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Abstract

PASCAL VOC Segmentation Challenge [10] is currently
considered as one of the datasets that reflect the image seg-
mentation difficulties for real world scenarios [29]. How-
ever, current evaluation is simply based on a single Inter-
section Over Union (IOU) score. In this paper, we try to
discover the error factors under the IOU, which makes the
results more informative to understand rather than a black
box. Specifically, we decompose the error into three error
types in terms of object characteristics, i.e. general, ap-
pearance and shape. Each error type is composed of re-
spective factors, e.g. size and aspect ratio for general, ap-
pearance distinctiveness for appearance, etc. Finally, for
each factor and error type, we perform analysis over its im-
pact on and correlation with the final IOU through robust
regression. Our experiments show that these error factors
have significant relationship with the given IOU accuracy,
and the analysis provides practical guidance on further im-
provement of the given algorithm.

1. Introduction

Image labelling is one of the center goal in computer
vision which embeds many individual tasks including seg-
mentation, detection, scene recovery and recognition, etc.
This area has been remaining a centre attraction for re-
searchers these years [4, 19, 1, 5, 11, 36, 14]. In addition,
there has been a lot of dataset proposed in order to measure
the performance of algorithms [10]. Targeting at handling
real world labelling problem, PASCAL VOC Segmentation
Challenge [10] provided a wild scene labelling bench mark
for 20 object classes. To evaluate the performance of dif-
ferent algorithms, it provides the Intersection Over Union
(I0U) for an overall measurement. Recently, researchers
have made dramatic progress [5, 14] on achieving good re-
sults on the IOU criteria. Most of them claim to combine
multiple types of information for handling certain varia-
tions, and several types of difficulties through robust fea-
tures [5], context [39] or more flexible models [38]. As the
results, a general IOU scores and several illustrative quali-
tative images are reported. In the picked failure cases, not

accurate segment candidates, rare perspective and occlusion
of the targeting objects are often blamed. We show a typ-
ical measurement on the left of Fig. 1. The IOU might be
sufficient to measure an algorithm on some simple datasets.
However, in wild scene segments, the complexity and vari-
ance of semantic classes are largely increased. Thus, if we
want to handle these issues in order to improve the accu-
racy, it is essential for us to understand the amount of diffi-
culties and how much these difficulties yield failures of the
algorithms. Luckily, thanks to a lot of recent available ad-
ditionally label on this large wild scene dataset including
the parts, backgrounds [7, 20] and 3D objects representa-
tion [34, 31], we are able to perform a better analysis of the
error factors to understand the difficulties.

As indicated by examples in Fig. 2, under the same over-
all IOU, the numerical range of these error factors varies a
lot with respect to semantic classes and algorithms. In other
words, two algorithms could have same IOU, but with very
different properties in handling various issues. This makes
it crucial to evaluate algorithm along various dimension of
errors. Thus, through the analysis of the detailed impaction
of error factors underlying the IOU score, on one hand, we
can have a better interpretation over the properties of the
algorithms, on the other hand, we could discover the poten-
tial complementary aspects between different approaches to
make our system better developed. In addition, by speculat-
ing the real world difficulties that affecting the performance,
we are able to target at the major issues we need to handle
and make suggestions on the most promising direction. For
example, we can analyse out whether it lacks of training im-
ages for particular perspective of an object, and make sug-
gestions on data collection or generation. Last but not the
least, based on the distribution of the error factors from the
target dataset, one can pick the most suitable algorithm to
perform on this dataset.

1.1. Related works

For image labelling, various approaches have been pro-
posed on exploring particular cues such as object shape
constrains [40, 17], scene context [28, 22, 11], joint mod-
els [37, 18] to handle object variations and occlusion, etc.
However, under an overall IOU measurements, biased or
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Figure 1. Illustration of our error factor analysis for image-labelling of the car category. On the left, the conventional IOU only gives a
number, while in our measurements, we find the factors that cause errors. Specifically, the analysis gives the marginal relationship between
each error factor (Size, Occlusion etc.) and the IOU, the joint impaction of error factors and outlier cases that not well explained by the

regression model.

home-brewed data, we hardly know how much specific mo-
tivated challenges are solved in real world.

