
Learning a Dictionary of Deformable Patches using GPUs

Xingyao Ye
Dept of Statistics, UCLA

yexy@stat.ucla.edu

Alan Yuille
Dept of Statistics, Computer Science, and Psychology, UCLA

yuille@stat.ucla.edu

Abstract

We propose a simple method for learning a dictionary
of deformable patches for simultaneous shape recognition
and reconstruction. Our approach relies on two key innova-
tions – introducing a pre-defined set of transformations on
patches to enrich the search space, and designing a parallel
framework on Graphical Processors (GPUs) for matching
a large number of deformable templates to a large set of im-
ages efficiently. We illustrate our method on two handwrit-
ten digit databases – MNIST and USPS, and report state-
of-art recognition performance without using any domain-
specific knowledge on digits. We briefly show that our dic-
tionary has many desirable properties: it includes intuitive
low- and mid-level structures, it is sufficient to synthesize
digits, it gives sparse representations of digits, and con-
tains elements which are useful for discrimination. In ad-
dition, we are the first dictionary learning method to report
good results when transferring the learned dictionary be-
tween different datasets.

1. Introduction
Learning dictionaries of generative image features has

long been a topic of interest in computer vision research.
The learned dictionaries provide an intuitive and economi-
cal mid-level representation for visual processing systems.
They facilitate the information flow of the system both
bottom-up and top-down. In bottom-up recognition tasks,
the features can be used as input to discriminative models of
objects and scenes. And in top-down reconstruction tasks,
they serve as bases from which images can be generated.

However, state-of-art object recognition systems rarely
employ these dictionaries for two reasons. First, learning
these dictionaries is complex and takes a long time, and
the gain in recognition performance over simple hand-craft
features, such as HOG and shape context, is rarely good
enough to compensate for this cost. Second, many of these
systems restrict themselves to recognition only, and there-
fore do not require their features to preserve those image
details that are useful for reconstruction. We believe, how-

ever, that image dictionaries will be increasingly important
in the future. Future advanced computer vision systems will
need to work on multiple tasks simultaneously, which will
encourage them to adopt the more versatile dictionary rep-
resentation. But, to achieve this future requires us to deal
with the learning complexity issue and motivates develop-
ing rapid learning algorithms perhaps taking advantage of
recent developments in computer hardware.

In this paper, we tackle the problem of learning a dic-
tionary of image patches for simultaneous recognition and
reconstruction of object shapes. For concreteness, we work
on the MNIST and USPS handwritten digit databases. The
dictionary we learn is comprehensive – the patches are of
varying sizes, some corresponding to generic patterns such
as bars and corners, others capturing object-specific struc-
tures. Moreover, we neither provide the category labels nor
specify the size of the dictionary during training, making
the learning task harder but more realistic. As a result, we
explore a search space of image patterns much larger than
what is usually framed by interest point detectors or random
initializations.

We deal with this challenge by combining two innova-
tions. First, we define a set of common transformations of
patches, and use them to guide our search of suitable dic-
tionary elements. Instead of trying to collect and cluster all
possible patches in the training images, we construct a pre-
liminary patch set by imposing transformations on a small
random set of seed patches. We have found the resulting
patch set to be very comprehensive for our needs, capturing
almost all useful patterns for discrimination and reconstruc-
tion.

Second, we design a parallel matching framework on
Graphical Processors (GPUs) for evaluating the preliminary
patch set on training images. The basic matching operation
computes a similarity measure between a patch and a local
image area. And we use the aggregated similarity statistics
as the criteria for selecting patches into the dictionary. The
challenge is that we have to perform this operation for bil-
lions of times during training, because both the preliminary
patch set and the training image set are very large. Such
scale of computation is impossible for a single CPU work-

1

station to handle. Buying or renting thousands of distributed
machines for developing this algorithm is not cost-effective
for research labs either. Therefore, we turn to the recently-
available commercial GPU cards, which are specifically de-
signed to handle such massively parallel computations.

