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Abstract

We present a new point matching algorithm for robust
nonrigid registration. The method iteratively recovers the
point correspondence and estimates the transformation be-
tween two point sets. In the first step of the iteration, fea-
ture descriptors such as shape context are used to establish
rough correspondence. In the second step, we estimate the
transformation using a robust estimator called L2E. This is
the main novelty of our approach and it enables us to deal
with the noise and outliers which arise in the correspon-
dence step. The transformation is specified in a functional
space, more specifically a reproducing kernel Hilbert space.
We apply our method to nonrigid sparse image feature cor-
respondence on 2D images and 3D surfaces. Our results
quantitatively show that our approach outperforms state-of-
the-art methods, particularly when there are a large num-
ber of outliers. Moreover, our method of robustly estimating
transformations from correspondences is general and has
many other applications.

1. Introduction
Point set registration is a fundamental problem which

frequently arises in computer vision, medical image analy-
sis, and pattern recognition [5, 4, 6]. Many tasks in these
fields – such as stereo matching, shape matching, image
registration and content-based image retrieval – can be for-
mulated as a point matching problem because point repre-
sentations are general and easy to extract [5]. The points
in these tasks are typically the locations of interest points
extracted from an image, or the edge points sampled from
a shape contour. The registration problem then reduces to
determining the correct correspondence and to find the un-
derlying spatial transformation between two point sets ex-
tracted from the input data.

The registration problem can be categorized into rigid or
nonrigid registration depending on the application and the
form of the data. Rigid registration, which only involves a
small number of parameters, is relatively easy and has been

widely studied [5, 4, 7, 19, 14]. By contrast, nonrigid reg-
istration is more difficult because the underlying nonrigid
transformations are often unknown, complex, and hard to
model [6]. But nonrigid registration is very important be-
cause it is required for many real world tasks including
hand-written character recognition, shape recognition, de-
formable motion tracking and medical image registration.

In this paper, we focus on the nonrigid case and present
a robust algorithm for nonrigid point set registration. There
are two unknown variables we have to solve for in this prob-
lem: the correspondence and the transformation. Although
solving for either variable without information regarding
the other is difficult, an iterated estimation framework can
be used [4, 3, 6]. In this iterative process, the estimate of the
correspondence is used to refine the estimate of the trans-
formation, and vice versa. But a problem arises if there
are errors in the correspondence which occurs in many ap-
plications particularly if the transformation is large and/or
there are outliers in the data (e.g., data points that are not
undergoing the non-rigid transformation). In this situation,
the estimate of the transformation will degrade badly un-
less it is performed robustly. The main contribution of our
approach is to robustly estimate the transformations from
the correspondences using a robust estimator named the L2-
Minimizing Estimate (L2E) [20, 2].

More precisely, our approach iteratively recovers the
point correspondences and estimates the transformation be-
tween two point sets. In the first step of the iteration, fea-
ture descriptors such as shape context are used to estab-
lish correspondence. In the second step, we estimate the
transformation using the robust estimator L2E. This esti-
mator enable us to deal with the noise and outliers in the
correspondences. The nonrigid transformation is modeled
in a functional space, called the reproducing kernel Hilbert
space (RKHS) [1], in which the transformation function has
an explicit kernel representation.

1.1. Related Work

The iterated closest point (ICP) algorithm [4] is one
of the best known point registration approaches. It uses
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nearest-neighbor relationships to assign a binary correspon-
dence, and then uses estimated correspondence to refine the
transformation. Belongie et al. [3] introduced a method for
registration based on the shape context descriptor, which
incorporates the neighborhood structure of the point set
and thus helps establish correspondence between the point
sets. But these methods ignore robustness when they re-
cover the transformation from the correspondence. In re-
lated work, Chui and Rangarajan [6] established a general
framework for estimating correspondence and transforma-
tions for nonrigid point matching. They modeled the trans-
formation as a thin-plate spline and did robust point match-
ing by an algorithm (TRS-RPM) which involved determin-
istic annealing and soft-assignment. Alternatively, the co-
herence point drift (CPD) algorithm [17] uses Gaussian ra-
dial basis functions instead of thin-plate splines. Another
interesting point matching approach is the kernel correla-
tion (KC) based method [22], which was later improved
in [9]. Zheng and Doermann [27] introduced the notion
of a neighborhood structure for the general point matching
problem, and proposed a matching method, the robust point
matching-preserving local neighborhood structures (RPM-
LNS) algorithm. Other related work includes the relaxation
labeling method, generalized in [11], and the graph match-
ing approach for establishing feature correspondences [21].