In recent years, researchers are moving towards dataset
that is from wild scene scenario to prevent machine learn-
ing from being distracted by biased images or datasets that
are lack of generality. Pinto et al. [24] presented that a natu-
ral dataset includes more variations rather than just number
of classes. Torralba et al. [29] proposed cross dataset vali-
dation which concluded that large real world datasets, like
PASCAL [10], ImageNet [8] and SUN [35], are well sam-
pled respecting real world scenario for recognition. These
works, on one hand, indicate that the datasets composed
from real world samples seem to be the one we should deal
with. On the other hand, the high mixture of variations from
these data makes it unclear that how well the new proposed
algorithms handle what they claimed, which can hardly ex-
plained by the overall IOU scores and several hand picked
examples.

Despite of collecting unbiased datasets, many works also
focus on improving the evaluation criteria to better under-
stand and compare the performance of algorithms as fair
and complete as possible. In one aspect, researchers are
trying to design multiple general summary scores for eval-
uation [30]. Pont-Tuset et al. [25] argued that under the
situation of image labelling or detection, criteria with the
precision-recall curves for object and parts are better mea-
surements reflecting the quality of semantic segments. Nev-
ertheless, they did not try to understand and model the er-
rors that fail the semantic labelling algorithms. In another
aspect, some works aimed at modelling a special type of the
errors. For example, Divvala et al. [9] presented an evalua-
tion for analysing the role of context beyond the IOU score
with respect to the object properties such as size and oc-
clusion. The most relevant work to this paper is proposed
by Hoiem et.al [16], they performed a more complete diag-
nosing for object detection. Specifically, they separated the

various of object into several types of hardness such as oc-
clusion, size, aspect ratio, visibility of parts, viewpoint etc.,
and the analysed impact is done on removing the instances
with certain hardness or modelling the false positive exam-
ples individually. However, in our case, firstly, the error
patterns in image labelling are different from detection, and
we give more useful error proposal depend on object char-
acteristics. In addition, we perform a joint regression that
considers the interaction between these error factors.

To our best knowledge, this work is the first one that for-
mally analyses the errors in image semantic labelling tasks.
In particular, our contributions can be summarized as fol-
lows: (1) We provide many useful error factors and the
methods to quantize them for evaluation by organizing and
taking use of the most recent published object parts, back-
ground [7] and 3D pose label [34] of PASCAL. (2) We pro-
pose to do error factor analysis for both objects and back-
grounding regions, and model the factor impact to the final
accuracy by robust regression. Such analysis helps us un-
derstand deeper about how much each error factor affects
the accuracy given an algorithm. (3) We will share our soft-
ware to the community in order to help researchers to ex-
plore their results. In the experiments, we use the state-of-
the-art algorithms for illustration through identifying their
issues and suggesting promising directions.

2. Decompose the errors in image labelling

What makes an object or a semantic region like a dog
distinctive from other classes? Intuitively, starting from the
ground truth information human visually observed from im-
age, we can decompose the description of an object into its
shape, appearance and respective context. For a background
classes like sky, we can describe the region based on its gen-
eral appearance. As we know, the confusion would happen
if these information is unclear, not discriminative or miss-
ing.We thus try to decompose the error factors from this ob-
ject information perspective. In [16], they factorized the er-
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Figure 2. From the figure above, all the images have same IOU score. In each column, within a certain class, it shows that given the same
10U, the value of the different error factors could be very different, which is shown on the left. The y-axis represents the mean value of
the corresponding error factors. Specifically, the error of truncation gives much less impact for aeroplane than for bicycle. This indicates
different algorithms can have same IOU but very different properties. Between different type of classes, the impact of these error factors

can also vary a lot.

rors depended only on object general characteristics, while
for semantic segmentation, our summary could provide a
more complete analysis of errors for better understanding.

2.1. Error factors proposal

In image labelling, [26] presented an ideal case for se-
mantically segment images, which needs perfect segmenta-
tion and well distinctive features. In the following, given a
particular class and an algorithm, we will summarize those
error factors that fail the algorithm, by analysing each la-
belled ground truth instance. In addition, to quantify those
error factors, the larger the quantized value, the more diffi-
cult a case is.

