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Abstract—In previous work on point registration, the input
point sets are often represented using Gaussian mixture models
and the registration is then addressed through a probabilistic
approach, which aims to exploit global relationships on the
point sets. For non-rigid shapes, however, the local structures
among neighboring points are also strong and stable and thus
helpful in recovering the point correspondence. In this paper, we
formulate point registration as the estimation of a mixture of
densities, where local features, such as shape context, are used
to assign the membership probabilities of the mixture model.
This enables us to preserve both global and local structures
during matching. The transformation between the two point
sets is specified in a reproducing kernel Hilbert space and a
sparse approximation is adopted to achieve a fast implementation.
Extensive experiments on both synthesized and real data show
the robustness of our approach under various types of distortions
such as deformation, noise, outliers, rotation and occlusion. It
greatly outperforms state-of-the-art methods, especially when the
data is badly degraded.

Index Terms—Registration, shape matching, non-rigid, Gaus-
sian mixture model, global/local.

I. INTRODUCTION

Finding an optimal alignment between two sets of points
is a fundamental problem in computer vision, image analysis
and pattern recognition [6], [3], [8]. Many tasks in these
fields – such as stereo matching, image registration and shape
recognition – can be formulated as a point set registration
problem, which requires addressing two issues: find point-
to-point correspondences and estimate the underlying spatial
transformation which best aligns the two sets.

The registration problem can be roughly categorized into
rigid or non-rigid registration, depending on the application
and the form of the data. With a small number of transfor-
mation parameters, rigid registration is relatively easy and has
been widely studied [6], [3], [27], [11], [21]. By contrast, non-
rigid registration is more difficult because the true underlying
non-rigid transformations are often unknown and modeling
them is a challenging task [8]. But non-rigid registration is
very important because it is required for many real world tasks,
including shape recognition, deformable motion tracking and
medical image registration.

Existing non-rigid registration methods typically consider
the alignment of two point sets as a probability density esti-
mation problem and more specifically, they use Gaussian Mix-
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ture Models (GMMs) [24], [12]. This makes the reasonable
assumption that points from one set are normally distributed
around points belonging to the other set. Hence, the point-to-
point assignment problem can be recast into that of estimating
the parameters of a mixture distribution. In general, these
probabilistic methods are able to exploit global relationships
in the point sets, since the rough structure of a point set
is typically preserved; otherwise, even people cannot find
correspondences reliably under arbitrarily large deformations.
However, even for non-rigid shapes, the local structures among
neighboring points are strong and stable. For example, most
neighboring points on a non-rigid shape (e.g., a human face)
cannot move independently under deformation due to physical
constraints [36]. Furthermore, preserving local neighborhood
structures is also very important for people to detect and
recognize shapes efficiently and reliably [10]. As a major
contribution of this paper, we propose a uniform framework,
which exploits both the global and the local structures in the
point sets.

More precisely, we formulate point registration as the
estimation of a mixture of densities: A GMM is fitted to
one point set, such that the centers of the Gaussian densities
are constrained to coincide with the other point set. Mean-
while, we use local features such as shape context to assign
the membership probabilities of the mixture model, so that
both global and local structures can be preserved during the
matching process. The non-rigid transformation is modeled
in a functional space, called the reproducing kernel Hilbert
space (RKHS) [1], in which the transformation function has
an explicit kernel representation.

II. RELATED WORK

The iterated closest point (ICP) algorithm [3] is one of
the best known point registration approaches. It uses nearest-
neighbor relationships to assign a binary correspondence and
then uses the estimated correspondences to refine the trans-
formation. Efficient versions of ICP use sampling processes,
either deterministic or based on heuristics [27]. The nearest
point strategy of ICP can be replaced by soft assignments
within a continuous optimization framework, e.g., the TPS-
RPM [25], [8]. In the recent past, the point registration is
typically solved by probabilistic methods [31], [13], [24], [12].
The Kernel Correlation Based Method [31] models each one of
the two point sets as two probability distributions and measures
the dissimilarity between the two distributions. It was later
improved in [13], which represents the point sets using GMMs.
In [24] and [12], the GMM is used to recast the point-to-point
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assignment problem into that of estimating the parameters of a
mixture. This is done within the framework of maximum like-
lihood and the Expectation-Maximization (EM) algorithm [9].
In addition, point registration for articulated shapes has also
been investigated using similar methods and shows promising
results [22], [12], [29]. The methods mentioned above mainly
focus on exploiting the global relationships in the point sets.

To preserve local neighborhood structures, Belongie et al.
[2] introduced a registration method based on the shape con-
text descriptor, which incorporates the neighborhood structure
of the point set, and helps to establish better point correspon-
dences. Using shape context as a lever, Zheng and Doermann
[36] proposed a matching method, called the Robust Point
Matching-preserving Local Neighborhood Structures (RPM-
LNS) algorithm, which was later improved in [15]. Tu and
Yuille [32] presented a shape matching method, based on
a generative model and informative features. Wasserman et
al. used local structure information to achieve point cloud
registration for registering medical images [33], [34]. Recently,
Ma et al. introduced Robust Point Matching methods based on
local features and a robust L2E estimator (RPM-L2E) [18]
or Vector Field Consensus [19], which can exploit both global
and local structures. However, they find the correspondences
and the transformation separately. In this paper, we propose a
method which estimates these two variables jointly under the
GMM formulation.