The main contributions of our work include: (i) we pro-
pose a new robust algorithm to estimate a spatial transfor-
mation/mapping from correspondences with noise and out-
liers; (ii) we apply the robust algorithm to nonrigid point
set registration and also to sparse image feature correspon-
dence.

2. Estimating Transformation from Corre-
spondences by L2E

Given a set of point correspondences S = {(xi, yi)}ni=1,
which are typically perturbed by noise and by outlier points
which undergo different transformations, the goal is to esti-
mate a transformation f : yi = f(xi) and fit the inliers.

In this paper we make the assumption that the noise on
the inliers is Gaussian on each component with zero mean
and uniform standard deviation σ (our approach can be di-
rectly applied to other noise models). More precisely, an
inlier point correspondence (xi, yi) satisfies yi − f(xi) ∼
N(0, σ2I), where I is an identity matrix of size d×d, with d
being the dimension of the point. The data {yi− f(xi)}ni=1

can then be thought of as a sample set from a multivariate
normal density N(0, σ2I) which is contaminated by out-
liers. The main idea of our approach is then, to find the
largest portion of the sample set (e.g., the underlying inlier
set) that “matches” the normal density model, and hence
estimate the transformation f for the inlier set. Next, we in-
troduce a robust estimator named L2-minimizing estimate
(L2E) which we use to estimate the transformation f .

2.1. Problem Formulation Using L2E: Robust Esti-
mation

Parametric estimation is typically done using maximum
likelihood estimation (MLE). It can be shown that MLE
is the optimal estimator if it is applied to the correct proba-
bility model for the data (or to a good approximation). But
MLE can be badly biased if the model is not a sufficiently
good approximation or, in particular, there are a significant
fraction of outliers. In many point matching problems, it
is desirable to have a robust estimator of the transformation
f because the point correspondence set S usually contains
outliers. There are two choices: (i) to build a more complex
model that includes the outliers – which is complex since it
involves modeling the outlier process using extra (hidden)
variables which enable us to identify and reject outliers,
or (ii) to use an estimator which is different from MLE
but less sensitive to outliers, as described in Huber’s robust
statistics [8]. In this paper, we use the second method and
adopt the L2E estimator [20, 2], a robust estimator which
minimizes the L2 distance between densities, and is par-
ticularly appropriate for analyzing massive data sets where
data cleaning (to remove outliers) is impractical. More for-
mally, L2E estimator for model f(x|θ) recommends esti-
mating the parameter θ by minimizing the criterion:

L2E(θ) =

∫
f(x|θ)2dx− 2

n

n∑
i=1

f(xi|θ). (1)

To get some intuition for whyL2E is robust, observe that its
penalty for a low probability point xi is −f(xi|θ) which is
much less than the penalty of− log f(xi|θ) given by MLE
(which becomes infinite as f(xi|θ) tends to 0). Hence
MLE is reluctant to assign low probability to any points,
including outliers, and hence tends to be biased by out-
liers. By contrast, L2E can assign low probabilities to
many points, hopefully to the outliers, without paying too
high a penalty. To demonstrate the robustness of L2E, we
present a line-fitting example which contrasts the behavior
of MLE and L2E, see Fig. 1. The goal is to fit a linear re-
gression model, y = αx + ε, with residual ε ∼ N(0, 1),
by estimating α using MLE and L2E. This gives, re-
spectively, α̂MLE = arg maxα

∑n
i=1 log φ(yi − αxi|0, 1)

and α̂L2E = arg minα

[
1

2
√
π
− 2

n

∑n
i=1 φ(yi − αxi|0, 1)