General characteristic. As stated in [16], some charac-
teristics of objects or semantic regions in an image would
affect the recognition in general no matter detection and
segmentation. We can summarize these character as:

1. Clearness: Size, and aspect ratio, which are computed
as the pixel number in the image and region height over
width.

2. Visibility of an object: Object truncation and occlusion
in the image, which describe whether partial of the ob-
ject information is missed from the image. In order
to quantify this information, for rigid objects, we have
such information labelled by [34] as a binary indicator,
while we do not have such information for non-rigid
objects. In addition, for all objects, we take use of the
parts dataset from [7], in which objects are separated
into parts, e.g. animals are separated into head, torso
and legs. For each part, we use a binary variable to
indicate its present (1 for missing), namely “visid ¢”
where ¢ is the id of the part. This is useful to measure
the importance of object parts. Last, we measure the
level of occlusion and truncation through number of

parts missing, and we name it as ”Mis” in the experi-
ments.

Appearance error factors. Appearance is considered as
the first cues for image labelling [5, 4] as it is practically
useful to distinguish regions [7] and handle shape variation
or occlusion of non-rigid objects [13].

In order to obtain certain pattern of appearance, most al-
gorithms start their process based on either superpixels [4]
within which appearance is often homogeneous or a set
of proposed object segments [36]. Then, a discriminative
model is built to label the respect regions. However, such a
processing suffers from certain difficulties when the object
appearance is close to background or not discriminative. To
separately analysis and measure these difficulties from ap-
pearance perspective, we take use of the ground truth masks
and superpixel segmentation. Formally, our appearance er-
ror factors are written as,

1. Appearance distinctiveness from the given classes for
classification: appearance could be similar between
different semantic classes like cat and dog, sky and
water. To quantize such distinctiveness, we first
build appearance model through support vector re-
gression (SVR) for each object from superpixel over-
segmentation [32] of the objects. We use the O2P [5]
feature f, yielding a model s(f|c) = sigmoid(f.(f))
where c indicates the class, f. is the SVR score. Then,
given a ground truth mask G, we decompose the mask
using a set of superpixels {Sz}fl °. In addition, we
compute the distinctiveness of one segment by the
posterior p(c|f) = % Then the overall dis-
tinctiveness could be measure as weighted average by
plelfe) = >, aip(c|f;) where a; is the portion of the



area in the ground truth. We call this as “distctCls” for
simplicity in experiments and set it as 1 — p(c|fg).

2. Distinctiveness from surrounding context: similarity
between the appearance of the target semantic re-
gions and the surrounding regions would induce under-
segmentation or over-segmentation errors at the begin-
ning. We quantify this similarity based on the su-
perpixel segmentation upper bound for each seman-
tic region. Formally, given a set of ground truth in-
stance masks G = {Gi}iv-", and a set of proposed seg-
ments S = {S;})V* generated from the state-of-the-art
segmentation method [2], we select the best subset S *
from S, such that JOU* = maxg,cs IOU(G,Ss),
and we quantify the distinctiveness from surround-
ing context by the max 1 — JOU*. We call this as
“distctCxt” in experiments.

Shape error factors. Addition from the appearance,
shape is also regarded as the key characteristic of objects
that researchers are focusing on [12] and recently using to
combine in image labelling [38, 33]. Particular, an object
with certain shapes or special distinctive structures such as
dog and cat faces [1] would make it easy for identifying the
target regions. However, misleading shape cues may also
yield error classification and segmentation. In our case, we
summarize the confusion from object shape as follows,

1. Object viewpoint: For a rigid object, we obtain the
viewpoint through the object orientation provided by
PASCAL 3D data [34]. In order to obtain the impact
of certain viewpoints, we quantify the perspective by
the given two rotation annotations, i.e. azimuth and el-
evation. We quantize the rotation angle with bin of
45 degree, yielding 8 bins for azimuth in the range
of [0,360] and 5 bins for elevation in the range of
[—90,90]. Thus, each object is arranged into one of
the 40 bins by first quantizing in azimuth. For exam-
ple, if the 114, bin of an object is one, then the bin id
for azimuth and elevation are the the 3,,; (90) and 2,,4
(-45) respectively. For non-rigid objects, as there is no
3D label available, we do not consider the geometry
view angle.

