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Abstract 

Jn this paper we are interested in how sema!ltic segmen­
tation can help object detection. Towards this goal, we 
propose a novel deformable part-based model which ex­
ploits region-based segmentation algorithms that compute 
candidate object regions by bottom-up clustering followed 
by ranking of those regions. Our approach allows every 
detection hypothesis to select a segment (including void), 
and scores each box in the image using both the traditional 
HOG filters as well as a set of novel sef{mentation features. 
Thus our model •·blends" between the detector and segmen­
tation models. Since our features can be computed very effi­
ciently given the segments, we maintain the same complex­
ity as the original DPM [ 14]. We demonstrate the effective­
ness of our approach in PASCAL VOC 2010, and show that 
when employing only a root filter our approach outperforms 
Dalal & Triggs detector [ 12] on all classes, achieving 13% 
higher average AP. When employing the parts, we outper­
form the original DPM [ 14) in 19 out of20 classes, achiev­
ing an improvement of 8% AP. Furthermore, we outperform 
the previous state-of-the-art on VOC' JO test by 4%. 

1. Introduction 

Over the past few years, we have witnessed a push to­
wards holistic approaches that try to solve mulliple recog­
nition tasks jointly [29, 6, LO, t8, HJ. This is important 
as information from multiple sources should facilitate scene 
understanding a5 a whole. For example, knowing which ob­
jects are present in the scene should simplify segmentation 
and detection tasks. Similarly, if we can detect where an ob­
ject is, segmentation should be ea<;ier as onJy figure-ground 
segmentation is necessary. Existing approaches typically 
take the output of a detector and refine the regions inside 
the boxes to produce image segmentations (22, S, I, 14). 
An alternative approach is to use the candidate detections 
produced by state-of-the-art detectors as additional features 
for segmentation. This simple approach has proven very 
successful [6, I 9) in standard benchmarks. 

In contrast, in this paper we are interested in exploit-

ing semantic segmentation in order to improve object de­
tection. While bottom-up segmentation has been often be­
lieved to be inferior to top-down object detectors due to it5 
frequent over- and under- segmentation, recent approaches 
[8, I ] have shown impressive results in difficult dataset5 
such as PASCAL VOC challenge. Here, we take advantage 
of region-based segmentation approaches [7], which com­
pute a set of candidate object regions by bottom-up cluster­
ing, and produce a segmentation by ranking those regions 
using class specific rankers. Our goal is to make use of these 
candidate object segments to bias sliding window object 
detectors to agree with these regions. Importantly, unlike 
the aforementioned holistic approaches, we reason about alJ 
possible object bounding boxes (not just candidates) to not 
li mit the expressiveness of our model. 

Deformable part-based models (DPM) [14] and its vari­
ants [2, 35, JO], are arguably the leading technique to object 
detection 1 • However, so far, there has not been many at­
tempts to incorporate segmentation into DPMs. In this pa­
per we propose a novel deformable part-based model, which 
exploits region-based segmentation by allowing every de­
tection hypothesis to select a segment (including void) from 
a small pool of segment candidates. Towards this goal, we 
derive simple features, which can capture the essential in­
formation encoded in the segments. Our detector scores 
each box in the image using both the traditional HOG fi lters 
as well as the set of novel segmentation features. Our model 
"blends" between the detector and the segmentation models 
by boosting object hypotheses on the segments. Further­
more, it can recover from segmentation mistakes by exploit­
ing a powerful appearance model. Importantly, as given 
the segments we can compute our features very efficiently, 
our approach has the same computational complexity as the 
original DPM [14). 

We demonstrate the effectiveness of our approach in 
PASCAL voe 20 l 0, and show that when employing only a 
root filter our approach outperforms Dalal & Triggs detec­
tor [12) by 13% AP, and when employing parts, we outper­
form the original DPM [ 1-l] by 8%. Furthermore, we out­
perform the previous state-of-the-art on VOC2010 by 43 . 

1 PoseleL~ [~]can be shown to be very similar in spirit to DPMs 



We believe that these results will encourage new research 
on bottom-up segmentation as well as hybrid segmentation­
detection approaches, as our paper clearly demonstrates the 
importance of segmentation for object detection. 