III. METHOD

We start by introducing a general methodology for non-rigid
point set registration using Gaussian mixture models. We next
present the layout of our model. We then explain the way we
search for an optimal solution, followed by a description of
our fast implementation. We also state the differences between
our algorithm and several related state-of-the-art algorithms in
detail. Finally, we provide the implementation details.

A. Point Registration and Gaussian Mixtures
We denote by X = (x1, · · · ,xN ) ∈ IRD×N the coordinates

of a set of model points and by Y = (y1, · · · ,yM ) ∈ IRD×M

the coordinates of a set of observed data points, where
each point is represented as a D × 1 dimensional column
vector. The model points undergo a non-rigid transformation
T : IRD → IRD, and the goal is to estimate T , which
warps the model points to the observed data points, so that
the two point sets become aligned. In this paper, we will
formulate the point registration as the estimation of a mixture
of densities, where a Gaussian mixture model (GMM) is fitted
to the observed data points Y, such that the GMM centroids
of the Gaussian densities are constrained to coincide with the
transformed model points T (X) [24], [13], [12].

Let us introduce a set of latent variables Z = {zm ∈
IINN+1 : m ∈ IINM}, where each variable zm assigns an
observed data point ym to a GMM centroid T (xn), if zm = n,
1 ≤ n ≤ N , or to an additional outlier class, if zm = N + 1.
The GMM probability density function then can be defined as

P (ym) =

N+1∑
n=1

P (zm = n)P (ym|zm = n). (1)

Typically, for point registration, we can use equal isotropic
covariances σ2I for all GMM components and the outlier
distribution is supposed to be uniform 1

a . Note that a more
general assumption of anisotropic Gaussian noise in the data,
which uses the full Gaussian model, has also been investigated
in [12]. We denote by θ = {T , σ2, γ} the set of unknown
parameters, where γ ∈ [0, 1] is the percentage of outliers. Let
πmn be the membership probability of the GMM, such that∑N
n=1 πmn = 1. The mixture model then takes the form

P (ym|θ) = γ
1

a
+(1−γ)

N∑
n=1

πmn
(2πσ2)D/2

e−
‖ym−T (xn)‖2

2σ2 . (2)

We want to recover the non-rigid transformation T . The
slow-and-smooth model [35], which has been shown to ac-
count for a range of motion phenomena, suggests that the
prior of T has the form: P (T ) ∝ e−

λ
2 φ(T ), where φ(T ) is

a smoothness functional and λ is a positive real number (we
will discuss the details of φ(T ) later). Using Bayes rule, we
estimate a MAP solution of θ, i.e., θ∗ = arg maxθ P (θ|Y) =
arg maxθ P (Y|θ)P (T ). This is equivalent to minimizing the
negative log posterior

L(θ|Y) = −
M∑
m=1

lnP (ym|θ)− lnP (T ), (3)

where we make the i.i.d. data assumption. The transformation
T will be obtained from the optimal solution θ∗.

B. Registration Using Global and Local Structures

The above method treats the point set as an instance of a
GMM distribution, which aims to exploit the global structures
in the point sets. For non-rigid point set registration, the local
structures among neighboring points are also very strong and
stable and can be used to improve the point correspondences.
Next, we show how to use the local structures.

Consider the mixture model in Eq. (2), where we need to
assign the membership probability πmn that the observed data
point ym belongs to the GMM centroid T (xn). It is a prior
and is typically assumed to be equal for all GMM components
[24], [12], i.e., πmn = 1

N , ∀m ∈ IINM , n ∈ IINN . In this paper,
we initialize πmn by incorporating the local neighborhood
structure information. More specifically, we compute a local
feature descriptor for each point [2], [17], and then initialize
πmn based on the matching of the feature descriptors of the
two sets.

We use shape context [2] as the feature descriptor in the
2D case, using the Hungarian method for matching, with the
χ2 test statistic as the cost measure. In the 3D case, the
Fast Point Feature Histograms (FPFH) [28] can be used as a
feature descriptor and the matching is performed by a Sample
Consensus Initial Alignment method. After we obtain the
correspondences between the two point sets by matching their
feature descriptors, we use them to initialize πmn according
to the following two rules:

(i) For a data point ym, we denote by I the set of model
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points, which it corresponds to1. We let

πmn =

{
τ
|I| , ∀xn ∈ I,
1−τ
N−|I| , ∀xn /∈ I,

(4)

where parameter τ , 0 ≤ τ ≤ 1, could be considered
as the confidence of a feature correspondence, and | · |
denotes the cardinality of a set.

(ii) If a data point ym does not have a corresponding model
point, we use equal membership probabilities for all
GMM components, i.e. πmn = 1

N , ∀n ∈ IINN .
Note that in our formulation the membership probability

πmn is not assigned as a prior, since it depends on the data.

C. The EM Algorithm

There are several ways to estimate the parameters of the
mixture model, such as the EM algorithm, gradient descent
and variational inference. The EM algorithm [9] is a technique
for learning and inference in the context of latent variables. It
alternates between two steps: an expectation step (E-step) and
a maximization step (M-step).

