotation matrix.

7. CONCLUSION
The goal of this paper was to propose the study of joint
viewpoint–lighting ambiguities. Another motivation
was to resolve the differences between the affine ambigu-
ities found when ignoring photometric effects2–4 and the
generalized bas-relief (GBR) photometric ambiguity from
fixed viewpoint.5

In particular, we derived the KGBR ambiguity by re-
stricting the reflectance functions to be Lambertian (al-
lowing for multiple light sources and shadows but no in-
terreflections). The KGBR consists of a standard affine
transformation on a surface shape in conjunction with a
transformation on the surface albedo. We derived the
GBR as a special case of the KGBR, which yielded a new

intuitive proof of the GBR ambiguity. We obtained a gen-
eral decomposition of the KGBR in terms of a rotation, a
GBR, and a two-dimensional affine transformation.
Then we illustrated the KGBR and discussed its implica-
tions for shape from shading and structure from view-
point.

We hope that this work will motivate further studies of
joint viewpoint–lighting ambiguities.
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