In the remainder of the paper, we first review related 
work and then introduce our novel deformable part-based 
model, which we call segDPM. We then show our experi­
mental evaluation and conclude with future work. 

2. Related Work 

Deformable part-based model [ 14) and its variants have 
been proven to be very successful in difficult object detec­
tion benchmarks such as PASCAL VOC challenge. Several 
approaches have tried to augment the level of supervision 
in these models. Azizpour et al. [2] use part annotations 
to help clustering different poses as well as to model oc­
clusions. Hierarchical versions of these models have also 
been proposed [35), where each part is composed of a set 
of sub-parts. The relative rigidity of DPMs has been alle­
viated in [10] by leveraging a dictionary of shape masks. 
This allows a better treatment of variable object shape. De­
sai et al. [JJ] proposed a structure prediction approach to 
perform non-maxima suppression in DPMs which exploits 
pairwise relationships between multi-class candidates. The 
tree structure of DPMs allows for fast inference but can suf­
fer from problems such as double counting observations. 
To mitigate this, [27] consider lateral connections between 
high resolution parts. 

ln the past few years, a wide variety of segmentation 
algorithms that employ object detectors as top-down cues 
have been proposed. This is typically done in the form of 
unary features for an MRF [ 19], or as candidate bounding 
boxes for holistic MRFs [33, 2 1] . Complex features based 
on shape masks were exploited in (33) to parse the scene 
holistically in terms of the objects present in the scene, their 
spatial location as well as semantic segmentation. In [26), 
heads of cats and dogs are detected with a DPM, and seg­
mentation is performed using a GrabCut-type method. By 
combining top-down shape information from DPM parts 
and bottom-up color and boundary cues, I l2] tackle seg­
mentation and detection task simultaneously and provide 
shape and depth ordering for the detected objects. Dai et al. 
[ I I ] exploit a DPM to find a rough location for the object 
of interest and refine the detected bounding box according 
to occlusion boundaries and color information. (25) find 
silhouettes for objects by extending or refining DPM boxes 
corresponding to a reliably detectable part of ao object. 

DPMs provide object-specific cues, which can be ex­
ploited to learn object segmentations [1]. lo [24), masks 
for detected objects are found by employing a group of seg­
ments corresponding to the foreground region. Other object 
detectors have been used in the literature to help segmenting 
object regions. For instance, while [ i ] finds segmentations 

for people by aligning the masks obtained for each Poselet 
[4], 123] integrates low level segmentation cues with Pose­
lets in a soft manner. 

There are a few attempts to use segments/regions to im­
prove object detection. Gu et al. [ 17) apply hough trans­
form for a set of regions to cast votes on the location of 
the object. More recently, [2R] Learn object shape model 
from a set of contours and use the learned model of con­
tours for detection. In contrast, in this paper we proposed a 
novel deformable-part based model, which allows each de­
tection hypothesis to select candidate segments. Simple fea­
tures express the fact that the detections should agree with 
the segments. Importantly, these features can be computed 
very efficiently, and lhus our approach bas the same com­
putational complexity as DPM [ 14). 

3. Semantic Segmentation for Object Detection 

We are interested in utilizing semantic segmentation to 
help object detection. In particular, we take advantage 
of region-based segmentation approaches, which compute 
candidate object regions by bottom-up clustering, and rank 
those regions to estimate a score for each class. Towards 
this goal we frame detection as an inference problem, where 
each detection hypothesis can select a segment from a pool 
of candidates (those returned from the segmentation as well 
as void). We derive simple features, which can be computed 
very efficiently while capturing most information encoded 
in the segments. ln the remainder of the section, we first dis­
cuss our novel DPM formulation. We then define our new 
segment-based features and discuss learning and inference 
in our model. 