We follow standard notation [4] and omit some terms that
are independent of θ. Considering the negative log posterior
function, i.e., Eq. (3), the complete-data log posterior (also
referred to as the posterior expectation of the complete-data
log likelihood) is then given by

Q(θ,θold) =
1

2σ2

M∑
m=1

N∑
n=1

P (zm = n|ym,θ
old)‖ym − T (xn)‖2

+
MPD

2
lnσ2 −MP ln(1− γ)

− (M −MP) ln γ +
λ

2
φ(T ), (5)

where MP =
∑M
m=1

∑N
n=1 P (zm = n|ym,θold) ≤M .

E-step: We use the current parameter values θold to find
the posterior distribution of the latent variables. To this end,
we first renew the membership probability πmn based on the
feature correspondence between the data points Y and the
transformed model points T (X), as described in Section III-B.
We denote by P the posterior probability matrix of size M ×
N , where the (m, n)-th element pmn = P (zm = n|ym,θold)
can be computed by applying Bayes rule:

pmn =
P (ym|zm = n,θold)P (zm = n|θold)

P (ym|θold)

=
πmne

− ‖ym−T (xn)‖2

2σ2∑N
k=1 πmke

− ‖ym−T (xk)‖2

2σ2 + γ(2πσ2)D/2

(1−γ)a

. (6)

Note that the local structure is used throughout the EM
process. The posterior probability pmn is a soft assignment,
which indicates to what degree the observed data point ym
coincides with the model point xn under the current estimated
transformation T .

1Typically, I contains only one point, but multiple correspondences could
exist in some cases, for instance, if the matching strategy is not bipartite
matching.

M-step: We compute the revised parameters as2: θnew =
arg maxθQ(θ,θold). Taking derivatives of Q(θ) with respect
to γ and σ2, and setting them to zero, we obtain

γ = 1−MP/M, (7)

σ2 =

∑M
m=1

∑N
n=1 pmn‖ym − T (xn)‖2

MPD
. (8)

The estimate of the variance σ2 with a large initial value
is conceptually similar to deterministic annealing [8], which
uses the solution of an easy (e.g., smoothed) problem to
recursively provide the initial conditions to increasingly harder
problems, but differs in several aspects (e.g., by not requiring
any annealing schedule).

Next we consider the terms of Q(θ) that are related to
T . We define the transformation as the initial position plus
a displacement function v: T (X) = X + v(X), and then
obtain a regularized risk functional as:

E(v) =
1

2σ2

M∑
m=1

N∑
n=1

pmn‖ym−xn−v(xn)‖2+
λ

2
φ(v). (9)

This is a particular form of Tikhonov regularization [30], and
the first term can be seen as a weighted empirical error. Thus
the maximization of Q with respect to T is equivalent to
minimizing the regularized risk functional (9). To proceed,
we model v by requiring it to lie within a vector-valued
reproducing kernel Hilbert space (RKHS) H defined by a di-
agonal Gaussian matrix kernel Γ : IRD× IRD → IRD×D [20],
where Γ(xi,xj) = exp{−‖xi−xj‖

2

2β2 }I. A brief introduction of
the vector-valued RKHS is given in Appendix A. By using
the square norm for the smoothness functional φ(v), i.e.,
φ(v) = ‖v‖2H, we then have the following representer theorem
[23], and the proof is given in Appendix B.

Theorem 1. The optimal solution of the regularized risk
functional (9) has the form

v(x) =

N∑
n=1

Γ(x,xn)cn. (10)

with the coefficient set {cn : n ∈ IINN} determined by the
following linear system:

C(Γd(1TP) + λσ2I) = YP−Xd(1TP), (11)

where C = (c1, · · · , cN ) ∈ IRD×N is the coefficient set, Γ ∈
IRN×N is the so-called Gram matrix with the (i, j)-th element
Γij = exp{−‖xi−xj‖

2

2β2 }, 1 is a column vector of all ones, and
d(·) is the diagonal matrix.

Note that the M-step is different from the standard EM
algorithm, where the free parameters are the means and
the covariances of the Gaussian mixture, and the estimation
of these parameters is quite straightforward. Our problem
requires multiple conditional maximization steps and thus the

2Note that the parameters contained in θ cannot be updated simultaneously
because of their dependencies on σ2 and T , as can be seen from Eqs. (8)
and (11). However, here we use the symbol θ instead of {T , σ2, γ} for the
sake of simplicity.
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Algorithm 1: The PR-GLS algorithm
Input: Two point sets X and Y, parameters γ, β, λ
Output: Optimal transformation T

1 Construct the Gram matrix Γ;
2 Initialization: C = 0, σ2 = 1

DMN

∑M,N
m,n=1 ‖ym − xn‖2;

3 Compute feature descriptors for point set Y;
4 repeat
5 E-step:
6 Compute feature descriptors for point set T (X);
7 Establish correspondence between T (X) and Y;
8 Initialize πmn based on the feature correspondence;
9 Update posterior probability P by Eq. (6);

10 M-step:
11 Update C by solving the linear system (11);
12 Update T (X) = X + CΓ;
13 Update γ and σ2 by Eqs. (7) and (8);
14 until Q converges;
15 The transformation T is determined as T (X) = X + CΓ.

algorithm is referred as the Expectation Conditional Maxi-
mization (ECM), which was first introduced into the point
registration problem by Horaud et al. [12]. Since our non-rigid
Point set Registration algorithm exploits both Global and Local
Structures, we call it PR-GLS and summarize it in Algorithm
1.

