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Abstract—We introduce a new transformation estimation al-
gorithm using the L2 E estimator, and apply it to non-rigid reg-
istration for building robust sparse and dense correspondences.
In the sparse point case, our method iteratively recovers the
point correspondence and estimates the transformation between
two point sets. Feature descriptors such as shape context are
used to establish rough correspondence. We then estimate the
transformation using our robust algorithm. This enables us to
deal with the noise and outliers which arise in the correspondence
step. The transformation is specified in a functional space, more
specifically a reproducing kernel Hilbert space. In the dense point
case for non-rigid image registration, our approach consists of
matching both sparsely and densely sampled SIFT features, and
it has particular advantages in handling significant scale changes
and rotations. The experimental results show that our approach
greatly outperforms state-of-the-art methods, particularly when
the data contains severe outliers.

Index Terms—L-FE estimator, registration, dense correspon-
dence, regularization, outlier, non-rigid.

I. INTRODUCTION

Building “correct” registration, alignment or correspon-
dence is a fundamental problem in computer vision, medical
image analysis, and pattern recognition [1], [2], [3], [4]. Many
tasks in these fields — such as stereo matching, shape matching,
image registration and content-based image retrieval — can
be formulated as matching two sets of feature points, more
specifically, as a point matching problem [1]. The feature
points in these tasks are typically the locations of sparse or
dense interest points extracted from an image, or the edge
points sampled from a shape contour. The registration problem
then reduces to determining the correct correspondence, and to
find the underlying spatial transformation between two point
sets extracted from the input data.

The registration problem can be categorized into sparse
correspondence or dense correspondence, depending on the
specific application. The task of sparse correspondence aims
to match sparsely distributed points, such as matching contour
points in shape matching. It also frequently arises in image
matching, for example, for images taken from different view-
points while the scene consists of mostly rigid objects, sparse
feature matching methods have proven highly effective. The
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problem of dense correspondence is typically associated with
image alignment/registration, which aims to overlaying two
or more images with shared content, either at the pixel level
(e.g., stereo matching [5] and optical flow [6], [7]) or the
object/scene level (e.g., pictorial structure model [8] and SIFT
flow [4]). It is a crucial step in all image analysis tasks in
which the final information is gained from the combination
of various data sources, e.g., in image fusion, change detec-
tion, multichannel image restoration, as well as object/scene
recognition.

The registration problem can also be categorized into rigid
or non-rigid registration depending on the form of the data.
Rigid registration, which only involves a small number of
parameters, is relatively easy and has been widely studied [1],
[2], [9], [10], [11]. By contrast, non-rigid registration is more
difficult because the underlying non-rigid transformations are
often unknown, complex, and hard to model [3]. But non-rigid
registration is very important because it is required for many
real world tasks including hand-written character recognition,
shape recognition, deformable motion tracking and medical
image registration.

In this paper, we focus on the non-rigid case and introduce a
new algorithm for both sparse point set registration and dense
image correspondence. To illustrate our main idea, we take
the point set registration problem as an example. There are
two unknown variables we have to solve for in this problem:
the correspondence and the transformation. Although solving
for either variable without information regarding the other
is difficult, an iterated estimation framework can be used
[2], [12], [3]. In this iterative process, the estimate of the
correspondence is used to refine the estimate of the trans-
formation, and vice versa. But a problem arises if there are
errors in the correspondence as happens in many applications
particularly if the transformation is large and/or there are
outliers in the data (e.g., data points that are not undergoing
the non-rigid transformation). In this situation, the estimate of
the transformation will degrade badly unless it is performed
robustly. The key issue of our approach is to robustly esti-
mate the transformations from the correspondences using a
robust estimator named the Ls-Minimizing Estimate (LoF)
[13], [14]. More precisely, our approach iteratively recovers
the point correspondences and estimates the transformation
between two point sets. In the first step of the iteration,
feature descriptors such as shape context are used to establish
correspondence. The correspondence set typically includes a
large set of correspondence, and many of which are wrong.
In the second step, we estimate the transformation using the
robust estimator Lo F. This estimator enable us to deal with
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the noise and outliers in the correspondences. The non-rigid
transformation is modeled in a functional space, called the
reproducing kernel Hilbert space (RKHS) [15], in which the
transformation function has an explicit kernel representation.

We also apply our robust estimation of transformation to
the dense image correspondence/registration problem, which
aligns the images of the same scene taken under different
imaging conditions. The majority of the methods are based
on sparse feature correspondences and consists of four steps
such as feature detection, feature matching, transformation
estimation (rigid/non-rigid), and image resampling and trans-
formation [16]. Recently, some new registration methods have
also been developed, where the goal is to align different
instances of the same object/scene category, such as the pic-
torial structure model for object recognition [8] and the SIFT
flow for scene alignment [4]. Rather than operating on sparse
feature correspondences, these methods match dense sampled
features to obtain a higher level of image alignment (e.g.,
object/scene level). Here we generalize our robust algorithm,
and introduce a novel image registration method which con-
sists of matching both sparsely and densely sampled features.
Our formulation contains two coupling variables: the non-rigid
geometric transformation and the discrete dense flow field,
where the former corresponds to the sparse feature matching
and the latter corresponds to the dense feature matching.
Ideally, the two variables are equivalent. We alternatively solve
for one variable under the assumption that the other is known.

The main contributions of our work include: (i) the proposal
of a new robust algorithm to estimate a spatial transforma-
tion/mapping from correspondences with noise and outliers;
(ii) application of this algorithm to non-rigid sparse corre-
spondence such as point set registration and sparse image
feature correspondence; (iii) further application of this robust
algorithm to non-rigid dense correspondence such as image
registration, and it can handle significantly changes in scale
and rotation; (iv) both the sparse and dense matching algo-
rithms are demonstrably effective and outperform state-of-
the-art methods. This article is an extension of our earlier
work [17]. The primary new contributions are an expanded
derivation and discussion of the robust Ly F estimator (Section
IIT) and a new algorithm for non-rigid image registration based
on the proposed robust algorithm (Section V).

The rest of the paper is organized as follows. Section 2
describes relevant previous work, followed by our robust Lo
algorithm for estimating transformations from point correspon-
dences with unknown outliers in Section 3. In Section 4, we
apply our robust algorithm to non-rigid sparse correspondence
such as point set registration and sparse image feature corre-
spondence. We further apply our robust algorithm to non-rigid
dense correspondence, i.e., image registration, in Section 5.
Section 6 demonstrates the experimental results of our sparse
and dense matching algorithms on both 2D and 3D, synthetic
and real data. Finally, we conclude this paper in Section 7.

II. RELATED WORK

We apply our robust algorithm to sparse and dense cor-
respondence, e.g., non-rigid point set registration and image

registration. It is beyond the scope of this paper to give a
thorough review on these topics. In this section we briefly
overview some works that are most relevant to our approach.