2. Shape regularity: Certain object like chair in side view
might have highly various contour that effects the seg-
mentation accuracy, while other object like monitor in
a convex shape could be less various. Within an object,
different view points produce different shape regular-
ity. To quantize the shape complexity, we take the en-
tropy of curvature [23] to be the numerical evaluation
method.

3. Shape distinctiveness: Objects with similar shapes
could have similar gradient statistics yielding confu-
sion. To measure the shape distinctiveness of a certain

object, we build a mixture of shape model for each ob-
ject through deformable part based model (DPM) [12].
In particular, for rigid objects, we directly train a shape
model s,(s|c) = sigmoid(g.(s)) where s; is the out-
put score, and g. is the DPM responding score given
the bounding box of the ground truth segment s. Then
the posterior is written as p(c|f) = % How-
ever, for non-rigid object, the variation of the object
could be large. Thus, additional to the mixture of
whole model, we train parts model such as the head
model and torso model {s,(s;|c)} for human and an-
imals, where ¢ is the part id. Then, given the ground

truth shape s, we measure the distinctiveness as its pos-

terior p(cls, {s;}) = 3p(c|s) + 2 >, a;p(cls;) where

a; is the area portion of part i. We call this as ”Sha-
peDist” in our experiments and set it as 1—p(c|s, {s; }).

2.2. Discover the relationship

From the proposed error factors, we wish to get several
useful information. First, in each factor, we want to know
in which numerical range the factor impacts the accuracy
most. Second, we want to know how much of each fac-
tor affects the final results respectively. For example, by
quantify object perspective, we want to know which view-
point impact the IOU and how much perspective affects the
IOU overall. Targeting at the impact, we can respectively
increase the lacked training images or design algorithms,
which makes it effective in improving the current system.

To get the information of which numerical range affects
the accuracy, we first perform a non-parametric regression
to the marginal distribution of each error factor. This can
also help us to get an intuition of how the error factors’ val-
ues are related with the final accuracy. For each marginal
data, we perform a kernel regression with Laplace kernel
due to the outlier points we have. Formally, the regressed
marginal distribution is written as,

> k(e eile, a)
> k(e eile,a)
_leij — el

ET(T‘eiv ¢, a) =

k(eij, eilc, a) = exp(

The regressed curve illustrate the relationship of the accu-
racy and the error factors. Additionally, we can obtain the
prediction interval from the distribution through performing
a bootstrapping over the data points.

To get the impact of each error factors. Formally, given
the k proposed error factors, i.e. € = [e1,eq,..., ek, we
model their relation with the computed results accuracy r
(I0OU in our case) by formulating it as the expectation of the
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the analysis.
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where c is a specific class, and a is the given algorithm.
As real data has many outliers, we chose the robust linear
regression [21] with the Laplace distribution to formulate
the posterior. The weights of factors w and variance b can
be estimated by maximum likelihood estimation (MLE).
Through such probability perspective, on one hand, we can
get the significance level and confidence interval of the es-
timated impact of each factors, i.e. the absolute value of
w, which allows us to target at the important factors with
large absolute impact value wy. On the other hand, we are
able to estimate the predict interval given the error factors
through p(r|e, ¢, a), that allows us understand how well the
algorithm performs given certain difficulties.

Nevertheless, in our factor model, the relation between
our numeric value of the error factors and accuracy might
not be monotonic. For instance, the the accuracy might
be high in certain perspective while low on others. This
is also shown in the experiments of [16]. Thus, in order
to utilize the robust regression, we try to make the factor’s
value monotonic with the regressing value. Here we take
the perspective error factor as an example. The same strat-
egy is applied for other factors such as aspect ratio. Prac-
tically, we first separate the numeric range of into multiple
bins {b;}?_; and regard each bin as a dummy variable, de-
pended on which we do robust regression given to find out
the impact of each dummy variable {m;} ;. Intuitively,
the regressed impact m,; can be regarded as the difficulty

level of b;, i.e. the more negative the m; is, the more diffi-
cult when the numeric bin b; = 1 is for the algorithm. In
this formulation, the impact of an error factor is defined as
the drop of accuracy with per-unit increasing of respected
difficulty level. Then, for perspective, we can reunion the
binary variables {b;}!; into a single numerical variable in
taking the value of {i = 1,--- ,n} representing difficulty
level from the descend sorting of {m;}?_,. This makes the
value of the error factor monotonously related with the ac-
curacy. Finally, we can generate the impact of each factor
by redoing the robust regression.