D. Fast Implementation

Solving for the transformation T requires solving the linear
system (11). But for large values of N , this may pose a serious
problem because this has O(N3) computational complexity.
Even if this is tractable, we may prefer a suboptimal, but faster
method. In this section, we provide a fast implementation
based on an idea related to the Subset of Regressors method
[26], [20].

Instead of searching for the optimal solution (10), we use a
sparse approximation and randomly pick a subset containing
K (K � N ) model points {x̃k : k ∈ IINK}. Only points
in this subset are allowed to have nonzero coefficients in the
expansion of the solution, as in [26], [20]. Our experiments
showed that simply selecting an arbitrary subset of the training
inputs at random does not perform any worse than more
sophisticated methods. Therefore, we seek a solution of the
form:

v(x) =

K∑
k=1

Γ(x, x̃k)ck, (12)

with the coefficients C̃ = (c1, · · · , cK) ∈ IRD×K determined
by a linear system

C̃(UTd(1TP)U + λσ2Γ̃) = YPU−Xd(1TP)U, (13)

where Γ̃ is the Gram matrix Γ̃ ∈ IRK×K , where Γ̃ij =

exp{−‖x̃i−x̃j‖
2

2β2 }, and U ∈ IRN×K with the (i, j)-th element

Uij = exp{−‖xi−x̃j‖
2

2β2 }. By using this sparse approximation,
the time and space complexities for solving the linear system
(11) are reduced from O(N3) and O(N2) to O(K2N) and
O(KN), respectively.

E. Related Non-Rigid Registration Methods

The most relevant non-rigid point sets registration algorithm
to ours is coherent point drift (CPD) [24], as both algorithms
use the GMM formulation and Gaussian radial basis functions
to parameterize the transformations. However, our PR-GLS
has three major advantages compared to CPD. Firstly, CPD
ignores the local structure information in the point sets; it
simply uses equal membership probabilities in the mixture
model, while our PR-GLS tries to preserve local structures
by encouraging the matching of points with similar neigh-
borhood structures, e.g., shape features. Secondly, the outlier
percentage γ is fixed and set manually in CPD. This may be
problematic in many real-world problems, where the amount
of outliers is not known in advance. By contrast, our PR-GLS
treats γ as an unknown parameter and estimates it for each
EM iteration. Thirdly, CPD can not handle large rotations, e.g.,
rotations with angles larger than 60◦. We solve this problem
by choosing rotation invariant features in our formulation.

The two other most relevant non-rigid point sets registration
algorithms to ours are RPM-LNS [36] and RPM-L2E [18].
More specifically, they also use local structure information.
RPM-LNS formulates point matching as a graph matching
problem. RPM-L2E establishes point correspondences by first
constructing a large putative set of correspondence and then
uses a robust L2E estimator to get rid of the outliers. Both
of the two algorithms use shape context to initialize the cor-
respondences. One major drawback of RPM-LNS and RPM-
L2E is that they find the correspondence and the transforma-
tion separately, while our method estimates these two variables
jointly using the GMM formulation. Moreover, RPM-LNS is
not applicable to the 3D case.

In summary, our main contribution is that we propose an
efficient framework for preserving both global and local struc-
tures during matching. Compared to other related methods, the
efficient use of global and local information in our PR-GLS
can lead to big improvements under various degenerations (see
Fig. 3).

F. Implementation Details

The performance of point matching algorithms typically
depends on the coordinate system in which the points are
expressed. We use data normalization to control this. More
specifically, we perform a linear scaling of the coordinates, so
that the points in both of the two sets both have zero mean
and unit variance.

To assign the membership probability πmn, we need to
establish initial correspondences which is usually time con-
suming. Fortunately, the deformation of the model shape is
gradually reduced during the EM iterations and as such, the
correspondences between the two shapes will not change too
fast. Therefore, to speed-up our algorithm, we update πmn in
every 10 iterations rather than in each iteration.

Parameter settings. There are three main parameters in
our PR-GLS algorithm: γ, β and λ. Parameter γ reflects
our assumption on the amount of outliers in the point sets.
Parameters β and λ reflect the amount of the smoothness
constraint, where β determines the width of the range of
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the interaction between samples and λ controls the trade-
off between the closeness to the data and the smoothness
of the solution. In general, we found that our method was
robust to parameter changes. Parameter τ is used to initialize
the membership probabilities, which we will discuss in the
experiments. Moreover, the uniform distribution parameter a
is set to be the volume of the bounding box of the data.

Analysis of convergence. The objective function (3) is not
convex, so it is unlikely that any algorithm can find its global
minimum. However, a stable local minimum is often enough
for many practical applications. To this end, our strategy is to
initialize the variance σ2 with a large initial value and then
use the EM algorithm. If the value of σ2 is large enough, the
objective function becomes convex in a large region which
can filter out a lot of unstable shallow local minima. Hence
we are likely to find a good minimum for large variance. As
σ2 decreases, the objective function tends to change smoothly,
which makes it likely that using the old minimum as the initial
value could be helpful to converge to a new good minimum.
Therefore, as the iterations continue, we have a good chance
of reaching a stable local minimum. This is conceptually
similar to deterministic annealing [8], which uses the solution
of an easy problem to recursively give initial conditions to
increasingly harder problems.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of our algorithm, we
conducted three types of experiments: i) non-rigid point set
registration for 2D shapes; ii) non-rigid point set registration
for 3D shapes; iii) sparse feature correspondence on real
images. The experiments were performed on a laptop with 2.5
GHz Intel R© CoreTM2 Duo CPU, 8 GB memory and Matlab
Code.