A. Point Set Registration Methods

The iterated closest point (ICP) algorithm [2] is one of
the best known point registration approaches. It uses nearest-
neighbor relationships to assign a binary correspondence, and
then uses estimated correspondence to refine the spatial trans-
formation. Moreover, it requires a good initial transformation
that places the two data sets in approximate registration.
Belongie et al. [12] introduced a method for shape registration
based on the shape context descriptor, which incorporates the
neighborhood structure of the point set and thus helps establish
correspondence between the point sets. These methods how-
ever ignore robustness when they recover the transformation
from the correspondence.

For robust point feature matching, the random sample
consensus (RANSAC) [18] is a widely used algorithm in
computer vision. It uses a hypothesize-and-verify and tries to
get as small an outlier-free subset as feasible to estimate a
given parametric model by resampling. RANSAC has sever-
al variants such as MLESAC [19], LO-RANSAC [20] and
PROSAC [21]. Although these methods are very successful in
many situations they have had limited success if the under-
lying spatial transformation between point features are non-
parametric, for example if the real correspondence is non-rigid.
In related work, Chui and Rangarajan [3] established a general
framework for estimating correspondence and transformations
for non-rigid point matching. They modeled the transformation
as a thin-plate spline and did robust point matching by an
algorithm (TPS-RPM) which involved deterministic annealing
[22] and soft-assignment [23]. Alternatively, the coherence
point drift (CPD) algorithm [24] uses Gaussian radial basis
functions instead of thin-plate splines. These algorithms are
robust compared to ICP in the non-rigid case, but the joint
estimation of correspondence and transformation increases the
algorithm complexity.

Another interesting point matching approach is the kernel
correlation (KC) based method [25]. The cost function of
KC is proportional to the correlation of two kernel density
estimates. Jian and Vemuri [26] presented a unified framework
based on a divergence family that allows for interpreting
several of the existing point set registration methods, e.g.
[27], [3], [24], as special cases of the divergence family.
In particular, the L, distance between Gaussians is strongly
related to the LoFE estimator used in our method. Zheng
and Doermann [28] introduced the notion of a neighborhood
structure for the general point matching problem, and proposed
a matching method, the robust point matching-preserving local
neighborhood structures (RPM-LNS) algorithm, which was
later generalized in [29] by introducing an optimal compatibili-
ty coefficient for the relaxation labeling process to solve a non-
rigid point matching problem. Huang et al. [30] proposed to
implicitly embed the shapes of interest in a higher-dimensional
space of distance transforms, and align them similar to non-
rigid image registration algorithms. The method performs well



IEEE TRANSACTIONS ON SIGNAL PROCESSING

on relatively simple data sets. Other related work includes the
EM-like algorithm for matching rigid and articulated shapes
[31], as well as the graph matching approach for establishing
feature correspondences [32].

B. Image Registration Methods

Image registration, as was mentioned above, is widely used
in computer vision, medical imaging, remote sensing, etc. An
early example of a widely-used image registration algorithm
is the optical flow technique [6], [7]. It computes a dense
correspondence field by directly minimizing pixel-to-pixel
dissimilarities, and hence tends to operate on very similar
images, e.g., two adjacent frames in a video sequence. Typical
assumptions in optical flow algorithms include brightness
constancy and piecewise smoothness of the pixel displacement
field.

Due to changes of lighting, perspective and noise, the pixel
values are often not reliable for registration [33]. Nevertheless,
the development of various local invariant features has brought
about significant progress in this area [34], [35]. The feature-
based approaches are to some extent similar to the point set
registration methods. They work by extracting a set of sparse
features and then matching them to each other. The spatial
form of the correspondence then can be described by paramet-
ric models such as affine and homography, or non-parametric
models such as radial basis functions, thin-plate splines and
elastic transforms, relating pixel coordinates in one image to
pixel coordinates in another. This type of methods has the
advantage of being more robust to typical appearance changes
and scene movements, and is potentially faster, if implemented
the right way. However, they are often designed for matching
rigid scenes (e.g., in stereo matching and image stitching) or
small non-rigid motions (e.g., in medical imaging), but less
effective for handling objects and scenes with significant non-
rigidity. This can be explained since the dense correspondence
here is interpolated from sparse matching rather then through
pixel-wise correspondence, which may be problematic when
the real correspondence is non-rigid and the transform model
is not known apriori. For comprehensive reviews of this class
of methods please refer to [16], [36], [37].

Recently, Liu et al. [4] proposed a SIFT flow algorithm
for non-rigid matching of highly different scenes. Instead of
matching brightness of pixels in optical flow algorithms, the
SIFT flow algorithm matches densely sampled SIFT features
between two images. It has demonstrated impressive dense,
pixel-wise correspondence results, however, it is not robust to
significantly changes in scale and rotation. HaCohen et al. [38]
proposed a non-rigid dense correspondence method (NRDC)
which combines dense local matching with robustness to
outliers based on Generalized PatchMatch [39]. Moreover, it
can address large scale change and rotation. Ma et al. [40]
proposed a regularized Gaussian field criterion for multimodal
image registration, such as visible and infrared face images. In
this paper, we introduce a novel dense correspondence method
matching both sparsely and densely sampled SIFT features
based on the robust Lo F estimator and SIFT flow. We show
that our method significantly outperforms both SIFT flow and

NRDC in a set of quantitative evaluation. Besides, Vemuri
et al. [41] and Liu et al. [42] proposed a robust multimodal
image registration method based on matching dominant local
frequency image representations, and they are the first who
applied the Lo F estimator in the image registration problem.

III. ESTIMATING TRANSFORMATION FROM
CORRESPONDENCES BY Lo F

Given a set of point correspondences S = {(x;,y:)}",
which are typically perturbed by noise and by outlier points
which undergo different transformations, the goal is to esti-
mate a transformation f : y; = f(x;) and fit the inliers.

In this paper we make the assumption that the noise on the
inliers is Gaussian on each component with zero mean and
uniform standard deviation ¢ (our approach can be directly
applied to other noise models). More precisely, an inlier point
correspondence (x;,y;) satisfies y; — f(x;) ~ N(0,0%1),
where I is an identity matrix of size d x d, with d being the
dimension of the point. The data {y; — f(x;)}~, can then be
thought of as a sample set from a multivariate normal density
N (0, 0T) which is contaminated by outliers. The main idea of
our approach is then, to find the largest portion of the sample
set (e.g., the underlying inlier set) that “matches” the normal
density model, and hence estimate the transformation f for
the inlier set. Next, we introduce a robust estimator named
Lo-minimizing estimate (Lo F) which we use to estimate the
transformation f.