To ensure the regressed impact value of all error factors
are comparable, after reunion, we need to normalize the in-
tegral value into the range of [0, 1].

3. Experiments and insights

In this session, we present the analysis given the state-of-
the-art segmentation results over the PASCAL VOC 2010
dataset, and we will publish the toolbox for researchers to
better analyse their algorithms.

Implementation details. We train our appearance and
shape models on the training set of PASCAL VOC 2010 de-
tection train set, and validate those model on the validation
set. We perform the factor analysis over the corresponding
train-validation set. The ground truth segmentations of the
objects and background regions for training our models are
provided by [15, 7]. For balancing the weights of different
error factors, we normalized all the value into the scale of
[0,1] through the 98% and 2% decile value over all cate-
gories, and we regard the points at the tail to be outliers.
To avoid too much correlation between size, part missing
and our appearance, shape error factors, we manually sup-



press the appearance, shape error factors to be the minimum
quantized value when the value of the size factor is smaller
than certain threshold, i.e. 0.1, or the value of part missing
is high, i.e. larger than 0.8.

Measured algorithm. Second order pooling (O2P) for
image-labelling [5] is currently the state-of-the-art segmen-
tation method on PASCAL VOC segmentation challenges
almost every year. In detail, it first use CPMC segmen-
tation [6] to generate object segment candidates and label
them based on the features from second order pooling. The
feature embedded LBP for describing the appearance and
SIFT for describing the gradient shape information. To pro-
duce a full label of an image, we first have the objects la-
belled exactly by [5], then we label the rest background re-
gions by replacing CPMC segments to superpixels [32].

3.1. Error factor analysis

To illustrate our idea of analysing the characteristic of an
algorithm, Fig. 4 and Fig. 5 gives an example of detailed
error factor analysis for two categories, i.e. the factor anal-
ysis for car and bottle. We include other analysed results in
the supplementary material. By checking the left column of
Fig. 4, the impact summary graph in the first row tells us the
three types of factors give almost the same influence on the
accuracy for the car category. The figure in the second row
tells us the expected impact of each error factor and its vari-
ance. The number on the y-axis gives the value of expected
accuracy decrease given per-unit increase of corresponding
error factors. We can see that for general factors, the size
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Figure 4. Impact analysis results. The impaction of each error fac-
tor for (a) car and (b) bottle. The first row gives the impact sum-
mary of three error types and the second row gives the impact and
variance of each error factors. In the car’s detailed impact figure,
we drop the plot bar of "Mis” because its regressed significance is
less than a plotting threshold.

and parts missing gives relative strong influence on the ac-
curacy (25% and 17%). For appearance factors, the major
influence is from the factor of distinctiveness from context,
where we know the O2P algorithm is major infected (0.38)
because the appearance of car is close to its surrounding
background. For shape error factors, we find strong correla-
tion between the O2P segmentation accuracy with our shape
distinctiveness, which indicates that when the shape of car is
not distinctive, e.g. similar with bus, the O2P would also be
negatively influenced. Upon comparing between different
classes in Fig. 4, we can observe that the impaction of error
factor varies between different classes. For example, in ap-
pearance error type, the IOU accuracy of bottle is major in-
fected due to appearance similarity between bottle and other
classes rather than the difficulties from appearance similar-
ity to surrounding background. From such information, we
suggest one may need improvement on the segmentation al-
gorithm for car, but additional information, e.g. context for
bottle to handle appearance similarity.

In addition, from Fig. 5, we visualize the information of
marginal distribution for each error factor to illustrate the
correlation and impact of each numeric range of the error
factors. The impact is large if the change between two con-
sequential interval points is large. By checking the marginal
distribution of car category, we can obtain the informa-
tion that for the error factor of size, the impact is stronger
when the size becomes smaller while the impact becomes
weaker when the size is relatively large. In appearance, the
“distctCxt” is strongly linear related with IOU, and in shape,
certain view points gives positive impact such as view 18,
which is within [45,0] and [90, 0] for azimuth and eleva-
tion. This indicates the side view of car is better modelled
than the others. From such information, we can target at in-
creasing the training data in the respective sizes or perspec-
tives. Notice rather than conditional distributions as shown
in [16], the marginal distribution may give a wider interval,
but statistically provides a better expected impact value for
practical usage.