We demonstrate our algorithm and the effectiveness of
the learned dictionary on handwritten digits. The results is
preliminary since digits lack the rich texture of real images.
Nevertheless, images of digits possess great variability in
shapes and plenty of intra-class and inter-class ambiguities.
We report state-of-art recognition results on two extensively
studied datasets of handwritten digits without using specific
domain knowledge or any complex classifiers. In addition,
our trained features on one dataset transfer very well to the
other, which proves the generality of our approach. Last
but not least, our dictionary is relatively fast to train. And
recognition using our dictionary takes much shorter time
than competing methods thanks again to the prowess of
GPUs.

The structure of this paper is as follows. Related works
are reviewed in Section 2. The definition and use of de-
formable patch dictionary is described in Section 3. Section
4 presents the learning algorithm. In Section 5 we report
results for dictionary learning and handwritten digit recog-
nition. Finally we discuss conclusions and future work in
Section 6.

2. Related Works
There has long been interest in describing images in

terms of generative dictionaries to provide adaptive repre-
sentations for a variety of vision tasks. Examples include
modeling receptive fields [17], texture [7], appearances [3],
and object categories [11]. In this paper, we are particularly
interested in the use of dictionaries for object recognition
and reconstruction.

Various types of generative descriptors have been de-
signed and tested over recent years. Ullman and collabo-
rators have advocated the use of intensity patches in seg-
mentation [4] as well as object recognition [8]. But their
patches were not deformable. Wu et al [19] introduced local
deformation in their active basis model, but the bases were
pre-specified to be Gabor functions. Zhu et al [20] and Fi-
dler et al [10] proposed methods to learn hierarchical object
models based on edgelets. However, their recognition per-
formance were inferior on most object categories including
handwritten digits to purely discriminative systems.

Recent progress in deep learning by Hinton et al [12]
has led to a series of works for learning unsupervised gen-
erative dictionaries [18, 15, 13] using hierarchical convolu-
tional networks. However, as discussed in [5, 6], a lot of
parameters needs to be carefully selected for the network
to perform well. But neither the meaning of the network
units nor their relationships to the parameters were intuitive

enough to guide the tuning. By contrast, our approach opts
for a very intuitive dictionary with a small set of easy-to-
understand parameters.

Another notable approach to dictionary learning is re-
ported by Mairal et al [16], who trained supervised dictio-
naries for objects and texture classes. But their approach
is not scalable since dictionaries of each class are trained
separately, requiring additional training images and labels
whenever a new class is added. On the contrary, our unsu-
pervisedly trained dictionary enables features to be shared
among different categories.

Very few previous works have addressed the issue of
transferability of the learned dictionaries between different
datasets. Raina et al reported modest performance in classi-
fying English characters using features learned from digits
[?]. We are the first to show good performance in dictionary
transfer on handwritten digit recognition.

3. The D-Patch Representation
In this section, we propose a D-Patch (deformable

patches) representation for the problem of simultaneous ob-
ject recognition and reconstruction. We describe three key
aspects of this representation: 1) the definition of the D-
Patch dictionary (see Section 3.1), 2) how images are repre-
sented in terms of the dictionary, and 3) how the dictionary
facilitates recognition and reconstruction (see Section 3.2).

3.1. The D­Patch Dictionary

We choose to use the most basic form of image descrip-
tor - patches in raw intensity values - as features in our gen-
erative dictionary. These are simple, easy to interpret, and
are suitable both for discrimination and generative (e.g., re-
construction) tasks. We notes that features like HOG, SIFT,
shape context are based on histograms, and so are not well
suited for reconstruction (despite their successes for dis-
crimination). Filterbanks of Gabor or wavelet functions are
alternative descriptors, but seem less intuitive than intensity
patches and have restricted transformations.