3.1. A Segmentation-Aware DPM 

Following [J4], letp0 be a random variable encoding the 
location and scale of a bounding box in an image pyramid 
as well as the mixture component id. As shown in [ 14] a 
mixture model is necessary in order to cope with variabil­
ity in appearance as well as the different aspect ratios of 
the training examples. Let {Pih=1, .. . ,P be a set of parts 
which encode bounding boxes at double the resolution of 
the root. Denote with h the index over the set of candi­
date segments returned by the segmentation algori thm. We 
frame the detection problem as inference in a Markov Ran­
dom Field (MRF), where each root filter hypothesis can se­
lect a segment from a pool of candidates. We thus write the 
score of a configuration as 

p p 

E(p , h) "'"' T "'"' 'l ' L wi · </>(x ,pi)+ Lwi,def· <f>(x,vo,Pi)+ 
i= O i = l 

+w~:9¢(x , h, Vo) (I) 

where h E {O, 1, · · · , H(x)}, with H(x) the total number 
of segments for this class in image x . Note that h = 0 un-
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Figure 1. Tbe box-segment features: q>s eg- 1 n aod <pseg- out , encourage tbe box to contain as many segment pixels as possible. This pair 
of features alone could result in box hypotheses that "overshoot" the segment. The purpose of the second pair of features, <!>ba ck - 1 n and 
<!>back- ou t, is the opposite: it tries to minimize the number of background pixels inside the box and maximize its number outside. In 
synchrony these features would try to tightly place a box around the segment. 

plies that no segment is selected. We will use S( h) to denote 
the segment that h indexes. As in [14), we employ a HOG 
pyramid to compute ¢ (x, Po), and use double resolution to 
compute the part features c/J(x , Pi ) . The features ¢ (x , h, Po) 
link segmentation and detection. In this paper, we define 
features at the level of the root, but our formulation can be 
easily extended to include features at the part level. 

3.2. Segmentation Features 

Given a set of candidate segments, we would like to en­
code features linking segmentation and detection while re­
maining computationally efficient. We would also like to be 
robust to over- and under- object segmentations, as well as 
false positive or missing segments. Towards this goal, we 
derive simple features which encourage the selected seg­
ment to agree with the object detection hypothesis. Most 
of our features employ integral images which makes them 
extremely efficient, as this computation can be done in con­
stant time. We now describe the features in more details. 

Segment-In: Given a segment S(h), our first feature 
counts the percentage of pixels in S(h) that fall inside the 
bounding box defined by Vo· Thus 

1 
<Pseg-in(x,h,po) = S(h) L l{pES(h)} 

rEB(ro) 

where S(h) is the size of the segment indexed by h, and 
B (po) is the set of pixels contained in the bounding box 
defined by Po· This feature encourages tbe bounding box to 
contain the segment. 

Segment-Out: Our second feature counts the percentage 
of segment pixels that are outside the bounding box, 

1 
<Pseg- out(x,h,po) = S(h) L l{p E S(h)} 

p¢ B(po) 

This feature discourages boxes that do not contain all seg­
ment pixels. 

Background-In: We additionally compute a feature 
counting the amount of background inside the bounding box 
as follows 

1 
¢back- in (x , h,po) = N _ S(h) L l{p ¢ S(h)} 

pEB(po) 

with N the size of the image. This feature captures the 
statistics of how often the segments leak outside the true 
bounding box vs how often they are too small. 

Background-Out: This feature counts the amount of 
background outside the bounding box 

l 
</>back-cmdx, h,po) = N _ S(h) L l{p ¢ S(h)} 

p¢B(po) 

It tries to discourage bounding boxes that are too big and do 
not tightly fit the segments. 

Overlap: This feature penalizes bounding boxes which 
do not overlap well with the segment. In particular, it 
computes the intersection over union between the candidate 
bounding box defined by Vo and the tighter bounding box 
around the segment S(h) . It is defined as follows 

B(po) n B(S(h)) 
</>cmr.rlap(X, h, Po) = B(po) U B(S(h)) - A 

with B(S(h)) the tighter bounding box around S(h), B(p0 ) 

the bounding box defined by p 0 , and .A a constant, which is 
the intersection over union level that defines a true positive. 
We employ in practice .A = 0. 7. 

Background bias: The value of aU of the above features 
is 0 when h = 0. We incorporate an additional feature to 
learn the bias for the background segment (h = 0). This 
puts the scores of the HOG filters and the segmentation po­
tentials into a common referential. We thus simply define 



. h - {1 if h = 0 </>biu.s(x, : Po) - O ... . 
ou1erw1se. 