A. Results on 2D Non-Rigid Shape Matching

We tested our PR-GLS algorithm on the same synthesized
data as in [8] and [36]. The data consists of two models
with different shapes, where the first model consists of 96
points representing a fish and the second model consists
of 108 points, representing a Chinese character. For each
model, there are five sets of data designed to measure the
robustness of registration algorithms with respect to different
degrees of deformation, noise, outliers, rotation and occlusion.
In the deformation test, the deformation is generated by
using Gaussian radial basis functions with coefficients sampled
from a Gaussian distribution with zero mean and a standard
deviation ranging from 0.02 to 0.08. In the noise test, Gaussian
noise is added with standard deviation ranging from 0 to
0.05. In the outlier test, random outliers are added with the
outlier to original data ratio ranging from 0 to 2. In the
rotation test, six rotation angles are used: 0, 30, 60, 90, 120,
and 180. In the occlusion test, some parts of the data are
removed with the removed data to original data ratio ranging
from 0 to 0.5. In each test, one of the above distortions is
applied to the model set to create an observed data set, and
100 samples are generated for each degradation level. We
use shape contexts as the feature descriptor to establish the

initial correspondences. It is easy to make the shape context
feature descriptors translation and scale invariant and in some
applications, rotation invariance is also required. We use the
rotation invariant shape context as in [36].

Generally, the parameter τ in Eq. (4) reflects the accuracy of
the initial correspondences, which to some extent depends on
the degree of the distortion. In these experiments we determine
τ adaptively, based on the data. To this end, we first define a
registration error ε∗, which is independent of the ground truth:

ε∗ =

(
1

|S|
∑

(n,m)∈S

‖T (xn)− ym‖2
)1/2

, (14)

where S consists of the min(N,M) matches with the largest
posterior matching probabilities, i.e., pmn. For each set of
data, we randomly choose 5 of the 100 samples and compute
their average registration error with τ = 0.1, 0.3, 0.5, 0.7 and
0.9. Afterwards, we set τ to be the value which achieves
the smallest registration error ε∗. Typically, τ ≈ 0.9 works
well for small distortions and 0.3 for large distortions. For
the parameters γ, β and λ, we set them to 0.1, 2 and 3,
respectively, throughout the experiments.

The registration progress on the fish shape is illustrated
schematically in Fig. 1. The columns show the iterative
progress, and each row provides a different type of distortion.
The goal is to align the model point set (blue pluses) onto
the observed data point set (red circles). From the results,
we see that our RPM-GLS registration is robust and accu-
rate, and it typically converges in about 30 iterations. More
qualitative results of our method on the two shape models
are presented in Fig. 2. We organize the results in every
two rows: the upper row presents the data, while the lower
row shows the registration result. For the fish model, the
shape is relatively simple and discriminative and as such, both
the global and the local structures are preserved well, even
under large degradations. Our method in this case produces
almost perfect alignments, as shown in the left of Fig. 2. For
the Chinese character model, the points are spread out on
the shape and the local structure is not preserved as well
under large degradations. The matching performance then
degrades gradually, but it remains acceptable, even for large
degradations. Let us consider the rotation test in (a4, b3) of
Fig. 2. It is interesting that our method can handle the fold-
back contained in the data shape, which is a desirable property
in real-world applications. Moreover, in some extreme cases,
such as the deformation test in (a1, b3), as well as the outlier
test in (a3, b1), it is hard to establish visual correspondences
even by human beings, however, our method can still achieve
accurate alignments. The average runtime of our method on
2D shape matching with about 100 points is about 0.4 seconds.

To provide a quantitative comparison, we report the results
of six state-of-the-art algorithms, such as shape context (SC)
[2], TPS-RPM [8], RPM-LNS [36], GMMREG [13], CPD
[24], and RPM-L2E [18] which were implemented using
publicly available codes. The registration error of a pair of
shapes is quantified as the average Euclidean distance between
a point in the warped model shape and the ground truth
corresponding point in the observed data shape (note that it
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a)

b)

c)

d)

e)

Initialization Iteration 5 Iteration 10 Iteration 20 Iteration 30 Convergence

Fig. 1. Schematic illustration of our method for non-rigid point set registration. The goal is to align the model point set (blue pluses) onto the observed
data point set (red circles). The columns show the iterative alignment progress. From top to bottom: results on data degraded by deformation, noise, outliers,
rotation and occlusion, respectively. Our RPM-GLS registration is robust and accurate in all experiments.

is different from ε∗ defined in Eq. (14)). Then the registration
performance of each algorithm is compared by the mean
and standard deviation of the registration error of all the
100 samples for each distortion level. The statistical results,
error means, and standard deviations for each setting are
summarized in Fig. 3.