We design our patches to be flexible. They can be rect-
angles of any sizes larger than 5× 5. They can come in any
orientations, covering non-rectangular areas. More specif-
ically, we describe a D-Patch P in terms of a seed patch
S (always in upright orientation) and its transformation pa-
rameters T .

P = (S, T), T = (sx, sy, θ, x, y) (1)

The transformations are controlled by five parameters
T = (sx, sy, θ, x, y). (sx, sy) are the width and height of
the patch in its upright form. θ is the rotation angle. And
(x, y) specifies the image position of the rotated patch.

Our dictionary is designed to cover a wide spectrum of
local image patterns from smaller, generic ones (edgelets,

Figure 1. Illustration of the D-Patch representation. The dictionary of deformable patches are generated from a set of seeds plus transfor-
mations. Patches are perturbed and matched to local image regions.

Figure 2. Two images from the MNIST dataset (top left panel) together with their reconstructed versions using our learned dictionary
(adjacent panel) and a complete list of fired patches. The patches are sorted in descending order of their matching score.

strokes, corners) to larger, object-specific ones (T-junctions,
X-junctions, rings). See Figure 1 for an illustration.

3.2. The Image Model

To obtain a D-Patch representation of an image, we first
match the whole dictionary to the image. The measure of
similarity between a patch and its corresponding image re-
gion is the normalized correlation between two vectors:

NC(X,Y) =
∑
x∈X

∑
y∈Y

(x− x̄)(y − ȳ)

σxσy
∈ [−1, 1] (2)

In order to make the matching robust to local varia-
tions, we allow the patch to perturb locally in terms of its
transformation parameters. The best normalized correlation
value among all perturbed versions is adopted as our actual
matching score.

P̃ = (S, T +∆T) ∆T ≤ |(2, 2, 15◦, 2, 2)| (3)

pNC(I, P) = max(I, P̃) (4)

We represent an image by the set of patches that fire on
the image. A patch Pj fires on an image Ii if its matching
score after perturbation is higher than a threshold. We use
τ = 0.8 in this paper.

Fi,j =

{
1 if pNC(Ii, Pj) > τ
0 otherwise (5)

The firing states of all patches in the dictionary on an
image forms a binary vector, which we use as features
for training recognition models and classifying test images.
Figure 2 shows the fired patches among our learned dictio-
nary for two digit images.

The reconstruction of an image from its dictionary is car-
ried out on a per-pixel basis. We synthesize each pixel in

the image from the corresponding pixel of the best match-
ing patch in the dictionary that covers this pixel. This non-
linear image model essentially generate each pixel from the
patch in the dictionary that provides the closest match to its
neighboring image area.

I(x) = P ∗(x) P ∗(x) = argmax
Pj :x∈Pj∧Fj=1

pNC(I, Pj)

(6)

4. Learning the D-Patch Dictionary
In this section, we present a method to learn a D-Patch

dictionary given a set of training images. The images con-
tain objects from different classes but we don’t have the la-
bel information. The size of the dictionary is not specified
either. Our learning algorithm is supposed to discover a rea-
sonable set of image patches that can fulfill both the recog-
nition and the reconstruction tasks outlined in the previous
section.

The algorithm proceeds in four stages, which are de-
scribed in the four following subsections. First, a set of
seed patches are obtained from random sampling and clus-
tering (Section 4.1. Second, a pre-defined set of transfor-
mations are applied to all seeds, resulting in a very large set
of preliminary patches (Section 4.2). Third, we match these
patches to all training images in a parallel framework devel-
oped on GPUs (Section 4.3). Finally, the dictionary is con-
structed through a greedy feature selection process (Section
4.4).

4.1. Obtaining Seed Patches

To obtain a set of seeds, we first extract rectangular
patches from 100 randomly selected training images. In this
paper, the images are of size 28 × 28. We extract patches
at three different sizes, 28 × 28, 14 × 14 and 7 × 7, at all
possible pixel locations. This dense multi-scale sampling
strategy ensures the completeness of the initial seed set.