]
,

where φ(x|µ,Σ) denotes the normal density.
As shown in Fig. 1, L2E is very resistant when we con-

taminate the data by outliers, but MLE does not show this
desirable property. L2E always has a global minimum at
approximately 0.5 (the correct value for α) but MLE’s es-
timates become steadily worse as the amount of outliers in-
creases. Observe, in the bottom right figure, that L2E also
has a local minimum near α = 2, which becomes deeper as
the number n of outliers increases so that the two minima
become approximately equal when n = 200. This is ap-
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Figure 1. Comparison between L2E and MLE for linear re-
gression as the number of outliers varies. Top row: data sam-
ples, where the inliers are shown by cyan pluses, and the out-
liers by magenta circles. The goal is to estimate the slope α of
the line model y = αx. We vary the number of data samples
n = 100, 120, · · · , 200, by always adding 20 new outliers (re-
taining the previous samples). In the second column the outliers
are generated from another line model y = 2x. Middle and bot-
tom rows: the curves of MLE and L2E respectively. The MLE
estimates are correct for n = 100 but rapidly degrade as we add
outliers, see how the peak of the log-likelihood changes in the sec-
ond row. By contrast, (see third row) L2E estimates α correctly
even when half the data is outliers and also develops a local mini-
mum to fit the outliers when appropriate (third row, right column).
Best viewed in color.

propriate because, in this case, the contaminated data also
comes from the same linear parametric model with slope
α = 2, e.g., y = 2x.

We now apply the L2E formulation in (1) to the point
matching problem, assuming that the noise of the inliers
is given by a normal distribution, and obtain the following
functional criterion:

L2E(f, σ2) =
1

2d(πσ)d/2
− 2

n

n∑
i=1

φ
(
yi − f(xi)|0, σ2I

)
.

(2)
We model the nonrigid transformation f by requiring it to
lie within a specific functional space, namely a reproducing
kernel Hilbert space (RKHS) [1, 24, 16]. Note that other pa-
rameterized transformation models, for example, thin-plate
splines (TPS) [23, 15], can also be easily incorporated into

our formulation.
We define an RKHS H by a positive definite matrix-

valued kernel Γ : IRd × IRd → IRd×d. The optimal trans-
formation f which minimizes the L2E functional (2) then
takes the form f(x) =

∑n
i=1 Γ(x, xi)ci [16, 26], where

the coefficient ci is a d × 1 dimensional vector (to be de-
termined). Hence, the minimization over the infinite di-
mensional Hilbert space reduces to finding a finite set of
n coefficients ci. But in point correspondence problem the
point set typically contains hundreds or thousands of points,
which causes significant complexity problems (in time and
space). Consequently, we adopt a sparse approximation,
and randomly pick only a subset of size m input points
{x̃i}mi=1 to have nonzero coefficients in the expansion of the
solution. This follows [18] who found that this approxima-
tion works well and that simply selecting a random subset
of the input points in this manner, performs no worse than
more sophisticated and time-consuming methods. There-
fore, we seek a solution of form

f(x) =

m∑
i=1

Γ(x, x̃i)ci. (3)

The chosen point set {x̃i}mi=1 are somewhat analogous to
“control points” [5]. By including a regularization term for
imposing smooth constraint on the transformation, the L2E
functional (2) becomes:

L2E(f, σ2) =
1

2d(πσ)d/2
− 2

n

n∑
i=1

1

(2πσ2)d/2

e−
‖yi−∑m

j=1 Γ(xi,x̃j)cj‖2
2σ2 + λ‖f‖2Γ, (4)

where λ > 0 controls the strength of regularization, and
the stabilizer ‖f‖2Γ is defined by an inner product, e.g.,
‖f‖2Γ = 〈f, f〉Γ. By choosing a diagonal decomposable
kernel [26]: Γ(xi, xj) = e−β‖xi−xj‖

2

I with β determining
the width of the range of interaction between samples (i.e.
neighborhood size), the L2E functional (4) may be conve-
niently expressed in the following matrix form:

L2E(C, σ2) =
1

2d(πσ)d/2
− 2

n

n∑
i=1

1

(2πσ2)d/2

e−
‖yT
i −Ui,·C‖2

2σ2 + λ tr(CTΓC), (5)

where kernel matrix Γ ∈ IRm×m is called the Gram matrix
with Γij = Γ(x̃i, x̃j) = e−β‖x̃i−x̃j‖

2

, U ∈ IRn×m with
Uij = Γ(xi, x̃j) = e−β‖xi−x̃j‖

2

, Ui,· denotes the i-th row
of the matrix U , C = (c1, · · · , cm)T is the coefficient ma-
trix of size m× d, and tr(·) denotes the trace.