In the deformation test results, seven algorithms achieve
similar performance in both the fish and the Chinese character
datasets at low deformation levels. But our PR-GLS outper-
forms them, especially for large degrees of deformation. In the
noise test results, we observe that all algorithms are affected
by this type of distortion. Still, our PR-GLS achieves the best
registration performance. In the outlier test results, GMMREG
is not robust to outliers. RPM-L2E is easily confused and
starts to fail once the outlier level becomes relatively high.
This is due to that it solves the correspondence and the trans-
formation problems separately. When the outlier level becomes
too high, it cannot establish good correspondences in the first
step and hence, the final solution will be badly degraded. In
contrast, our PR-GLS shows much more robustness, regardless
of the outlier level. Note that the original CPD is not robust
to changes in the outlier ratios, as it involves a fixed outlier
ratio parameter, i.e., parameter γ in Eq. (2). To make a fair

comparison, we set it adaptively similar to the setting of
parameter τ in our PR-GLS. In the rotation test, TPS-RPM,
GMMREG and CPD degenerate rapidly when the rotation
angle is larger than 60◦, while RPM-L2E and our PR-GLS are
not affected, because they are using the rotation invariant shape
context. In the occlusion test, the registration error of TPS-
RPM is the largest, and our PR-GLS again has the best results
in most cases once again. We have also tested the fast version
of PR-GLS on this dataset and achieved similar performance,
as shown in the last column of each test in Fig. 3.

In our PR-GLS, we assign the membership probability πmn
based on shape context feature, so that the local structure
information can be used to achieve better performance. To
demonstrate the benefits for doing this, we perform experi-
ments on the fish and Chinese character datasets with different
degrees of deformations. The results are given in Tables I
and II, where CPD assumes equal GMM components (πmn =
1/N ), PR-GLS assigns πmn based on local shape features, and
GT assigns πmn by using the ground truth correspondences.
Clearly, a good initialization of πmn can improve registration
performance, especially when the data is badly degraded.

In conclusion, our PR-GLS is effective for various non-rigid
point set registration problems, regardless of large deforma-
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a1)

a2)

a3)

a4)

a5)

a6)

a7)

a8)

a9)

a10)

b1) b2) b3) b1) b2) b3)

Fig. 2. Point set registration results of our method on the fish (left) and Chinese character (right) shapes [8], [36], with deformation, noise, outliers, rotation
and occlusion presented in every two rows. The goal is to align the model point set (blue pluses) onto the observed data point set (red circles). For each
group, the upper figure is the model and data point sets, and the lower figure is the registration result. From left to right, increasing degree of degradation.
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Fig. 3. Comparison of PR-GLS and its fast version (PR-GLS-F) with SC [2], TPS-RPM [8], RPM-LNS [36], GMMREG [13], CPD [24] and RPM-L2E
[18] on the fish (top) and Chinese character (bottom) [8], [36]. The error bars indicate the registration error means and standard deviations over 100 trials.
Note that the variance bar can reach the negative y-axis, where large variance indicates that a method sometimes works well and sometimes totally fails.

TABLE I
AVERAGE REGISTRATION ERROR ON THE FISH DATASETS WITH DIFFERENT

DEGREES OF DEFORMATIONS (DOD) OVER 100 TRIALS. THE LAST ROW
(GT) USES THE GROUND TRUTH CORRESPONDENCES TO INITIALIZE πij .

DoD 0.02 0.035 0.05 0.065 0.08

CPD 2.6×10−5 1.3×10−4 1.5×10−3 8.1×10−3 1.6×10−2

PR-GLS 2.5×10−5 7.3×10−5 3.6×10−4 1.5×10−3 4.0×10−3

GT 2.5×10−5 7.3×10−5 2.1×10−4 5.1×10−4 1.0×10−3

TABLE II
AVERAGE REGISTRATION ERROR ON THE CHINESE CHARACTER DATASETS
WITH DIFFERENT DEGREES OF DEFORMATIONS (DOD) OVER 100 TRIALS.

THE LAST ROW (GT) USES THE GROUND TRUTH TO INITIALIZE πij .

DoD 0.02 0.035 0.05 0.065 0.08

RPM-L2E 4.3×10−4 1.9×10−3 5.9×10−3 1.5×10−2 3.8×10−2

PR-GLS 4.3×10−4 1.4×10−3 3.6×10−3 7.0×10−3 1.8×10−2

GT 4.3×10−4 1.4×10−3 3.5×10−3 5.9×10−3 9.1×10−3

tion, noise, outliers, rotation or occlusion.

B. Results on 3D Non-Rigid Shape Matching

We next test our PR-GLS algorithm for 3D shape matching.
We adopt the FPFH [28] to determine the initial corre-
spondence. For the dataset, we use two pairs of point sets,
representing a wolf in different poses from a surface corre-
spondence benchmark3 [14], as shown in the left two columns
of Fig. 4. The ground truth correspondences are supplied
by the dataset. Some other challenging benchmark datasets
with known ground truth correspondences have also been
developed [5], [16]. To assign the membership probability
πmn, parameter τ can be determined adaptively according
to Eq. (14); here, we fix it to 0.9 for efficiency. Moreover,
3D datasets typically contain thousands of points (e.g., about
5, 000 in the wolf shape), which may pose a serious problem

3Available at http://www.cs.princeton.edu/∼vk/projects/CorrsBlended/doc
data.php.

due to heavy computational or memory requirements; here, we
use the fast version of our method with K = 50 in Eq. (12).