A. Problem Formulation Using Lo FE: Robust Estimation

Parametric estimation is typically done using maximum
likelihood estimation (M LE). It can be shown that M LE is
the optimal estimator if it is applied to the correct probability
model for the data (or to a good approximation). But M LFE
can be badly biased if the model is not a sufficiently good
approximation or, in particular, there are a significant fraction
of outliers. In the point matching problem, it is generally
accepted that incorrect matches, or outliers, cannot be avoided
in the matching process where only local feature descriptors
are compared. In this case, a robust estimator of the transfor-
mation f is desirable because the point correspondence set S
usually contains outliers. There are two choices: (i) to build
a more complex model that includes the outliers — which is
complex since it involves modeling the outlier process using
extra (hidden) variables which enable us to identify and reject
outliers, or (ii) to use an estimator which is different from
MLFE but less sensitive to outliers, as described in Huber’s
robust statistics [43]. In this paper, we use the second method
and adopt the Lo FE estimator [13], [14], a robust estimator
which minimizes the Lo distance between densities, and is
particularly appropriate for analyzing massive data sets where
data cleaning (to remove outliers) is impractical.

For the parametric setting with a density model p(z|0),
consider minimizing an estimate of Lo distance with respect
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Fig. 1: The penalty curves of MLE (left) and Lo E (right) for an one-
dimensional Gaussian model.
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where the true parameter 6 is unknown, and we omit the (un-
known) constant | p(z|6y)?dz. Based on the L, distance, the
Ly E estimator for model p(z|¢) then recommends estimating
the parameter § by minimizing the criterion:

= arg min
0

(D

= arg min
0

. _ 2 &
01,2 = arg min l/p(z|9)2dz - ;p(&h?)] .2

To get some intuition for why Lo F is robust, we consider a
simple one-dimensional Gaussian model p(z|0) = ¢(z|u, 1),
where [ipfLp = argmax, Z?zllogqﬁ(zi\,u,l) and fif,p =
arg min,, {ﬁ — %Z?:l o(zi |, 1)} The penalty curves of
MLE (i.e. —log$(z|u,1)) and LoE (i.e., —¢(z|u,1)) are
shown in Fig. 1. From the figure, we see that the penalty curve
of MLE is quadratic, and then it is reluctant to assign low
probability to any points (which becomes infinite as ¢(z;|u, 1)
tends to 0), including outliers, and hence tends to be biased by
outliers. By contrast, the penalty of Ly F can be approximately
seen as a truncated form of the M LFE penalty, and then it
can assign low probabilities to many points, hopefully to the
outliers, without paying too high a penalty. Moreover, unlike
a truncated penalty, the Lo E functional is derivable and it has
the advantage of computational convenience.

To further demonstrate the robustness of Lo F, we present
a line-fitting example which contrasts the behavior of M LE
and LoF, see Fig. 2. The goal is to fit a linear regres-
sion model, y = ax + €, with residual e ~ N(0,1),
by estimating o using MLE and LoF. This gives, re-
spectively, dyp = argmax, y ., logd(y; — az;]0,1)
and &, = argmin, [ﬁ — 25 o(yi — axi|0, 1)] As
shown in Fig. 2, Lo E is very resistant when we contaminate
the data by outliers, but M LE does not show this desirable
property. Lo E always has a global minimum at approximately
0.5 (the correct value for «) but M LE’s estimates become
steadily worse as the amount of outliers increases. Observe,
in the bottom right figure, that Lo E' also has a local minimum
near o = 2, which becomes deeper as the number n of outliers
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Fig. 2: Comparison between L2 F and M LE for linear regression as the
number of outliers varies. Top row: data samples, where the inliers are
shown by cyan pluses, and the outliers by magenta circles. The goal is
to estimate the slope « of the line model y = ax. We vary the number of
data samples n = 100, 120, - - - , 200, by always adding 20 new outliers
(retaining the previous samples). In the second column the outliers are
generated from another line model y = 2z. Middle and bottom rows: the
curves of M LE and Lo E respectively. The M LE estimates are correct
for n = 100 but rapidly degrade as we add outliers, see how the peak
of the log-likelihood changes in the second row. By contrast, (see third
row) Lo E estimates « correctly even when half the data is outliers and
also develops a local minimum to fit the outliers when appropriate (third
row, right column). Best viewed in color.

increases so that the two minima become approximately equal
when n = 200. This is appropriate because, in this case, the
contaminated data also comes from the same linear parametric
model with slope o = 2, e.g., y = 2z.

We now apply the Lo FE formulation in (2) to the point
matching problem, assuming that the noise of the inliers
is given by a normal distribution, and obtain the following
functional criterion:

LoE(f,0%) = W - %;cb (vi — £(x:)]0,6°T). (3
where @ is a multi-dimensional Gaussian function. We model
the non-rigid transformation f by requiring it to lie within a
specific functional space, namely a reproducing kernel Hilbert
space (RKHS) [15], [44], [45]. Note that other parameterized
transformation models, for example, thin-plate splines (TPS)
[46], [47], [48], can also be easily incorporated into our
formulation.

We define an RKHS H by a positive definite matrix-
valued kernel I'(x,x’) : R? x RY — IR?*?. The optimal
transformation f which minimizes the Lo E functional (3) then
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takes the form f(x) = Y1 | T'(x, x;)c; [45], [49], where the
coefficient c; is a d x 1 dimensional vector (to be determined).
Hence, the minimization over the infinite dimensional Hilbert
space reduces to finding a finite set of n coefficients c;. But in
point correspondence problem the point set typically contains
hundreds or thousands of points, which causes significant com-
plexity problems (in time and space). Consequently, we adopt
a sparse approximation, and randomly pick only a subset of
size m input points {X; }/”; to have nonzero coefficients in the
expansion of the solution. This follows [50], [51] who found
that this approximation works well and that simply selecting a
random subset of the input points in this manner, performs no
worse than more sophisticated and time-consuming methods.
Therefore, we seek a solution of form

f(x) =Y T(x,%i)c:. 4)
i=1

The chosen point set {X;}!™, are somewhat analogous to
“control points” [1]. By including a regularization term for
imposing smooth constraint on the transformation, the Lo F
functional (3) becomes:

1 2 « 1
2d(7rg) /2 T n Z (2702)d/2

=1

LyE(f,0%) =

_ 2
[lys =Sy T %y |

e 20 +AIfIE )

where A > 0 controls the strength of regularization, and
the stabilizer ||f||%Z is defined by an inner product, e.g.,
|I£||2 = (£, f)r. By choosing a diagonal decomposable kernel
[49]: T'(x;,%x;) = k(x,x%x5) -1 = e Blxi—x; "1 with B
determining the width of the range of interaction between
samples (i.e. neighborhood size), the Lo E functional (5) may
be conveniently expressed in the following matrix form:

n T 2
o7 o]

1 2 1
2\ E ;
LQE(07 g ) = 72d(ﬂ'a')d/2 - E (271'()'2)d/26 20
=1

+ A tr(CTTC), (6)

where kernel matrix T' € R™*™ is called the Gram matrix
with T;; = k(%;,%;) = e I%=%1" U € R™™ with U,; =
K(xi, Xj) = e=Bllxi=%;1I* U, . denotes the i-th row of the
matrix U, C = (c1,---,¢,)7T is the coefficient matrix of
size m X d, and tr(-) denotes the trace.