2.2. Estimation of the Transformation

Estimating the transformation requires taking the deriva-
tive of the L2E cost function, see equation (5), with respect
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Algorithm 1: Estimation of Transformation from Cor-
respondences

Input: Correspondence set S = {(xi, yi)}ni=1,
parameters γ, β, λ

Output: Optimal transformation f
1 Construct Gram matrix Γ and matrix U ;
2 Initialize parameter σ2 and C;
3 Deterministic annealing:
4 Using the gradient (6), optimize the objective

function (5) by a numerical technique (e.g., the
quasi-Newton algorithm with C as the old value);

5 Update the parameter C ← arg minC L2E(C, σ2);
6 Anneal σ2 = γσ2;
7 The transformation f is determined by equation (3).

to the coefficient matrix C, which is given by:

∂L2E

∂C
=

2UT[V ◦ (W ⊗ 11×d)]

nσ2(2πσ2)d/2
+ 2λΓC, (6)

where V = UC − Y and Y = (y1, · · · , yn)T are matrices
of size n × d, W = exp{diag(V V T)/2σ2} is an n × 1
dimensional vector, diag(·) is the diagonal of a matrix, 11×d
is an 1×d dimensional row vector of all ones, ◦ denotes the
Hadamard product, and ⊗ denotes the Kronecker product.

By using the derivative in equation (6), we can employ
efficient gradient-based numerical optimization techniques
such as the quasi-Newton method and the nonlinear con-
jugate gradient method to solve the optimization problem.
But the cost function (5) is convex only in the neighborhood
of the optimal solution. Hence to improve convergence we
use a coarse-to-fine strategy by applying deterministic an-
nealing on the inlier noise parameter σ2. This starts with
a large initial value for σ2 which is gradually reduced by
σ2 7→ γσ2, where γ is the annealing rate. Our algorithm is
outlined in algorithm 1.
Computational complexity. By examining equations (5)
and (6), we see that the costs of updating the objective func-
tion and gradient are both O(dm2 + dmn). For the nu-
merical optimization method, we choose the Matlab Opti-
mization toolbox, which implicitly uses the BFGS Quasi-
Newton method with a mixed quadratic and cubic line
search procedure. Thus the total complexity is approxi-
mately O(dm2 + dm3 + dmn). In our implementation,
the numberm of the control points required to construct the
transformation f in equation (3) is in general not large, and
so use m = 15 for all the results in this paper (increasing
m only gave small changes to the results). The dimension d
of the data in feature point matching for vision applications
is typically 2 or 3. Therefore, the complexity of our method
can be simply expressed as O(n), which is about linear in
the number of correspondences. This is important since it

enables our method to be applied to large scale data.

2.3. Implementation Details

The performance of point matching algorithms depends,
typically, on the coordinate system in which points are ex-
pressed. We use data normalization to control for this. More
specifically, we perform a linear re-scaling of the correspon-
dences so that the points in the two sets both have zero mean
and unit variance.

We define the transformation f as the initial position plus
a displacement function v: f(x) = x+v(x) [17], and solve
for v instead of f . This can be achieved simply by setting
the output yi to be yi − xi.
Parameter settings. There are three main parameters in
this algorithm: γ, β and λ. The parameter γ controls the an-
nealing rate. The parameters β and λ control the influence
of the smoothness constraint on the transformation f . In
general, we found our method was very robust to parameter
changes. We set γ = 0.5, β = 0.8 and λ = 0.1 through-
out this paper. Finally, the parameter σ2 and C in line 2 of
algorithm 1 were initialized to 0.05 and 0 respectively.