Then we carry out a few edge-based shape cleaning to
the sampled patches. First we use the Canny edge detector
to track edges in each patch. Patches whose longest edge
chain is shorter than the width or height of the patch, and
whose shortest edge chain is less than 3 pixels long, are
discarded. Second, we crop out empty rows and columns on
the patch boundaries, provided that the entire row or column
is at least 2 pixels away from the nearest edge pixel. After
this stage, about 10,000 patches of various sizes remain.

Finally, a clustering algorithm is employed to reduce the
redundancy of shape patterns. We used a density-based
clustering method described in [9]. The algorithm scans
through the list of patches and assigns a patch to an exist-
ing cluster if the similarity between the patch and the center
of the cluster is above a threshold. Here we used the same

similarity measure and threshold presented in Eqn. 5. If no
good match can be found, a new cluster centered around the
current patch is created. Given the threshold, the number of
clusters are determined automatically. This clustering algo-
rithm has a complexity of O(NM) where N and M are the
number of patches before and after clustering.

The resulting cluster centers form our set of seed patches.
The outcome may vary depending on different orderings of
the patches being fed to the clustering algorithm. But in
our experiments this has negligible effect on the final dic-
tionary’s performance in recognition and reconstruction.

4.2. Transformations

We intentionally limit our seed candidate to be sampled
from a relatively small set of training images, because the
cost of dense-sampling and subsequent clustering is high.
Therefore, the next stage aims to enrich this compact set of
seeds so that we can have a set of patches flexible enough
to cover most shape variations in the training images.

We have found that applying a set of transformations on
each seed suits this purpose well. This is because a lot of the
shape variations can be attributed to parameterizable trans-
formations – scaling, rotation, and translation. After we fac-
tor them out, the remaining variations are relatively small
and seem to have been captured by our seed set.

We list the possible transformations in Table 1. The
transformation process, from scaling to rotation, then trans-
lation, is illustrated in Figure 3. In all figures of this paper,
image areas not covered by a patch is marked in grey.

For each seed, there are roughly 10,000 transformation
settings in total. Therefore we end up with around 10 mil-
lion preliminary patches to select our final dictionary from.
In order to evaluate them, we have to match them to all the
training images, which is 60,000 for MNIST. A problem of
this scale is out of the reach of normal computer hardware.
Fortunately, an emerging generation of massively parallel
Graphical Processors (GPUs) makes such computation pos-
sible.

4.3. Parallel Matching using GPUs

The matching operation between a patch and an image,
as described by Eqn 5, needs to be performed billions of
times during the training of D-Patch dictionary. However, a
lot of these operations is parallelizable on GPUs. We make
use of two key observations on this problem. First, the re-
sult of all these matching operations are independent of each
other, meaning the matching can be computed by separate
hardware units. Second, many operations, if carried out at
the same time, access the same piece of data. In particu-
lar, accesses to image pixels by neighboring matching op-
erations exhibit a coalesced pattern, which is ideal for the
GPU architecture.

Table 1. List of transformation settings for a seed patch with original size (sx0 , s
y
0) onto an image of size (sxI , s

y
I).

Type Parameter Min Value Max Value Stride

Scale sx max(5, 0.5sx0) min(sxI , 2s
x
0) 2 pixels

sy max(5, 0.5sy0) min(syI , 2s
y
0) 2 pixels

Orientation θ −45◦ 45◦ 15◦

Position x 1 sxI − sx0 + 1 1 pixel
y 1 syI − sy0 + 1 1 pixel

Figure 3. Applying transformations to a seed patch.

To match all transformed copies of a seed to the en-
tire set of training images, we first stitch together all train-
ing images as one giant one. Then scaling and rotation is
performed on the seed. Finally, we match each of these
semi-transformed patches to all pixels of the stitched image
simultaneously on parallel cores. Under this strategy, all
matching operations between the same scaled and rotated
patch to every possible image regions in the training set are
parallelized. Tens of millions of matching operations can
be performed at the same time.