B. Estimation of the Transformation

Estimating the transformation requires taking the derivative
of the Ly F cost function, see equation (6), with respect to the
coefficient matrix C, which is given by:

OL:E  2UT[Po (Q® 11xy)]
oCc no?(2ro?)d/2

where P=UC-Y and Y = (y1, - ,yn)T are matrices of
size nxd, Q = exp{diag(PP7T)/20?} is an nx 1 dimensional
vector, diag(-) is the diagonal of a matrix, 11x4 is an 1 X d
dimensional row vector of all ones, o denotes the Hadamard
product, for example (A o B);; = A;; - B;j, and ® denotes

1 2AT'C, 7

Algorithm 1: Estimate of Transformation from Correspon-
dences

Input: Correspondence set S = {(x;,y:)}" 1.
parameters -y, 3, A
Output: Optimal transformation f

1 Construct Gram matrix I and matrix U;

2 Initialize parameter o2 and C;

3 Deterministic annealing:

4  Using the gradient (7), optimize the objective function
(6) by a numerical technique (e.g., the quasi-Newton
algorithm with C as the old value);

5 Update the parameter C < arg ming Lo E(C, 0?);

6 Anneal 0% = vo?;

7 The transformation f is determined by equation (4).

the Kronecker product, for example, for A € R™*" and B €
ai 1B alnB
RPFYOA®B=| :
am1B mn B

By using the derivative in equation (7), we can employ effi-
cient gradient-based numerical optimization techniques such
as the quasi-Newton method and the nonlinear conjugate
gradient method to solve the optimization problem. But the
cost function (6) is convex only in the neighborhood of the
optimal solution. Hence to improve convergence we use a
coarse-to-fine strategy by applying deterministic annealing on
the inlier noise parameter o2. This starts with a large initial
value for o2 which is gradually reduced by o? +— ~o?2,
where v is the annealing rate. Our algorithm is outlined in
Algorithm 1. Note that our proposed algorithm can be easily
extended to the rigid or affine model, by using a rotation matrix
R or a nonsingular matrix A together with a translation vector
t, ie., f(x) = Rx+t or f(x) = Ax + t. Here we omit the
details of the derivation and focus on the non-rigid case only.
Computational complexity. By examining equations (6) and
(7), we see that the costs of updating the objective function
and gradient are both O(dm? + dmn). For the numerical
optimization method, we choose the Matlab Optimization
toolbox (e.g., the Matlab function fiminunc), which implicitly
uses the BFGS Quasi-Newton method with a mixed quadratic
and cubic line search procedure. Thus the total complexity is
approximately O(dm? +dm? +dmn). In our implementation,
the number m of the control points required to construct the
transformation f in equation (4) is in general not large, and
so use m = 15 for all the results in this paper (increasing
m only gave small changes to the results). The dimension d
of the data in feature point matching for vision applications
is typically 2 or 3. Therefore, the complexity of our method
can be simply expressed as O(n), which is about linear in the
number of correspondences. This is important since it enables
our method to be applied to large scale data.

C. Implementation Details

The performance of point matching algorithms depends,
typically, on the coordinate system in which points are ex-
pressed. We use data normalization to control for this. More
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specifically, we perform a linear re-scaling of the correspon-
dences so that the points in the two sets both have zero mean
and unit variance.

We define the transformation f as the initial position plus
a displacement function v: f(x) = x + v(x) [24], and solve
for v instead of f. This can be achieved simply by setting the
output y; to be y; — x;.
Parameter settings. Our method uses deterministic annealing
to deal with the non-convexity, and so it will fail if the
annealing fails. The deterministic annealing is more likely to
work if we anneal slowly, and the annealing rate is controlled
by parameter . Without considering the efficiency issue, we
can always set it as large as possible (e.g., close to 1), and
then use more iterations to produce satisfied results. Two
other parameters are 3 and A, which control the influence of
the smoothness constraint on the transformation f. Parameter
B determines how wide the range of interaction between
samples. Since we have used data normalization so that the
points in the two sets both have zero mean and unit variance,
the optimal value of parameter 5 in general will be similar on
different examples. Parameter A controls the trade-off between
the closeness to the data and the smoothness of the solution.
It is mainly influenced by the degrees of data degradation.
We set v = 0.5, 8 = 0.8 and A\ = 0.1 throughout this paper.
Finally, the parameter o and C in line 2 of Algorithm 1 were
initialized to 0.05 and O respectively.

IV. APPLICATION TO NON-RIGID SPARSE
CORRESPONDENCE

In this section, we apply our robust algorithm to estab-
lishment of non-rigid sparse correspondence. Two tasks are
considered such as non-rigid point set registration and non-
rigid image feature correspondence.

A. Non-Rigid Point Set Registration

Point set registration aims to align two point sets {x;}!" ;
(the model point set) and {yj}é-zl (the target point set).
Typically, in the non-rigid case, it requires estimating a non-
rigid transformation f which warps the model point set to
the target point set. We have shown above that once we have
established the correspondence between the two point sets
even with noise and outliers, we are able to estimate the under-
lying transformation between them. Since our method does not
jointly solve the transformation and point correspondence, in
order to use Algorithm 1 to solve the transformation between
two point sets, we need initial correspondences.

In general, if the two point sets have similar shapes, the
corresponding points have similar neighborhood structures
which could be incorporated into a feature descriptor. Thus
finding correspondences between two point sets is equivalent
to finding for each point in one point set (e.g., the model)
the point in the other point set (e.g., the target) that has
the most similar feature descriptor. Fortunately, the initial
correspondences need not be very accurate, since our method
is robust to noise and outliers. Inspired by these facts, we
use shape context [12] as the feature descriptor in the 2D
case, using the Hungarian method for matching with the

Algorithm 2: Non-Rigid Point Set Registration

Input: Two point sets {x;}/,, {y;}i_,
Output: Aligned model point set {X;} ,
1 Compute feature descriptors for the target point set

{y j }é: 15

2 repeat

3 Compute feature descriptors for the model point set
{xiticss

4 Estimate the initial correspondences based on the
feature descriptors of two point sets;

5 Solve the transformation f warping the model point
set to the target point set using Algorithm 1;

6 Update model point set {x;}7 ; < {f(x;)}"1;

7 until reach the maximum iteration number;
8 The aligned model point set {X;}?_; is given by
{f(x;)}"_, in the last iteration.

X2 test statistic as the cost measure. In the 3D case, the
spin image [52] can be used as a feature descriptor, where
the local similarity is measured by an improved correlation
coefficient. Then the matching is performed by a method
which encourages geometrically consistent groups.

The two steps of estimating correspondences and transfor-
mations are iterated to obtain a reliable result. In this paper,
we use a fixed number of iterations, typically 10 but more
when the noise is big or when there are a large percentage
of outliers contained in the original point sets. We summarize
our point set registration method in Algorithm 2.