Finally, in Fig. 6 we show several examples of outlier in-
stances detected, that include surprising misses and surpris-
ing hits. These instances are out of 90% prediction interval
by our model. We aimed to discover additional factors that
may cause these outliers. However, we find these cases can
be explained by our proposed error factors. By checking the
calculated error factors’ value of these outliers, the surpris-
ing cases are mostly due to the non-linear properties of the
data, i.e. one factor gives too much impact than expected.
For the surprising misses of car and bottle, we have low
difficulties for most factors such as size and perspective,
but they suffer mostly from cluttered segmentation (high
distctCxt). On the opposite, for the surprising hits, though
we have heavy occlusion or truncation, the good segmen-
tation (low distctCxt) gives it a surprising improvement on
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the accuracy.
4. Issues and Suggestions

From the above analysis, we can see, for each class, the
impacts vary a lot, which means not an algorithm can handle
all the errors in a single framework. It is important for us
to target at respective errors and move forward step by step.
In the following, we give promising future suggestions on
image labelling tasks, which can also be useful for detection
to some extend.

Data augmentation. As demonstrated in algorithms from
large data [14], sufficient large data would help us solving
the cases such as small objects, rare perspective or shape
for detection, which is also possible to largely help seg-

Suprising miss Suprising Hit

Bottle

Figure 6. Outlier analysis of the two illustrating classes. We show
the instances with their IOU calculated from the given results
significantly different from the prediction using our model. The
ground truth is line out with black contour and the prediction is
visualized in VOC color mapping [10].

mentation. Though currently it might be difficult to col-
lect large human labelled segmented data, it is promising
that we can learn from synthesis. In our opinion, recent ap-
proaches [27, 3, 31] using 3D data for solving the 2D to 3D
problem are good beginnings.

Algorithm improvement. From our analysis, e.g. the er-
ror factor analysis of car, we see the image-labelling prob-
lem is not a single segmentation issue, but should be solved
jointly with detection, object composition estimation and
scene context. Scene layout and surrounding context could
help small objects [7], shape and composition provide in-
struction to improve the raw segments, such as constraint
the under segmentation, etc. We encourage the joint works
that have been proposed in [38, 33]. However, many of them
suffer from learning with small amount of data or some-
times a heuristic model which is not general enough for us-
age. We would like to see more general models that can be
possible to learn from a large amount of synthesised data in
the future.

Limitations and future improvements. Though we can
obtain a lot information from such analysis, admittedly, this
analysis suffers from some limitations on factorization and
modelling the error factors. Firstly, the PASCAL VOC set
for us to use might not be large enough to cover all the nu-
meric range of the proposed errors. Secondly, we do not
have the whole information of all the objects such as the
3D pose information for non-rigid objects like cats, and it
is also not easy to quantize the pose through viewpoints for

2: front back side



a non-rigid object even given its 3D information. Thirdly,
some of our error factors might be correlated, such as the
occlusion and part missing, or the view points and shape
distinctiveness. This may yield that the impact of one factor
might be absorbed by the more correlated one, while we can
partially compensate this limitation by looking at the condi-
tional or marginal distribution. In the future, we would try
to improve the data and labelling.

5. Conclusion

In this paper, we propose an error factor analysis eval-
uation approach for wild scene image labelling tasks. Our
evaluation decompose the IOU accuracy measurement into
error factors from the object composition perspective, and
we formulate the relationship between the factors and ac-
curacy through robust regression from joint and marginal
distributions. From the analysis, we find significant rela-
tionship between some of our proposed error factors and
the accuracy, which gives researchers a better understand-
ing of the popular PASCAL VOC segmentation data we are
dealing with and the characteristics of a state-of-the-art al-
gorithms. Based on such analysis, we proposed several sug-
gestions which are promising directions to improve the per-
formance of current algorithms.
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