Fig. 4 presents the registration results of PR-GLS. In the left
two columns, the data contains large rotations and slight pose
changes, and our method gives almost perfect alignments. In
the middle two and right two columns, we also test our method
on occlusion and outliers. In each group, the first set contains
a degradation on only one set of points, while the second
set contains degradations on both the two point sets. The
last column demonstrates a challenging example, where we
biased the outliers to the different sides of point sets, and the
outliers were generated randomly from a normal distribution
rather than a uniform distribution. The results demonstrate that
our method is quite robust and is not affected by all these
degradations. The average runtime of our method with the
fast implementation on 3D shape matching with about 5, 000
points is about 1 minute. Note that in this experiment the FPFH
is quite efficient and requires only 1.5 seconds approximately
to establish the initial correspondences.

A quantitative comparison of our method with CPD and
RPM-L2E is reported in Table III. In addition, we also com-
pare with a recent method using local structure information
based on Tensor Fields (TF) [34]. In the case of CPD, we
rotate the data, so that the two point sets have roughly similar
orientations, since CPD is not robust to large rotations. As
shown in Table III, our PR-GLS consistently outperforms the
other three algorithms in every case. In conclusion, PR-GLS
is effective for non-rigid registration, in both the 2D and the
3D cases.

C. Results on Image Feature Correspondence

In this section, we test our PR-GLS on real image data,
focusing on establishing visual correspondences between two
images. Here the images contain some deformable objects
and consequently, the underlying relationships between the
images are non-rigid. We use SIFT [17] for feature detection
and description. The goal is to find correspondences/matches
between two sets of sparse feature points {xn : n ∈ IINN}
and {ym : m ∈ IINM}, with corresponding feature descriptors.
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Fig. 4. Point set registration results of our method on the 3D wolf shape [14], with deformation, occlusion and outliers presented in every two columns. The
goal is to align the model point set (blue dots) onto the observed data point set (red circles). For each group of experiments, the upper figure is the model
and data point sets, and the lower figure is the registration result.

TABLE III
COMPARISON OF THE REGISTRATION ERRORS OF PR-GLS WITH RESPECT

TO CPD [24], RPM-L2E [18] AND TF [34] ON THE 3D wolf SHAPE IN
FIG. 4. FROM LEFT TO RIGHT: DEFORMATION (DEF1, DEF2), OCCLUSION

(OCC1, OCC2), AND OUTLIER (OUT1, OUT2).

Def1 Def2 Occ1 Occ2 Out1 Out2

CPD 0.80 0.82 1.05 0.72 3.58 3.37
RPM-L2E 1.03 1.18 1.13 0.96 1.22 1.35
TF 1.12 1.36 2.53 3.13 3.87 5.85
PR-GLS 0.50 0.71 0.58 0.45 0.74 0.92
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Figure 6. Results.

9

Fig. 5. Results of image feature correspondence on image pairs of deformable
objects. From left to right, increasing degree of deformation. The lines indicate
matching results (blue = correct matches, red = false matches).

To assign the membership probability πmn, we determine the
initial correspondences by searching the nearest neighbors and
fix parameter τ to 0.9. Note that since the feature descriptor
here is computed based on an image patch rather than the
neighboring points, the value of πmn does not need to be
recalculated in every iteration.

Fig. 5 contains a T-shirt with different amount of spatial
warps, where we aim to establish SIFT matches in each image
pair. We consider (xn, ym) to be a correspondence/match if
its posterior probability pmn is larger than 0.5. Performance
is characterized by the number of correct matches and the
matching score (i.e., the ratio between the number of correct

matches and the number of total matches). Since the image
relations are non-rigid and not known in advance, it is im-
possible to establish accurate ground truth. We evaluate the
matching results by manually checking. Though the judgment
of correct match or false match seems arbitrary, we make the
benchmark to ensure objectivity.

In feature correspondence, the image typically contains
hundreds or thousands of feature points, thus, for efficiency,
we use the fast version of our method with K = 15 in Eq. (12).
The results of our method are presented in Fig. 5. In the
left columns, where the deformations are relatively small, our
method obtains a lot of correspondences, whereas in the right
columns, the deformations are large and the number of correct
matches decreases. Still, even in these cases, the matching
scores remain quite high, e.g., around 95% or higher. For com-
parison, we also report three other matching methods as shown
in Fig. 6. The SIFT method can be considered as a baseline.
To eliminate as many outliers as possible, while preserving
the inliers, SIFT compares the distance ratio between the
nearest and the second nearest neighbors against a predefined
threshold to decide whether they are considered a match or not.
From these results, we see that the matching score of SIFT
is not good, especially in the case of large deformations. This
suggests that using local image features alone is insufficient.
CPD is not efficient for such problems, since it ignores the
local image features’ information. However, RPM-L2E and
PR-GLS consider both global structures and local features and
hence, they are able to find more correct matches and achieve
high matching scores. The average runtime of our method with
the fast implementation on the six image pairs is about 0.5
seconds per pair.

V. CONCLUSION

In this paper, we presented a new approach for non-
rigid registration. A key characteristic of our approach is
the preservation of both global and local structures during
matching. We also provide an efficient implementation of our
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1

Fig. 6. Comparison of SIFT [17], CPD [24], RPM-L2E [18] and PR-GLS
for feature correspondence. Left: number of correct matches; right: matching
score. The horizontal axis corresponds to the six image pair in Fig. 5 (from
left to right, top to bottom).

method for handling large datasets, which significantly reduces
the computational complexity without reducing the quality of
the matching significantly. Experiments on public datasets for
2D and 3D non-rigid point registration and on real images
for sparse image feature correspondence demonstrate that our
approach yields superior results to those of the state-of-the-
art methods, when there are significant deformations, noise,
outliers, rotations and/or occlusions in the data.