B. Non-Rigid Image Feature Correspondence

The image feature correspondence task aims to find visual
correspondences between two sets of sparse feature points
{xi}i_, and {y;}._, with corresponding feature descriptors
extracted from two input images. In this paper, we assume
that the underlying relationship between the input images is
non-rigid. Our method for this task is to estimate correspon-
dences by matching feature descriptors using a smooth spatial
mapping f. More specifically, we first estimate the initial
correspondences based on the feature descriptors, and then
use the correspondences to learn a spatial mapping f fitting
the inliers by algorithm 1.

Once we have obtained the spatial mapping f, we then have
to establish accurate correspondences. We predefine a thresh-
old 7 and judge a correspondence (x;,y;) to be an inlier pro-
vided it satisfies the following condition: e~ 15 —fe)l?/20% 5,
7. We set 7 = 0.5 in this paper.

Note that the feature descriptors in the point set registration
problem are calculated based on the point sets themselves, and
are recalculated in each iteration. However, the descriptors of
the feature points here are fixed and calculated from images
in advance. Hence the iterative technique for recovering cor-
respondences, estimating spatial mapping, and re-estimating
correspondences can not be used here. In practice, we find that
our method works well without iteration due to the following
two reasons: i) the initial correspondences between the given
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two feature point sets in general contain most of the ground
truth correspondences; ii) we focus on determining the right
correspondences which does not need precise recovery of the
underlying transformation. Our approach then plays a role of
rejecting outliers.

V. APPLICATION TO NON-RIGID DENSE
CORRESPONDENCE

We now focus on the image registration/dense matching
problem. Given two input images, e.g. a model image and
a target image, the goal is to establish dense correspondences
between the two images. In this paper we assume that the
underlying relationship between the input images is non-rigid.
Next, we introduce a novel dense matching method which
consists of matching both sparsely and densely sampled SIFT
features.

A. Problem Formulation

To align two images, we extract a set of sparse feature corre-
spondences {(x;,y;)}" ;, e.g. SIFT feature correspondences
[34], with x;,y; € R? being the spatial locations of the feature
points in the model and target images respectively. Generally,
the correspondences contain some unknown outliers, and the
robust Lo F estimator can be used to recover a transformation
f according to Algorithm 1. This sparse feature detection and
matching has been a standard approach to image registration
of the same scene [16]. However, for image pairs containing
unknown non-rigid motions, this procedure in general cannot
obtain accurate dense correspondences. To address this prob-
lem, here we also match densely sampled SIFT features based
on the SIFT flow algorithm [4].

We define the transformation between the sparse correspon-
dences as f(x) = x + v(x), where v is the displacement
function with the form in equation (4). To match dense SIFT
features, we introduce a dense discrete flow w: let p be
the grid coordinate of the model image, w(p) then is the
displacement vector at p, i.e., the point p in the model image
corresponds to the point p + w(p) in the target image. In
addition, w is only allowed to have integral entries. Let s;
and ss be the per-pixel SIFT features for two images. The
set € contains all the spatial neighborhoods (a four-neighbor
system is used). Denote w(p) = (w!(p),w?(p))T, and [ the
total number of evaluation pixels. The cost function in our
dense correspondence problem is then defined as:

x;—v(xy)|?

n
Z _llyi— Nyg =2 =V )N
e 20
dmo mr02

+ Zminwsl(p)
Z Zmln alw'(p

(p q)€e i=1
anlv

We briefly go through all the components of the cost function.
The first three terms are from the Lo E estimator as in equation

BE(v,w,0?) = + AlIvIIE

—s2(p+w(p))l1, 1)

N\Qq

w'(q)], u)

w(p)|*. (8)

(5), which performs a robust estimation of the displacement
function v from sparse correspondences. The fourth, fifth and
sixth terms correspond to the data term, smoothness term
and small displacement term of the SIFT flow algorithm,
which performs dense matching between two images. The only
difference is that the last term in the SIFT flow algorithm is
>-p lw(p)|l1, rather than > |lv(p) — w(p)|? in our algo-
rithm. Here this term acts as a bridge between the sparse and
the dense feature matchings; it constraints the displacement
function v and flow w to be consistent.

B. Optimization

There are two unknown variables in the cost function—the
displacement function v and the flow w. While solving for
either variable without information regarding the other is quite
difficult, an interesting fact is that solving for one variable once
the other is known is much simpler than solving the original,
coupled problem.

Now we first consider the terms of cost function (8) that
related to v, which can be expressed in the following matrix
form:

Iy} —xT-u; .c|?

B(C,0%) = 47ra B n7r02 Ze b

+ Mr(CTTrC) + T||VC ~-W|[%, 9

where the matrices I', U and C are defined as the same as
in equation (6) matrix V € R*™ with V; i = k(pi,Xj) =
e=Blpi—%11° W = (wi,---,w;)T is the flow field of size
[ x2,and || - || denotes the Frobenius norm.

As described in Algorithm 1, the cost function (9) can be
minimized by using efficient gradient-based numerical opti-
mization techniques combining with deterministic annealing,
where the derivative of the objective function with respect to
the coefficient matrix C is given by:
8E(C,O’2) . UT[P o (Q 04 11><2)]

oC - nrot

+2)\FC+2(;—77VT(VC—W),
(10
where P = X + UC — Y and Q = exp{diag(PP7T)/252}
are defined similar to those in equation (7).
Next we consider the terms of cost function (8) related to
w, which involves the last three terms

w) = min(||s1(p) — s2(p +w(p))||1,t)

+ Z Z min(a|w’(p)

(pa)ce i=1
+ ZTIHV (P)II*.

To solve the ﬂow w, we utilize the SIFT flow algorithm [4]
by modifying the small displacement term from 3 [[w(p)|1
o >, [Iv(p) = w(p)|*

The two steps of estimating displacement function v and
flow w are iterated to obtain a reliable result. Note that the
value of objective function (8) will decrease in each step
during the iteration, which guarantees the convergence of the
algorithm. The number of iteration is fixed to 3.

—w'(q)|,u)

(1)
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Algorithm 3: Non-Rigid Dense Image Correspondence

Input: A pair of images, parameters =y, 3, \, o, 1, u, §
Output: A dense flow w
1 Extract a set of sparse SIFT correspondence from the
image pair: S = {(x;,¥:)}11;
2 Establish dense SIFT features {s;} and {ss} for two
images respectively according to the orientations and
scales of the sparse correspondences;
Construct Gram matrix I', matrix U and V;
repeat
if the first iteration
Initialize parameter o2;
Compute C by using Algorithm 1;
else
Initialize parameter o2, and initialize C as its old
value;
10 Optimize the objective function (9) by a
quasi-Newton method together with deterministic
annealing to compute C;
11 end
12 Update the displacement function v < VC;
13 Optimize the objective function (11) by using the
SIFT flow algorithm to compute the flow w;
4 until reach the maximum iteration number;
5 The dense image correspondence can be obtain from w
after the iteration.