3. Nonrigid Point Set Registration

Point set registration aims to align two point sets {xi}ni=1

(the model point set) and {yj}lj=1 (the target point set).
Typically, in the nonrigid case, it requires estimating a non-
rigid transformation f which warps the model point set to
the target point set. We have shown above that once we
have established the correspondence between the two point
sets even with noise and outliers, we are able to estimate the
underlying transformation between them. Next, we discuss
how to find correspondences between two point sets.

3.1. Establishment of Point Correspondence

Recall that our method described above does not jointly
solve the transformation and point correspondence. In order
to use algorithm 1 to solve the transformation between two
point sets, we need initial correspondences.

In general, if the two point sets have similar shapes, the
corresponding points have similar neighborhood structures
which could be incorporated into a feature descriptor. Thus
finding correspondences between two point sets is equiv-
alent to finding for each point in one point set (e.g., the
model) the point in the other point set (e.g., the target) that
has the most similar feature descriptor. Fortunately, the ini-
tial correspondences need not be very accurate, since our
method is robust to noise and outliers. Inspired by these
facts, we use shape context [3] as the feature descriptor in
the 2D case, using the Hungarian method for matching with
the χ2 test statistic as the cost measure. In the 3D case, the
spin image [10] can be used as a feature descriptor, where
the local similarity is measured by an improved correlation

4



Algorithm 2: Nonrigid Point Set Registration

Input: Two point sets {xi}ni=1, {yj}lj=1

Output: Aligned model point set {x̂i}ni=1

1 Compute feature descriptors for the target point set
{yj}lj=1;

2 repeat
3 Compute feature descriptors for the model point

set {xi}ni=1;
4 Estimate the initial correspondences based on the

feature descriptors of two point sets;
5 Solve the transformation f warping the model

point set to the target point set using algorithm 1;
6 Update model point set {xi}ni=1 ← {f(xi)}ni=1;
7 until reach the maximum iteration number;
8 The aligned model point set {x̂i}ni=1 is given by
{f(xi)}ni=1 in the last iteration.

coefficient. Then the matching is performed by a method
which encourages geometrically consistent groups.

The two steps of estimating correspondences and trans-
formations are iterated to obtain a reliable result. In this
paper, we use a fixed number of iterations, typically 10 but
more when the noise is big or when there are a large per-
centage of outliers contained in the original point sets. We
summarize our point set registration method in algorithm 2.

3.2. Application to Image Feature Correspondence

The image feature correspondence task aims to find vi-
sual correspondences between two sets of sparse feature
points {xi}ni=1 and {yj}lj=1 with corresponding feature de-
scriptors extracted from two input images. In this paper,
we assume that the underlying relationship between the in-
put images is nonrigid. Our method for this task is to esti-
mate correspondences by matching feature descriptors us-
ing a smooth spatial mapping f . More specifically, we first
estimate the initial correspondences based on the feature de-
scriptors, and then use the correspondences to learn a spatial
mapping f fitting the inliers by algorithm 1.

Once we have obtained the spatial mapping f , we then
have to establish accurate correspondences. We prede-
fine a threshold τ and judge a correspondence (xi, yj) to
be an inlier provided it satisfies the following condition:
e−‖yj−f(xi)‖2/2σ2

> τ . We set τ = 0.5 in this paper.
Note that the feature descriptors in the point set reg-

istration problem are calculated based on the point sets
themselves, and are recalculated in each iteration. How-
ever, the descriptors of the feature points here are fixed
and calculated from images in advance. Hence the iterative
technique for recovering correspondences, estimating spa-
tial mapping, and re-estimating correspondences can not be
used here. In practice, we find that our method works well

without iteration, since we focus on determining the right
correspondences which does not need precise recovery of
the underlying transformation, and our approach then plays
a role of rejecting outliers.

4. Experimental Results
In order to evaluate the performance of our algorithm,

we conducted two types of experiments: i) nonrigid point
set registration for 2D shapes; ii) sparse image feature cor-
respondence on 2D images and 3D surfaces.