Fig. I depicts our features computed for a specific 
bounding box p0 and segment S(h). Note that the first two 
features, </>seg-in and </> .• eg-out. encourage the box to con­
tain as many segment pixels as possible. This pair of fea­
tures alone could result in box hypotheses that "overshoot" 
the segment. The purpose of the second pair of features, 
</>back- in and </>back- out. is the opposite: il tries to mini­
mize the number of background pixels inside the box and 
maximize its number outside. In synchrony these features 
would try to tightly place a box around the segment. The 
overlap feature bas a similar purpose, but helps us better 
tune the model to the VOC IOU evaluation setting. 

3.3. Efficient Computation 

Given the segments, all of our proposed features can be 
computed very efficiently. Note that the features have to 
be computed for each segment h, but this is not a problem 
as there are typically only a few segments per image. We 
start our discussion with the first four features, which can 
be computed in constant time using a single integral image 
per segment. This is both computationally and memory ef­
ficient. Let </>int ( h) be the integral image for segment h, 
which, at each point (u, v), counts the% of pixels that be­
long to this segment and are contained inside the subimage 
defined by the domain IO, u] >< IO, v]. This is illustrated in 
Fig. 2 . Given the integral image <faint(h) for the h-segment, 
we compute the features as follows 

<Pseg- in(X, h,po) 

</>seg- out(X, h,po) 

</>back-in (x ,h,po) 

</>back- out (X , h,po) 

</>1rr(h,po) - <f>tr(h ,po) 

- <f>i,i(h,po) + </>u (h ,po) 

S(h) - </>seg-in. (x , h,po) 

B(po) - </>seg- <n(X, h,po) 

(N - S(h) ) - ¢back- in(x, h, Po) 

where as shown in Fig. 2, (¢a , ef>t,., </>b1, </>b,- ) indexes the 
integral image of segment S( h) at the four comers, i.e., top­
left, top-right, bottom-left, bottom-right, of the bounding 
box defined by Po· 

The overlap feature between a hypothesis Po and a seg­
ment S(h) can also be computed very efficiently. First, we 
compute the intersection as: 

B(po) n B(S(h)) = 

segment S (h ) integral image 'Pint (h) 

,.. 'Ptr (h, Pol 

,.. 'Pbr (h, Pol 

v 
'Ptll (h, Po) 'Ptl (h, Po) 

'l'seg- in (X, h, Po) = 
'l>bt (h, Po) - q>1r(h, Po) 

~ 

roctf Iller E\J - <P1i1 ( h, Po) + '!>11(h, Po) 

Figure 2. Segment feature computation via integral image. 

compute the bounds of where in the image the feature needs 
to be computed (i.e., when the feature is different than 0). 
The denominator, B(p0 ) U B(S(h)), can then be simply 
computed as the sum of the box areas minus the overlap. 

3.4. Inference 

Inference in our model can be done by solving the fol­
lowing optimization problem 

p p 

max ( L wT · </>(x,pi ) + L max(w[def · ¢ (x,po,Pi)) + 
Po i =O i = l p, 

+max(w;~g · </>(x, h, Po))) 
h . 

Note that this can be done efficiently using dynamic pro­
gramming as the structure of the graphical model forms 
a tree. The algorithm works as follows: First, we 

')' ( ) ( ')' compute ma.x.1i wscg</> x , h , Po as well as max.Pi w i,def · 

<p(x, Po, Pi)) for each root filter hypothesis Po· We the.o 
compute the score as the sum of the HOG and segment score 
for each mixture component at the root level. Finally, we 
compute the maximum over the mixture components to get 
the score of an object hypothesis. 

3.5. Learning 

We learn a different weight for each feature using a la­
tent structured-SVM [1 Ii]. Allowing different weights for 
the different segmentation features is important in order to 
learn how likely is for each class to have segments that un­
dershoot or overshoot the detection bounding box. We em-

max IO, min(xo,right: Xs(h),right) - max(xo, le~ , Xs(h),lert)] · ploy as loss the intersection over the union of the root fil-
max 10. min(?!Jo b . ?!Js (/·) b . ) _ max(1,0 1,S(J· ) )] ters. As in DPM I I iJ, we initialize the model by first tmin-, . , ot t om . ,. ' , ot.t.o u1 " .top>,, ' ,to p 