On the memory access front, all the parallelized oper-
ations read from the same semi-transformed patch, which
is a small matrix and can be stored in constant memory
for fastest access. Matching operations centered on neigh-
boring pixels always read neighboring image values and
write back to neighboring output addresses, which enable
coalesced global memory access almost everywhere. Pre-
loading data into shared memory may bring further speedup
but we have not adopted this strategy yet.

Using a single 240-core Tesla C1060 GPU card, we are
able to reduce the time for computing normalized correla-
tions between 10 million preliminary patches and 60,000
training images to about 4 hours. The same parallel match-
ing strategy is used for classifying a new image using a
learned dictionary of about 10,000 patches. And we are
able to process more than 100 testing images in parallel in
less than a second, achieving real-time performance.

4.4. Feature Selection

After matching all preliminary bases to the images and
obtaining their firing statistics, we then select the final D-
Patch dictionary elements in a greedy manner. The selection

is mainly based on the firing frequency. First, non-maximal
suppression is applied to firings between the same patch and
multiple neighboring positions of the same image to remove
duplicate counts. Then, we sort the preliminary patches
from the most to the least frequent, and select them in this
order. Every time a patch is selected, we suppress simi-
lar versions of it by eliminating patches generated from the
same seed under similar transformation settings (the sup-
pression range is twice the perturbation range described by
Eqn. 3). The selection stops when the firing frequency falls
below a threshold. We set the threshold to be 1% in this
paper.

We list in Table 2 the number of patches we are deal-
ing with at each stage of the learning process. Though the
transformation stage significantly increased the number of
patches we consider, only about 0.1% of them were picked
in the final selection stage. From another perspective, on av-
erage 10 transformation settings of each seed were accepted
as useful patches.

5. Experimental Results

We tested our methods on two widely-used handwritten
digits datasets. The MNIST dataset contains 60,000 training
images and 10,000 testing images [1]. The USPS dataset
contains 7,291 training images and 2,007 testing images [2].
We upsampled the original 16×16 USPS images to 20×20
and centered them in a 28×28 bounding box, following the
preprocessing steps of MNIST.

Table 2. Statistics of the learned dictionaries.
Dataset Seeds Prelim Patches Training Images Learned Patches Firing Freq. (Train) Firing Freq. (Test)

MNIST 1,140 15,427,836
1,000 10,264 521.7 (5.08%) 528.7 (5.15%)
10,000 9,714 507.9 (5.23%) 520.4 (5.36%)
60,000 9,727 505.8 (5.20%) 517.5 (5.32%)

USPS 603 9,685,896 7,291 6,343 509.1 (8.03%) 526.2 (8.30%)

5.1. The Learned Dictionary

In this subsection we present qualitative properties of the
learned dictionaries. In particular, we evaluate the quality
of the learned dictionary from four aspects - intuitiveness,
completeness, sparseness, and discriminative ability.

First, we show in Figure 4 a subset of the learned dictio-
nary. The dictionary elements are very intuitive. Our seeds
set captures a wide range of structures, from elementary
ones (edgelets, corners) and complex ones (T-junctions, X-
junctions, rings). Most seeds contain structures that can be
shared between multiple digits, while some are more digit-
specific. The D-Patch dictionary successfully captures the
frequent modes of transformations. Interestingly, different
transformations of a seed patch may correspond to different
digits. For example, a ring pattern could become part of 2,
6, 8 and 9 when appearing at different locations.

For completeness, we show a collection of synthesized
images using the learned dictionary in the left half of Fig-
ure 5. The synthesized images are obtained by the method
described at the end of Section 3.2. We observe that our dic-
tionary is capable of covering all possible shape variations,
with no details left behind, although we do not explicitly
minimize reconstructive errors in our learning algorithm.