4.1. Results on Nonrigid Point Set Registration

We tested our method on the same synthesized data as in
[6] and [27]. The data consists of two different shape mod-
els: a fish and a Chinese character. For each model, there
are five sets of data designed to measure the robustness of
registration algorithms under deformation, occlusion, rota-
tion, noise and outliers. In each test, one of the above distor-
tions is applied to a model set to create a target set, and 100
samples are generated for each degradation level. We use
the shape context as the feature descriptor to establish initial
correspondences. It is easy to make shape context transla-
tion and scale invariant, and in some applications, rotation
invariance is also required. We use the rotation invariant
shape context as in [27].

Fig. 2 shows the registration results of our method on
solving different degrees of deformations and occlusions.
As shown in the figure, we see that for both datasets with
moderate degradation, our method is able to produce an
almost perfect alignment. Moreover, the matching perfor-
mance degrades gradually and gracefully as the degree of
degradation in the data increases. Consider the results on
the occlusion test in the fifth column, it is interesting that
even when the occlusion ratio is 50 percent our method can
still achieve a satisfactory registration result. Therefore our
method can be used to provide a good initial alignment for
more complicated problem-specific registration algorithms.

To provide a quantitative comparison, we report the re-
sults of four state-of-the-art algorithms such as shape con-
text [3], TPS-RPM [6], RPM-LNS [27], and CPD [17]
which are implemented using publicly available codes. The
registration error on a pair of shapes is quantified as the
average Euclidean distance between a point in the warped
model and the corresponding point in the target. Then the
registration performance of each algorithm is compared by
the mean and standard deviation of the registration error of
all the 100 samples in each distortion level. The statistical
results, error means, and standard deviations for each set-
ting are summarized in the last column of Fig. 2. In the
deformation test results (e.g., 1st and 3rd rows), five algo-
rithms achieve similar registration performance in both fish
and Chinese character at low deformation levels, and our
method generally gives better performance as the degree of
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Figure 4. Point matching results on dataset of Chinese character [4]. From top to bottom, experiments on deformation, rotation, noise,
occlusion and outliers presented in every two rows. For each group of experiment, the upper figure is the model and target point sets, and
the lower figure is the registration result. From left to right, increasing degree of degradation.
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Figure 2. Point set registration results of our method on the fish (top) and Chinese character (bottom) shapes [6, 27], with deformation and
occlusion presented in every two rows. The goal is to align the model point set (blue pluses) onto the target point set (red circles). For each
group of experiments, the upper figure is the model and target point sets, and the lower figure is the registration result. From left to right,
increasing degree of degradation. The rightmost figures are comparisons of the registration performance of our method with shape context
(SC) [3], TPS-RPM [6], RPM-LNS [27] and CPD [17] on the corresponding datasets. The error bars indicate the registration error means
and standard deviations over 100 trials.

deformation increases. In the occlusion test results (e.g.,
2nd and 4th rows), we observe that our method shows much
more robustness compared with the other four algorithms.

More experiments on rotation, noise and outliers are also
performed on the two shape models, as shown in Fig. 3.
From the results, we again see that our method is able to
generate good alignment when the degradation is moderate,
and the registration performance degrades gradually and
is still acceptable as the amount of degradation increases.

Note that our method is not affected by rotation which is
not surprising because we use the rotation invariant shape
context as the feature descriptor. We also performed exper-
iments on 3D data and got similar results.

In conclusion, our method is efficient for most non-rigid
point set registration problems with moderate, and in some
cases severe, distortions. It can also be used to provide
a good initial alignment for more complicated problem-
specific registration algorithms.
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Figure 6. Results on 3D surfaces of deformable objects (INRIA Dance-1 sequence). Top: results on frames 525 and 527; bottom: frames
530 and 550. For each group, the left pair denotes the identified suspect inliers, and the right pair denotes the removed suspect outliers.