· ing only the root filters, followed by training a root mixture 
Note that the overlap will be non-zero only when each of the model. Finally we add the parts and perform several addi-
terms is larger than 0. Given that the segment bounding box tional iterations of stochastic gradient descent [ 14]. 
B(S(h)) is fixed and the width and height of p0 at a partic- Note that we expect the weights for ¢ .• eg-in(x, h,p0 ), 

ular level of the pyramid are fixed as well, we can quickly </>back- out (x, h, Po) and <f>ovef'lap(x, h,po) to be positive, as 



we would like to maximize the overlap, the amount of fore­
ground inside the bounding box and background outside the 
bounding box. Similarly, the weights for efiseg-out(x, h,po) 
and efiback- in(x, h, Po) are expected to be negative as we 
would like to minimize the amount of background inside 
the bounding box as well as the amount of foreground seg­
ment outside. ln practice, as the object's shape can be far 
from rectangular, and the segments are noisy, the sign of the 
weights can vary to best capture the statistics of the data. 

3.6. Implementation Details 

We use CPMC (7) to get the candidate segments. In par­
ticular, for most experiments we use the final segmentation 
output of [7]. For each class, we find all connected compo­
nents in the segmentation output, and remove those that do 
not exceed 1500 pixels. Unless otherwise noted, we do not 
use the score of the segments. On average, this gives us one 
segment per image. We also provide one experiment where 
we used more segments (5 on average per image), which we 
describe in Sec. 4. 

4. Experimental Evaluation 

We first evaluate our detection performance on val sub­
set of PASCAL voe 20 l 0 detection dataset, and compare 
it to the baselines. We train all methods, including the base­
lines on the t rain subset. We use the standard PASCAL 
criterion for detection (50% IOU overlap) and report aver­
age precision (AP) as the measure of evaluation. 

As bm;elines we use the Dalal&Triggs detector f 121 
(which for fairness we compare to our detector when only 
using the root filters), the DPM [ 14], as well as CPMC [7] 
when used as a detector. To compute the latter, we find all 
the connected components in the final segmentation output 
of CPMC [7], and place the tightest bounding box around 
each component. To compute the score of the box we utilize 
the CPMC ranking scores for the segments. 

The comparison with [ J 2) and our approach (segDPM) 
without parts is shown in the top Table 1, while the bot­
tom table compares CPMC-based detector, DPM and our 
approach with parts. We significantly outperform the base­
lines: Dalal & Triggs detector by 13% and the CPMC ba<;e­
line by 10%. Our model also achieves a significant boost 
of 8% AP over the DPM, which is a well established and 
difficult baseline to beat. Importantly, we outperform DPM 
in 19 out of 20 classes. The main power of our approach is 
that it blends between DPM (appearance) and segmentation 
(CPMC). When there is no segment, the method just scores 
a regular DPM. When there is a segment, our approach is 
encouraged to tightly fit a box around it. However, in cases 
of under- or over- segmentation, the appearance part of our 
model can still correctly position the box. Note that our 
results well demonstrate the effectiveness of using blended 
detection and segmentation models for object detection. 

Fig. 4 depicts examples illustrating the performance of 
our approach. Note that our approach is able to both retrieve 
detections where there is no segment as well as position the 
bounding box correctly where there is segment evidence. 

We evaluate our approach on VOC 2010 test in Ta­
ble 2. Here, we trained CPMC (7), as well as our model on 
VOC t rainva l. We compare segDPM with DPM with­
out the post-processing steps, i.e., bounding box prediction 
and context-rescoring, in the top of Table 2. Jn the bot­
tom of Table 2 we compare our full approach with existing 
top scoring approaches. For the full approach, we show re­
sults when typical context-rescoring approach is used (same 
as in DPM), which we refer to as segDPM+rescore. We 
also show results when we rescored the detections by us­
ing the classification scores for each class, kindly pro­
vided to us by [9]. The classification (presence/absence 
of class in an image) accuracy measured by mean AP 
on VOC2010 is 76.2%. We refer to this approach with 
segDPM+rescore+classif. We outperform the competitors 
by 3.6%, and achieve the best result in 13 out of 20 classes. 