Our learning algorithm does not impose sparsity either,
but sparseness of the firing vectors comes out naturally after
training. Table 2 shows around 5% of the learned patches
fire on average for an MNIST image. For USPS, the propor-
tion is 8%, a bit higher but still quite sparse. This sparsity
behavior can be mainly attributed to the many digit-specific
mid-level structures contained in the dictionary for 10 dif-
ferent digits.

Finally, we demonstrate the discriminative power of the
patches in Figure 6. For each D-Patch, we visualize its firing
rates on the 10 digit categories in an activation histogram,
for training and testing images respectively. We find that
some of the learned patches are very good weak classifiers.
For example, an X-junction near the center of the image is
a strong indicator for an 8, a weak indicator for a 2, and a
negative indicator for other digits. It is the presence of many
patches like this that leads to impressive digit recognition
performance, which is reported in the next subsection.

5.2. Handwritten Digits Recognition

We achieved state-of-art handwritten digit recognition
results on both highly competitive benchmark datasets. We

follow the standard machine learning approach on this 10-
way classification problem, which is to train 45 1-vs-1 clas-
sifiers and predict categories based on majority voting of
these classifiers. We used the standard SVM-Light package
[14] and employed two most basic kernels - linear and ra-
dial basis function. For linear kernels, the default parameter
set by SVM-Light is used. For RBF kernel, we use a val-
idation set of 10,000 images to choose the best values of a
pair of parameters (γ, C).

Table 3 shows that our classification error rates are bet-
ter than the best competing methods from supervised dic-
tionary learning [16], which also reported performance on
both MNIST and USPS. Our results are also better than
deep convolutional networks method when training on a
smaller set of images [15]. Our recognition performance
is very close to the individual state-of-art on either MNIST
[13] or USPS [?]. Most significantly, our approach delivers
good performance even with simple linear classifiers. This
is important because linear classifiers are very fast to train
and therefore can be applied to large datasets easily. This
merit is usually downplayed in the academia but is a must-
have quality for developing exciting vision products in the
industry.

5.3. Dictionary Transfer

Finally we test the transfer capability of our dictionar-
ies. Few prior works have addressed the issue of using fea-
tures learned on one dataset to encode another dataset, as
generality of the learned dictionary are usually considered
secondary to classification performance. However, we feel
that a useful dictionary must be general enough to transfer
its discriminative ability across datasets. We demonstrated
such ability in our learned dictionaries.

We tested two different transfer settings. One is to trans-
fer the D-Patch dictionary. For example, we use the patches
learned from MNIST to represent both the USPS training
and testing images, and train SVMs based on these trans-
ferred features. The other setting transfers the seed candi-
date set only and learns a new D-Patch dictionary on the
target dataset. For example, we use the seeds obtained from
100 MNIST images to learn patches on the USPS training
set. The new bases dictionary are used as features to train
and test SVMs on USPS. Results are summarized in Table
4.

In general, transferred dictionaries work effectively on
another dataset. Seeds appear to be a better choice to trans-

Figure 4. Examples of learned seeds and patches. The left half of the figure shows seeds learned from MNIST, as well as the most frequent
(up to 5) bases from some of the seeds. The right half shows shows seeds and patches from USPS.

Figure 5. Synthesized images using the learned and transferred D-Patch dictionaries. Each of the four grid shows 100 images of the same
dataset synthesized from a dictionary learned on the same or a different dataset. From left to right, the images come from MNIST, USPS,
MNIST, USPS, and the dictionary are learned from MNIST, USPS, USPS, MNIST.

Table 4. Recognition using dictionaries learned on another dataset.
Results are compared between transferring both seeds and patches,
transferring seeds only, and no transfer at all.

Seeds Bases Test Linear SVM RBF SVM
MNIST MNIST

USPS
3.39% 3.14%

MNIST USPS 3.03% 2.89%
USPS USPS 3.04% 2.84%
USPS USPS

MNIST
0.96% 0.87%

USPS MNIST 0.78% 0.66%
MNIST MNIST 0.70% 0.60%

fer since they encode invariant structures, while patches
can be affected by different digit writing styles in differ-
ent datasets. For instance, USPS digits are often wider
and thicker than MNIST counterparts. In addition, seeds
learned from MNIST seems to encompass richer structures
than seeds from USPS and gives better results, probably due
to a larger training set.