9

Figure 4. Results of image feature correspondence on 2D image pairs of deformable objects. From left to right, increasing degree of
deformation. The inlier percentages in the initial correspondences are 79.61%, 56.57%, 51.84% and 45.71% respectively, and the corre-
sponding precision-recall pairs are (100.00%, 99.73%), (99.06%, 99.53%), (99.09%, 99.35%) and (100.00%, 98.96%) respectively. The
lines indicate matching results (blue = true positive, green = false negative, red = false positive). Best viewed in color.
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Figure 4. Point matching results on dataset of Chinese character [4]. From top to bottom, experiments on deformation, rotation, noise,
occlusion and outliers presented in every two rows. For each group of experiment, the upper figure is the model and target point sets, and
the lower figure is the registration result. From left to right, increasing degree of degradation.
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Figure 4. Point matching results on dataset of Chinese character [4]. From top to bottom, experiments on deformation, rotation, noise,
occlusion and outliers presented in every two rows. For each group of experiment, the upper figure is the model and target point sets, and
the lower figure is the registration result. From left to right, increasing degree of degradation.

8

Figure 3. Point matching results. From top to bottom, experimental results on rotation, noise, occlusion and outliers presented in every two
rows. For each group of experiment, the upper figure is the model and target point sets, and the lower figure is the registration result. From
left to right, increasing degree of degradation.
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Figure 4. Point matching results on dataset of Chinese character [4]. From top to bottom, experiments on deformation, rotation, noise,
occlusion and outliers presented in every two rows. For each group of experiment, the upper figure is the model and target point sets, and
the lower figure is the registration result. From left to right, increasing degree of degradation.
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Figure 4. Point matching results on dataset of Chinese character [4]. From top to bottom, experiments on deformation, rotation, noise,
occlusion and outliers presented in every two rows. For each group of experiment, the upper figure is the model and target point sets, and
the lower figure is the registration result. From left to right, increasing degree of degradation.
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Figure 4. Point matching results on dataset of Chinese character [4]. From top to bottom, experiments on deformation, rotation, noise,
occlusion and outliers presented in every two rows. For each group of experiment, the upper figure is the model and target point sets, and
the lower figure is the registration result. From left to right, increasing degree of degradation.

7

Figure 3. From top to bottom, results on rotation, noise and outliers
presented in every two rows. For each group of experiments, the
upper figure is the data, and the lower figure is the registration
result. From left to right, increasing degree of degradation.

4.2. Results on Image Feature Correspondence

In this section, we perform experiments on real images,
and test the performance of our method for sparse image
feature correspondence. These images contain deformable
objects and consequently the underlying relationships be-
tween the images are nonrigid.

Fig. 4 contains a newspaper with different amounts of
spatial warps. We aim to establish correspondences be-
tween sparse image features in each image pair. In our eval-
uation, we first extract SIFT [13] feature points in each in-
put image, and estimate the initial correspondences based
on the corresponding SIFT descriptors. Our goal is then to
reject the outliers contained in the initial correspondences
and, at the same time, to keep as many inliers as possible.
Performance is characterized by precision and recall.

The results of our method are presented in Fig. 4. For the
leftmost pair, the deformation of the newspaper is relatively
slight. There are 466 initial correspondences with 95 out-
liers, and the inlier percentage is about 79.61%. After using
our method to establish accurate correspondences, 370 out
of the 371 inliers are preserved, and simultaneously all the
95 outliers are rejected. The precision-recall pair is about

Table 1. Performance comparison on the image pairs in Fig. 4. The
values in the first row are the inlier percentages (%), and the pairs
are the precision-recall pairs (%).

Inlier 79.61 56.57 51.84 45.71

ICF [12] (96.05, 98.38) (83.95, 86.73) (80.43, 95.48) (75.42, 92.71)
VFC [26] (100.00, 97.04) (98.59, 99.53) (98.09, 99.35) (98.94, 97.91)
Ours (100.00, 99.73) (99.06, 99.53) (98.09, 99.35) (100.00, 98.96)

(100.00%, 99.73%). On the rightmost pair, the deforma-
tion is relatively large and the inlier percentage in the initial
correspondences is only about 45.71%. In this case, our
method still obtains a good precision-recall pair (100.00%,
98.96%). Note that there are still a few false positives and
false negatives in the results since we could not precisely
estimate the true warp functions between the image pairs
in this framework. The average run time of our method on
these image pairs is about 0.5 seconds on an Intel Pentium
2.0 GHz PC with Matlab code.