APPENDIX A. VECTOR-VALUED REPRODUCING KERNEL
HILBERT SPACE

We review the basic theory of vector-valued reproducing
kernel Hilbert space, and for further details and references we
refer to [23], [7].

Let X be a set, for example, X ⊆ IRP , Y a real Hilbert
space with inner product (norm) 〈·, ·〉, (‖ · ‖), for example,
Y ⊆ IRD, and H a Hilbert space with inner product (norm)
〈·, ·〉H, (‖ · ‖H), where P = D = 2 or 3 for point matching
problem. Note that a norm can be induced by an inner product,
for example, ∀f ∈ H, ‖f‖H =

√
〈f , f〉H. And a Hilbert space

is a real or complex inner product space that is also a complete
metric space with respect to the distance function induced by
the inner product. Thus a vector-valued RKHS can be defined
as follows.

Definition 1. A Hilbert space H is an RKHS if the evaluation
maps evx : H → Y (i.e., evx(f) = f(x)) are bounded, i.e., if
∀x ∈ X there exists a positive constant Cx such that

‖evx(f)‖ = ‖f(x)‖ ≤ Cx‖f‖H, ∀f ∈ H. (15)

A reproducing kernel Γ : X × X → B(Y) is then defined
as: Γ(x,x′) := evxev

∗
x′ , where B(Y) is the Banach space of

bounded linear operators (i.e., Γ(x,x′), ∀x,x′ ∈ X ) on Y , for
example, B(Y) ⊆ IRD×D, and ev∗x is the adjoint of evx. We
have the following two properties about the RKHS and kernel.

Remark 1. The kernel Γ reproduces the value of a function
f ∈ H at a point x ∈ X . Indeed, ∀x ∈ X and y ∈ Y , we
have ev∗xy = Γ(·,x)y, so that 〈f(x),y〉 = 〈f ,Γ(·,x)y〉H.

Remark 2. An RKHS defines a corresponding reproducing
kernel. Conversely, a reproducing kernel defines a unique
RKHS.

More specifically, for any N ∈ IIN, {xn}Nn=1 ⊆ X , and
a reproducing kernel Γ, a unique RKHS can be defined by

considering the completion of the space

HN =

{
N∑
n=1

Γ(·,xn)cn : cn ∈ Y

}
, (16)

with respect to the norm induced by the inner product

〈f ,g〉H =

N∑
i,j=1

〈Γ(xj ,xi)ci,dj〉 ∀f ,g ∈ HN , (17)

where f =
∑N
i=1 Γ(·,xi)ci and g =

∑N
j=1 Γ(·,xj)dj .

APPENDIX B. PROOF OF THEOREM 1
For any given reproducing kernel Γ, we can define a unique

RKHS HN as in Eq. (16) in Appendix A. Let H⊥N be a
subspace of H,

H⊥N = {v ∈ H : v(xn) = 0, n ∈ IINN} . (18)

From the reproducing property, i.e. Remark 1, ∀v ∈ H⊥N

〈v,
N∑
n=1

Γ(·,xn)cn〉H =
N∑
n=1

〈v(xi), cn〉 = 0. (19)

Thus H⊥N is the orthogonal complement of HN ; then every
v ∈ H can be uniquely decomposed into components along
and perpendicular to HN : v = vN + v⊥N , where vN ∈ HN
and v⊥N ∈ H⊥N . Since by orthogonality ‖vN + v⊥N‖2H =
‖vN‖2H + ‖v⊥N‖2H and by the reproducing property v(xn) =
vN (xn), the regularized risk functional then satisfies

E(v) = 1

2σ2

M∑
m=1

N∑
n=1

pmn‖ym − xn − v(xn)‖2 +
λ

2
‖vN + v⊥N‖2H

≥ 1

2σ2

M∑
m=1

N∑
n=1

pmn‖ym − xn − vN (xn)‖2 +
λ

2
‖vN‖2H.

(20)
Therefore, the optimal solution of the regularized risk

functional (9) comes from the space HN , and hence has the
form (10). To solve the coefficients, we consider the definition
of the smoothness functional φ(v) and the inner product (17)

‖v‖2H = 〈v,v〉H =

〈
N∑
i=1

Γ(·,xi)ci,
N∑
j=1

Γ(·,xj)cj

〉
H

=

N∑
i,j=1

〈Γ(xj ,xi)ci, cj〉 = CΓCT, (21)

where C = (c1, · · · , cN ) ∈ IRD×N is the coefficient set. The
regularized risk functional then can be conveniently expressed
in the following matrix form:

E(C) =
1

2σ2

M∑
m=1

‖(YN
m−X−CΓ)d(Pm)1/2‖2F +

λ

2
CΓCT,

(22)
where Γ ∈ IRN×N is the so-called Gram matrix with the (i, j)-
th element Γij = exp{−‖xi−xj‖

2

2β2 }, YN
m = (ym, · · · ,ym) ∈

IRD×N , Pm is the m-th row of P, ‖·‖F denotes the Frobenius
norm, and d(·) is the diagonal matrix. Taking the derivative
of the last equation with respect to C and setting it to zero,
we obtain the linear system in Eq. (11). Thus the coefficient
set {cn : n ∈ IINN} of the optimal solution v is determined
by the linear system (11).
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