A= - A LI

-

C. Implementation Details

Observe that the last term of objective function (9) is the
average difference between v and w on the image lattice.
Therefore, to estimate the coefficient matrix C, it is possible to
downsample the image lattice to achieve a significant speedup
without much performance degradation. In our evaluation, we
use the uniform sampling strategy with a sampling interval 10
pixels. Besides, we initialize C independent of W by using
Algorithm 1. We also use data normalization so that the two
sets of sparse feature points {x;}" ; and {y;}?_; both have
zero mean and unit variance.

The SIFT flow algorithm suffers from the scale and rotation
problem. Here we address this issue in our dense matching
scheme. Note that the sparse SIFT matching provides the
orientations and scales for each correspondence, and for each
inlier correspondence, the orientation difference and scale ratio
between the two feature points are in general constants. Based
on this observation, we choose a small part of the sparse
SIFT correspondences (e.g., 20%) with the highest matching
scores which are in general inliers, and then set the orientation
and scale of the dense SIFT features to the mean orientation
difference and mean scale ratio of the chosen correspondences.

The parameters in our dense correspondence algorithm are
set according to Algorithm 1 and the SIFT flow algorithm.
There is an additional parameter § need to be set in equation
(9) after the first iteration, which controls the trade-off between
the sparse matching and dense matching. We set it according
to the equation 91 = 103. Our dense image correspondence
method is summarized in Algorithm 3.

VI. EXPERIMENTAL RESULTS

In order to evaluate the performance of our algorithm, we
conducted three types of experiments: i) point set registration
for 2D shapes; ii) sparse feature correspondence on 2D images
and 3D surfaces; iii) 2D dense image correspondence.

A. Results on Non-Rigid Point Set Registration

We tested our method on the same synthesized data as in
[3] and [28]. The data consists of two different shape models:
a fish and a Chinese character. For each model, there are five
sets of data designed to measure the robustness of registration
algorithms under deformation, occlusion, rotation, noise and
outliers. In each test, one of the above distortions is applied
to a model set to create a target set, and 100 samples are
generated for each degradation level. We use the shape context
as the feature descriptor to establish initial correspondences. It
is easy to make shape context translation and scale invariant,
and in some applications, rotation invariance is also required.
We use the rotation invariant shape context as in [28].

Fig. 3a shows the registration results of our method on
solving different degrees of deformations and occlusions. We
also give a quantitative evaluation in Fig. 3b, where the recall
is computed as the metric used in [26]. Here the recall is
defined as the proportion of true positive correspondences
to the ground truth correspondences and a true positive cor-
respondence is counted when the pair falls within a given
accuracy threshold in terms of pairwise distance, e.g., the
Euclidean distance between a point in the warped model
and the corresponding point in the target. As shown in the
figure, we see that for both datasets with moderate degradation,
our method is able to produce an almost perfect alignment.
Moreover, the matching performance degrades gradually and
gracefully as the degree of degradation in the data increases.
Consider the results on the occlusion test in the fifth column, it
is interesting that even when the occlusion ratio is 50 percent
our method can still achieve a satisfactory registration result.
Therefore our method can be used to provide a good initial
alignment for more complicated problem-specific registration
algorithms. The average run time of our method on this dataset
with about 100 points is about 0.5 seconds on an Intel Core
2.5 GHz PC with Matlab code.

To provide a quantitative comparison, we report the results
of five state-of-the-art algorithms such as shape context [12],
TPS-RPM [3], RPM-LNS [28], GMMREG [26] and CPD
[24] which are implemented using publicly available codes.
For the GMMREG algorithm, we choose the L2 distance and
TPS kernel for evaluation. The registration error on a pair of
shapes is quantified as the average Euclidean distance between
a point in the warped model and the corresponding point in
the target. Then the registration performance of each algorithm
is compared by the mean and standard deviation of the
registration error of all the 100 samples in each distortion level.
The statistical results, error means, and standard deviations for
each setting are summarized in Fig. 3c. In the deformation test
results (e.g., 1st and 3rd rows), six algorithms achieve similar
registration performance in both fish and Chinese character at
low deformation levels, and our method generally gives better



IEEE TRANSACTIONS ON SIGNAL PROCESSING

2% .
ogEimee on 8 4o ol -
&' - 5% 'Q"z} o
s, ¥ 1 4
: AW

oS &
% 8 L,
.mmj‘.g’ju.w

s sC
006l © TPS-RPM
RPM-LNS
GMMREG
+ CPD

© Ours
P e } 3 ]

-0.04
0 0.005A 040:‘ d0015 0.02 002 0035 005 0065 0.8
ceuracy threshol Degree of deformation

hb A

o 0.02
0.035
0.05
20 }Z & 0.065

Recall (%)
Average error
)

o
S

=)

-0.02
° 0.08

100
o 8C
0.12f ¢ TPS-RPM
80 RPM-LNS
N GMMREG
£ 60 2 008 + CPD
= $ o Ours
g g
< 40 § 0.04
e < { }
2 / 0 }%@ i k’ t %
0
0 0.005 0.01 0.015 0.02 -0.04
Accuracy threshold 0 0.1 0.2 03 04 0.5
Occlusion ratio
100 : = 0.08
At o SC
80 et 0.06 ¢ TPS-RPM
RPM-LNS
- /// o + oosl * GMMREG
&£ 60 / e + CPD
= 5 o 0
g 40 //7{ o 0.02 % 0.02 = l
T ’ o 3
/ 0.035 2 e o {%
20 0.05
- 0.065
° 008 -0.02

0 0.01 0.03 0.04 -0.04

0.02 0035 005 0065 0.08

0.02
Accuracy threshold Degree of deformation

o SC
0.16
i ¢ TPS-RPM
80 = RPM-LNS
. 012 GMMREG
£ 60 8 « CPD
= : o Ours
s gO.G
& 40 = 01 g
0.2 E
0.04
20 s 04 i
| - o5 ot [ N
0
0 0.01 0.02 0.03 0.04 0 0.1 0.2 0.3 0.4 0.5
Accuracy threshold Occlusion ratio
(b) (c)

Fig. 3: Point set registration on 2D non-rigid shapes. (a) Results of our method on the fish (top) and Chinese character (bottom) shapes [3], [28],
with deformation and occlusion presented in every two rows. The goal is to align the model point set (blue pluses) onto the target point set (red
circles). For each group of experiments, the upper figure is the model and target point sets, and the lower figure is the registration result. From
left to right, increasing degree of degradation. (b) Quantitative evaluations of our method on the corresponding datasets with different degrees of
degradation. Each curve is generated based on 100 trials. (c) Comparisons of the registration performance of our method with shape context (SC)
[12], TPS-RPM [3], RPM-LNS [28], GMMREG [26] and CPD [24] on the corresponding datasets. The error bars indicate the registration error means

and standard deviations over 100 trials.

performance as the degree of deformation increases. In the
occlusion test results (e.g., 2nd and 4th rows), we observe
that our method shows much more robustness compared with
the other five algorithms. It is not surprised that our algorithm
can achieve the best performance, since shape context and
RPM-LNS do not consider the robust issue during estimating
the transformation, while TPS-RPM, GMMREG and CPD do
not consider using local shape features to help establish point
correspondences. Note that the local shape features come from
the point sets themselves.