In addition, we also compared our method to two state-
of-the-art methods, such as identifying point correspon-
dences by correspondence function (ICF) [12] and vector
field consensus (VFC) [26]. The ICF uses support vector
regression to learn a correspondence function pair which
maps points in one image to their corresponding points in
another, and then reject outliers by the estimated correspon-
dence functions. While the VFC converts the outlier re-
jection problem into a robust vector field learning problem,
and learns a smooth field to fit the potential inliers as well
as estimates a consensus inlier set. The results are shown in
Table 1. We see that all the three algorithms work well when
the deformation contained in the image pair is relatively
slight. As the amount of deformation increases, the perfor-
mance of ICF degenerates rapidly. But VFC and our method
seem to be relatively unaffected even when the number of
outliers exceeds the number of inliers. Still, our method
gains slightly better results compared to VFC.

Our next experiment involves feature point matching on
3D surfaces. We adopt MeshDOG and MeshHOG [25] as
the feature point detector and descriptor to determine the

7
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Figure 1. Results on 3D surfaces of deformable objects (INRIA Dance-1 sequence, frames 525 and 527). There are 191 initial correspon-
dences, and 156 of which are preserved by our method. The left pair denotes the identified suspect inliers, and the right pair denotes the
removed suspect outliers.

2. Estimating Spatial Mapping from Corre-
spondences by L2E

Given a set of putative point correspondences S =
{(xi, yi)}ni=1 which may be perturbed by noise and outliers,
the goal is to learn a spatial mapping f : yi = f(xi) to fit
the inliers.

Without loss of generality, we make the assumption that
the noise on the inliers is Gaussian on each component with
zero mean and uniform standard deviation σ, i.e., for an in-
lier point correspondence (xi, yi) it satisfies yi − f(xi) ∼
N(0, σ2I), where I is an identity matrix of size d×d, and d
is the dimension of the point. The data set {yi − f(xi)}ni=1

can then be seen as a sample set from a multivariate nor-
mal density N(0, σ2I) with some unknown contamination
outliers. The main idea of our technique is then, to find

the largest portion of the sample set (which corresponds to
the underlying inlier set) that “matches” the normal den-
sity model, and consequently estimate the spatial mapping
f based on the estimated inlier set. Next, we introduce a ro-
bust estimator named L2-minimizing estimate (L2E), and
use it to estimate the spatial mapping f .

2.1. Problem Formulation Using L2E

Parametric estimation algorithms typically rely on max-
imum likelihood estimation (MLE). It is known that the
maximum likelihood is well suited for the estimation prob-
lem in which the model is a good descriptor for the data and
all the data are indeed coming from the model. However,
the MLE estimates can be badly biased if the model is not
good enough or there are a small fraction of outliers. To
estimate the spatial mapping f , a robust estimator is desir-

2

Figure 5. Results on 3D surfaces of deformable objects (INRIA
Dance-1 sequence). Top: results on frames 525 and 527; bottom:
frames 530 and 550. For each group, the left pair denotes the
identified suspect inliers, and the right pair denotes the removed
suspect outliers.

initial correspondences. For the dataset, we use the INRIA
Dance-1 sequence [25], in which each surface is from the
same moving person. Note that it is hard to give a quan-
titative performance comparison since the correctness of a
correspondence is hard to decide. So we just schematically
show our results in Fig. 5. In the upper group, the two
frames are nearby, and the level of deformation is relatively
slight. There are 191 initial correspondences, of which 156
are preserved after using our method to establish accurate
correspondences. In the lower group, the two frames are
far apart, and the level of deformation is relatively large,
leading to less good initial correspondences. There are 23
initial correspondences, and 18 of which are preserved by
our method.

5. Conclusion
In this paper, we have presented a new approach for

nonrigid point set registration. A key characteristic of our
approach is the estimation of transformation from corre-
spondences based on a robust estimator named L2E. The
computational complexity of estimation of transformation
is linear in the scale of correspondences. We applied our
method to sparse image feature correspondence, where the
underlying relationship between images is nonrigid. Exper-
iments on a public dataset for nonrigid point registration,
2D and 3D real images for sparse image feature correspon-
dence demonstrate that our approach yields results superior
to those of state-of-the-art methods when there is significant
noise and/or outliers in the data.
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