We also experimented with using more segments, on the 
voe 2010 train I val split. ln particular, among 150 
segments per image returned by [8], we selected a top­
ranking subset for each class, so that there was an average of 
5 segments per image. The results are reported in Table 3. 
We compare it to CPMC when using the same set of seg­
ments. One can see that with more segments our approach 
improves by 1.5%. As such, it outperforms DPM by 10%. 

5. Conclusion 

Jn this paper, we have proposed a novel deformable part­
ba<>ed model, which exploits region-based segmentation by 
allowing every detection hypothesis to select a segment (in­
cluding void) from a pool of segment candidates. We derive 
simple yet very efficient features, which can capture the es­
sential information encoded in the segments. Our detector 
scores each box in the image using both the HOG filters as 
in original DPM, as well as a set of novel segmentation fea­
tures. This way, our model "blends" between the detector 
and the segmentation model, by boosting object hypotheses 
on the segments, while recovering from making mistakes 
by exploiting a powerful appearance model. We demon­
strated the effectiveness of our approach in PASCAL voe 
2010, and show that when employing only a root filter our 
approach outperforms Dalal & Triggs detector [J 2) by 13% 
AP and when employing parts, we outperform the original 
DPM (14) by 8%. We believe that this is just the beginning 
of a new and exciting direction. We expect a new genera­
tion of object detectors which are able to exploit semantic 
segmentation yet to come. 

Acknowledgments R.M. was supported in part by NSF 
0917141 and ARL 62250-CS. 



11 plane I bike I bird I boat I bottle I bus I car I cat I chair I cow I table I dog I horse I motor I person I plant I sheep I sofa J train J tv 11 Avg. I 
voe 2010 val, no parts 

Dalal ( 12] 29.J 36.9 2.9 3.4 15.6 47. 1 27.I 11.4 9.8 5.8 6.0 5.0 24.8 28.4 27.5 2.2 18.4 9.2 27.4 23.2 18.1 
scgOPM (no par ts) 52.4 43.J 20.9 l 5.7 18.6 55.8 33.2 43.9 10.7 22.0 14.8 31.1 40.9 45.1 33.6 l.l.l 27.3 22.0 42.5 31.7 30.8 

voe 2010 val, with parts 
ePMe (no score) (7] 49.9 15.5 18.5 14.7 7.4 35.0 19.9 41.4 3.9 16.2 8.5 24.4 26.0 32.1 18.9 5.7 15.3 14.1 29.8 18.7 20.8 
CPMC (score) (7J 53.3 19.5 22.8 15.7 8.1 42.7 22.1 51.3 4.3 18.9 I0.5 28. 1 30.5 38.3 20.9 6.0 19.2 18.6 35.4 21.1 24.4 
DPM (14] 46.3 49.5 4.8 6.4 22.6 53.5 38.7 24.8 14.2 I0.5 10.9 12.9 36.4 38.7 42.6 3.6 26.9 22.7 34.2 31.2 26.6 
segDPM (parts) 55.7 50 23.3 16.0 28.5 57 .4 43.2 49.3 14.3 23.5 17.7 32.4 42.6 44.9 42.I 11.9 32.5 25.5 43.9 39 .7 34.7 

Table l . AP perfonnance (in%) on VOe 2010 val for our detector with parts, the DPM ( 14J, and the ePMe -based detector [7J. 

1 lplaneJbi.keJ bird I boat I bottle! bus I car I cat I chair I cow Jtablel dog lhorseJmotorlpersonlplantJsbeepl sofa ltraio l tv II Avg. I 
v o e 20l0 test , no post-processing 

DPM no postproc. (14) 47.2 50.8 8 .6 12.2 32.2 48.9 44.4 28.1 13.6 22.7 11.3 17.4 40.4 47.7 44.4 7.6 30 17.3 38.5 34.3 29.9 
segDPM no postproc. 56.4 48.0 24.3 21.8 31.3 51.3 47.3 48.2 16.1 29.4 19.0 37.5 44.1 51.5 44.4 12.6 32.1 28.8 48 .9 39.1 36.6 