More experiments on rotation, noise and outliers are also
performed on the two shape models, as shown in Fig. 4.
From the results, we again see that our method is able to
generate good alignment when the degradation is moderate,
and the registration performance degrades gradually and is still
acceptable as the amount of degradation increases. Note that
our method is not affected by rotation which is not surprising

because we use the rotation invariant shape context as the
feature descriptor.

In conclusion, our method is efficient for most non-rigid
point set registration problems with moderate, and in some
cases severe, distortions. It can also be used to provide a
good initial alignment for more complicated problem-specific
registration algorithms.

B. Results on Non-Rigid Sparse Image Feature Correspon-
dence

In this section, we perform experiments on real images, and
test the performance of our method for sparse image feature
correspondence. These images contain deformable objects and
consequently the underlying relationships between the images
are non-rigid.

Fig. 5 contains a newspaper with different amounts of
spatial warps. We aim to establish correspondences between
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Fig. 4: From top to bottom, results on rotation, noise and outliers presented in every two rows. For each group of experiments, the upper figure is
the data, and the lower figure is the registration result. From left to right, increasing degree of degradation.

sparse image features in each image pair. In our evaluation,
we first extract SIFT [34] feature points in each input im-
age, and estimate the initial correspondences based on the
corresponding SIFT descriptors. Our goal is then to reject the
outliers contained in the initial correspondences and, at the
same time, to keep as many inliers as possible. Performance
is characterized by precision and recall.

The results of our method are presented in Fig. 5. The inlier
and true positive, false positive, true negative, false negative
are defined within some tolerance radius on human annotated,
per-pixel ground truth. For the leftmost pair, the deformation
of the newspaper is relatively slight. There are 466 initial
correspondences with 95 outliers, and the inlier percentage is
about 79.61%. After using our method to reject outliers, 370
out of the 371 inliers are preserved, and simultaneously all
the 95 outliers are rejected. The precision-recall pair is about
(100.00%, 99.73%). On the rightmost pair, the deformation
is relatively large and the inlier percentage in the initial
correspondences is only about 45.71%. In this case, our
method still obtains a good precision-recall pair (100.00%,
98.96%). Note that there are still a few false positives and
false negatives in the results since we could not precisely
estimate the true warp functions between the image pairs in
this framework. The average run time of our method on these
image pairs is about 0.4 seconds on an Intel Core 2.5 GHz
PC with Matlab code.

In addition, we also compared our method to three state-of-

TABLE I: Performance comparison on the image pairs in Fig. 5. The
values in the first row are the inlier percentages (%), and the pairs are
the precision-recall pairs (%).

Inlier pct. 79.61 56.57 51.84 45.71

RANSAC [18] (100.00, 97.12) (97.63, 91.56) (92.26, 93.46) (99.35, 92.22)
ICF [53] (96.05, 98.38) (83.95, 86.73) (80.43, 95.48) (75.42, 92.71)
VFC [49] (100.00, 97.04) (98.59, 99.53) (98.09, 99.35) (98.94, 97.91)
Ours (sparse) (100.00, 99.73) (99.06, 99.53) (98.09, 99.35) (100.00, 98.96)
Ours (dense)  (100.00, 99.73) (100.00, 99.53) (99.36, 100.00) (100.00, 98.96)

the-art methods, such as random sample consensus (RANSAC)
[18], identifying point correspondences by correspondence
function (ICF) [53] and vector field consensus (VFC) [49],
[54], [55]. We choose the affine model in RANSAC since re-
cent work [56] justifies a simple RANSAC-driven deformable
registration technique with an affine model that is at least as
accurate as other methods based on the optimization of fully
deformable models. The ICF uses support vector regression
to learn a correspondence function pair which maps points
in one image to their corresponding points in another, and
then reject outliers by the estimated correspondence functions.
While the VFC converts the outlier rejection problem into a
robust vector field interpolation problem, and interpolates a
smooth field to fit the potential inliers as well as estimates a
consensus inlier set. The results are shown in Table I. We see
that all the four algorithms work well when the deformation
contained in the image pair is relatively slight. As the amount
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Fig. 5: Results of image feature correspondence on 2D image pairs of resolution 384 x 256 with deformable objects. From left to right, increasing
degree of deformation. The inlier percentages in the initial correspondences are 79.61%, 56.57%, 51.84% and 45.71% respectively, and the
corresponding precision-recall pairs are (100.00%, 99.73%), (99.06%, 99.53%), (99.09%, 99.35%) and (100.00%, 98.96%) respectively. The lines
indicate matching results (blue = true positive, green = false negative, red = false positive). Best viewed in color.

of deformation increases, the performance of RANSAC and
ICF begin to degenerate, especially the ICF method. But VFC
and our method seem to be relatively unaffected even when
the number of outliers exceeds the number of inliers. Still,
our method gains slightly better results compared to VFC.
Besides, we also test our dense correspondence method (i.e.,
Algorithm 3) on this task, as shown in the last row. More
specifically, we first estimate a dense flow for each pixel in the
image by using Algorithm 3, and then check the correctness
of each sparse correspondence according to the flow. We
see that the results are further improved by using our dense
correspondence method.

Our next experiment involves feature point matching on
3D surfaces. We adopt MeshDOG and MeshHOG [57] as
the feature point detector and descriptor to determine the
initial correspondences. For the dataset, we use a surface
correspondence benchmark! [58], which contains meshes rep-
resenting people and animals in a variety of poses. Here we
select four classes and each class four meshes with large
level of deformations, as shown in Fig. 6. The ground truth
correspondences are supplied by the dataset.

Fig. 6 presents the matching results of our method. We see
that our method in general can obtain good performance, both
in precision and recall. However, if there exists a body part
with large degree of deformation and simultaneously few inlier
correspondences, then all the correspondences on that part may
be treated as outliers by our algorithm and hence removed,
such as the legs of cat and dog, the hands of centaur and
person. A quantitative comparison of our method with VFC
[49] is reported in Table II (we do not compare to RANSAC
and ICF since they are not applicable in this case). Clearly,
our method has a better precision-recall trade-off. The average
precision-recall pairs on the eight meshes are about (94.45%,
86.07%) and (95.98%, 94.33%) for VFC and our method.

C. Results on Non-Rigid Image Registration

In this section, we test our non-rigid dense correspondence
method on a set of challenging image pairs with shared
content, which includes image transformations such as view-
point change, scale change, rotation, as well as non-rigid
deformation. We also compare our method with existing state-
of-the-art dense correspondence methods.

! Available at http://www.cs.princeton.edu/~vk/projects/CorrsBlended/doc_
data.php.

Fig. 6: Results on 3D surfaces of deformable objects. From left to
right, top to bottom: Cat1, Cat2, Dog1, Dog2, Centaurl, Centaur2,
Persont, Person2. The inlier percentages in the initial correspon-
dences are 93.38%, 93.03%, 80.57%, 82.46%, 77.48%, 76.92%, 51.98%
and 27.40% respectively, and the corresponding precision-recall pairs
are (99.43%, 95.08%), (99.20%, 94.03%), (96.37%, 99.52%), (96.84%,
93.40%), (95.51%, 94.77T%), (95.44%, 86.79%), (95.02%, 99.60%) and
(86.99%, 91.45%) respectively. For visibility, only 100 randomly selected
correspondences are shown. The lines indicate matching results (blue
= true positive, green = false negative, red = false positive). Best viewed
in color.

Fig. 7 shows a visual comparison between our method and
SIFT flow on six pairs of real-world scenes. We aim to align
the model images (second column) onto the target images (first
column). In the first two rows and middle two rows, we test
the robustness of our method to large scale change and rotation
respectively. The warped model images of SIFT flow and our
method are shown in the third and fourth columns. Clearly,
SIFT flow will fail in these cases since in the algorithm
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TABLE II: Performance comparison on the surface pairs in Fig. 6. The values in the first row are the inlier percentages (%), and the pairs are the
precision-recall pairs (%). From left to right: results of Cat1, Cat2, Dog1, Dog2, Centaur1, Centaur2, Person1, Person2.

Inlier pct. 93.38 93.03 80.57 82.46

77.48 76.92 51.98 27.40

VEC [49] (99.76, 76.10) (99.39, 93.46) (97.17, 92.41) (99.78, 74.53) (100.00, 82.17) (99.76, 78.87) (92.88, 99.60) (66.87, 91.45)

Ours

(99.43, 95.08) (99.20, 94.03) (96.37, 99.52) (96.84, 93.40) (95.51, 94.77) (95.44, 86.79) (95.02, 99.60) (86.99, 91.45)

Fig. 7: Qualitative comparison of matches on real-world scenes. The
goal is to align the model images (b) onto the target images (a); (c) and
(d) show the matching results (i.e., warped model images) of SIFT flow
[4] and our dense correspondence method respectively. The upper two
rows test the scale change, the middle two rows test the rotation, and
the bottom two rows test the non-rigid deformation.

the dense SIFT features in the model and target images are
computed with the same scale and orientation. However, due
to the use of the scale and orientation information of sparse
feature points for computing the dense feature, our method is
not influenced by the rotation and scale change. It can produce
almost perfect alignments under these image transformations.
We also test the performance of our method in case of
non-rigid deformation, as shown in the bottom two rows in
Fig. 7. Again, our method displays its robustness and is able
to generate good alignment even under extreme deformation
(e.g., the last row). In contrast, the SIFT flow algorithm works
quite well when the deformation is moderate (e.g., the next-
to-last row), but fails in the case of extreme deformation (e.g.,
the last row).

Next, we give a quantitative comparison of our method with
three existing state-of-the-art dense correspondence methods.
The first method is implemented based on sparse SIFT feature
correspondence, which has been a standard approach to image
registration of the same scene. More specifically, we first
exact a set of sparse SIFT feature correspondence from the

image pair, and then utilize our robust Lo E method (i.e.,
Algorithm 1) to compute a mapping function/transformation
from the sparse correspondence, finally we transform the
model image to the target image by means of the mapping
function. The second method is the SIFT flow method which
matches dense sampled SIFT features. The third method is
the NRDC method [38] which is based on matching image
patches [39]. For the SIFT flow and NRDC algorithms, we
implement them based on the publicly available codes.

Since ground truth data for real scenes of this kind is
scarce, we turn to a standard dataset by Mikolajczyk et
al. [59] that has been used for evaluating sparse feature
based correspondence algorithms. The dataset contains im-
age pairs either of planar scenes or taken by camera in
a fixed position during acquisition. The images, therefore,
always obey homography. The ground truth homographies
are supplied by the dataset. The dataset contains six image
transformations including rotation, scale change, viewpoint
change, image blur, JPEG compression, and illumination. We
focus our comparison on large geometric deformations, i.e.,
the first three transformations, and picked the related two
subsets named “zoom + rotation” and “viewpoint”, as shown
in Fig. 8. In addition, we also generate an image pair of non-
rigid deformation for each subset. More specifically, in Fig. 8,
we deform the model image in the second row in each subset
by using the Moving Least Squares algorithm [60], [61], and
then align the deformed model image to the target image. The
ground truth correspondence can be obtained based on the
homography and non-rigid transformation.

The results are shown in Fig. 8, in which we highlight
only regions of correspondences that fall within a radius of
5 pixels from the ground-truth. The detail matching perfor-
mance comparisons between the four methods are given in
the last column. From the results, we see that the sparse
correspondence based method works quite well in the case of
homography, but degrades seriously after we add the non-rigid
deformations. The SIFT flow method completely fails due to
the scale change or rotation. The image patch matching based
method method NRDC can obtain satisfied results in most
cases, although the captured correspondences typically are not
so many. Besides, it also degrades badly in extreme cases,
e.g., in the last row of Fig. 8 which contains extreme scale
change, rotation, as well as non-rigid deformation. In contrast,
our dense correspondence method is much more robust to all
these degenerations, and in general able to capture much larger
and more reliable matches than the other methods.

VII. CONCLUSION

In this paper, we have presented a new approach for non-
rigid registration. A key characteristic of our approach is the
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Fig. 8: Correspondence evaluation on two examples from the dataset of Mikolajczyk ez al. [59]. The goal is to align the model images (b) onto the
target images (a); (c), (d), (e) and (f) show the matching results (i.e., warped model images) of sparse correspondence based method, SIFT flow
[4], NRDC [38], and our dense correspondence method, we highlight only regions of matches that fall within a radius of 5 pixels from the ground-
truth, and the black regions denote that there are no ground truth correspondences; (g) shows the quantitative comparison of the four methods.
The upper group of images contains view point change and non-rigid deformation; the bottom group contains scale change, rotation, as well as

non-rigid deformation.

estimation of transformation from correspondences based on a
robust estimator named Lo E. The computational complexity
of estimation of transformation is linear in the scale of
correspondences. We applied our robust method to sparse
correspondence such as non-rigid point set registration and
sparse image feature correspondence, and dense correspon-
dence such as non-rigid image registration. Experiments on
public datasets for non-rigid point registration, real images
for sparse image feature correspondence and non-rigid image
registration demonstrate that our approach yields results con-
sistently outperform those of state-of-the-art methods such as
CPD and SIFT flow when there are significant deformations,
occlusions, rotations, and/or scale changes in the data.
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