voe 2010 test , with post-processing 
scgDPM+rcscorc+classif 61.4 53.4 25.6 25.2 35.5 5 1.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47. 1 14.8 38.7 35.0 52.8 43.1 40.4 
SLogDPM+r~scorc 58.7 51.4 25.3 24.1 33.8 52.5 49.2 48.8 11.7 30.4 2 1.6 37.7 46.0 53.1 46.0 13.1 35.7 29.4 52.5 41.8 38.1 
NLPR_HOGLBP ['.1 1] 53.3 55.3 19.2 21.0 30.0 54.4 46.7 41.2 20.0 31.5 20.7 30.3 48.6 55.3 46.5 10.2 34.4 26.5 50.3 40.3 36.8 
MITUCLA..HIERARCHY [35) 54.2 48.5 15.7 19.2 29.2 55.5 43.5 41.7 16.9 28.5 26.7 30.9 48.3 55.0 41.7 9.7 35.8 30.8 47.2 40.8 36.0 
NUSJIOGLBP _CTX [9] 49.1 52.4 17.8 12.0 30.6 53.5 32.8 37.3 17.7 30.6 27.7 29.5 5 1.9 56.3 44.2 9.6 14.8 27.9 49.5 38.4 34.2 
van de Sande et al. [ 30) 58.2 41.9 19.2 14.0 14.3 44.8 36.7 48.8 12.9 28.1 28 .7 39.4 44. I 52.5 25.8 14.1 38.8 34.2 43.1 42.6 34.1 
UOCTTLLSVM..MDPM (31] 52.4 54.3 13.0 15.6 35. 1 54.2 49.1 31.8 15.5 26.2 13.5 21.5 45.4 51.6 47.5 9.1 35.1 19.4 46.6 38 33.7 
Gu et al. [ 16] 53.7 42.9 18.1 16.5 23.5 48. I 42.1 45.4 6.7 23.4 27.7 35.2 40.7 49.0 32.0 11.6 34.6 28.7 43.3 39.2 33.I 
UVA..DETMONKEY fJOl 56.7 39.8 16.8 12.2 13.8 44.9 36.9 47.7 12.1 26.9 26.5 37.2 42.1 51.9 25.7 12.l 37.8 33.0 41.5 41.7 32.9 
UVA_GROUPLOC [.\0] 58.4 39.6 18 13.3 11.J 46.4 37.8 43.9 10.3 27.5 20.8 36 39.4 48.5 22.9 13 36.8 30.5 41.2 41.9 31.9 
BONN..FGT.SEGM [8] 52.7 33.7 13.2 I 1.0 14.2 43. I 31.9 35.6 5.7 25.4 14.4 20.6 38. 1 41.7 25.0 5.8 26.3 18. 1 37.6 28.1 26.1 

Table 2. AP perfonnance (in %) on VOe 2010 test for our detector with parts and the DPM [ 14], without post processing (top table), and 
comparison with existing methods (only top 11 shown), with post-processing (table below). 
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Figure 3. Precision-recall curves for all method~ on the validation set of PASCAL VOC 201 0. Note that our approach significantly 
outperforms all baselines. 
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CPMC (l seg) (7] 53.3 19.5 22.8 15.7 8. l 42.7 22.l 51.3 4.3 18.9 10.5 28. l 30.5 38.3 20.9 6.0 19.2 18.6 35.4 21.l 24.4 
CPMC (5 seg) !71 59.8 27.6 27.J 19.6 12.7 53.1 31.2 56.6 8.2 25.6 17.5 34.8 39.8 42.3 25.9 J0.3 29.8 26.6 46.7 33.4 31.4 
segDPM (l seg) 55.7 50.0 23.3 16.0 28.5 57.4 43.2 49.3 14.3 23.5 17.7 32.4 42.6 44.9 42.J 11 .9 32.5 25.5 43.9 39.7 34.7 
segDPM (5 seg) 56.1 49.0 22.9 18.2 34.0 58.9 42.9 49.8 15.4 25.0 22.7 32.3 46.2 45.6 39.2 13.6 33.3 30.6 46.7 41.5 36.2 

Table 3. AP performance (in%) on VOC 2010 vaJ for our detector when using more segments. 

[30] KE. A. van de Sande, J. R.R. Uijlings, T. Gevers, and A. W. M. In /CCV, 201 l . 6 
Smeulders. Segmentation as selective search for object recognition. [3 l) A. Vedaldi, V. Gulshan, M. Vanna, and A. Zisserman. Multiple ker-



(a) GT (b)CPMC (c) DPM (d) segDPM 
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