We also show synthesis results of transferring USPS dic-
tionary to MNIST testing set in Fig 5. This transfer direc-
tion is more difficult than the other way around. We can
observe a few less-than-perfect synthesis in the figure, but
still the majority of the structures are captured.

6. Discussions

This paper presented a method for learning deformable
dictionaries of image patches for representing shapes. Our
learning algorithm imposes a large set of transformation on
a randomly sampled set of seed patches to enrich the search
space of dictionary elements. The evaluation of this space
is made possible by using Graphical Processors and de-
signing a massively-parallel template matching framework.
We evaluated our approach quantitatively on the MNIST
and USPS databases and obtained results comparable to the
state of the art. We also demonstrated the possibility of
transferring the learned dictionaries from one dataset to the
other.

The key insight of this work is that the emergence of par-
allel computing hardware such as GPUs enable the aggrega-
tion of certain computation (deformable template matching
by normalized correlation in our case) on a unprecedented
scale. We are then able to opt for simpler techniques (inten-
sity patches as features, greedy feature selection based on
frequency, and linear classifier) without losing performance
as compared to more complex counterparts. Besides, we get
much faster speed and more intuitive intermediate represen-
tations at each step of the whole system.

In future work, we plan to extend our approach and the
emphasis on simplicity and parallel computation to more
complex shapes and images and use the dictionary to learn

Figure 6. Using learned bases as features for recognition. For two MNIST images, the activation histograms are shown for some of the
fired bases. Observe that some bases are very discriminative, e.g. U-shape for 4, X-junction for 8, etc.

Table 3. Classification error rates
Dataset Training Linear SVM RBF SVM [16] [15] [13] [?]

MNIST
1,000 2.73% 2.56% 2.62%
10,000 1.40% 1.26%
60,000 0.70% 0.60% 1.05% 0.82% 0.52%

USPS 7,291 3.04% 2.84% 3.54% 2.40%

sophisticated object models that solves multiple vision tasks
(e.g. detection and segmentation) simultaneously.

References
[1] MNIST handwritten digits database. http://yann.

lecun.com/exdb/mnist/. 5
[2] USPS handwritten digits database. http://www-stat.

stanford.edu/˜tibs/ElemStatLearn/. 5
[3] E. Bart, I. Porteous, P. Perona, and M. Welling. Unsuper-

vised learning of visual taxonomies. In CVPR, 2008. 2
[4] E. Borenstein and S. Ullman. Class specific top-down seg-

mentation. In ECCV, 2002. 2
[5] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-

level features for recognition. In CVPR, 2010. 2
[6] A. Coates, H. Lee, and A. Ng. An analysis of single-

layer networks in unsupervised feature learning. In NIPS
2010 Workshop on Deep Learning and Unsupervised Fea-
ture Learning. 2

[7] A. A. Efros and W. T. Freeman. Image quilting for texture
synthesis and transfer. In SIGGRAPH, 2001. 2

[8] B. Epshtein and S. Ullman. Hierarchical features for object
classification. In ICCV, 2005. 2

[9] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In KDD, page 226 231, 1996. 4

[10] S. Fidler and A. Leonardis. Towards scalable representation
of object categories: Learning a hierarchy of parts. In CVPR,
2007. 2

[11] B. J. Frey and N. Jojic. Transformation-invariant clustering
and dimensionality reduction using the em algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 25(1), 2003. 2

[12] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learn-
ing algorithm for deep belief nets. Neural Computation,
18(7):1527–1554, 2006. 2

[13] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun.
What is the best multi-stage architecture for object recog-
nition? In ICCV, 2009. 2, 6, 8

[14] T. Joachims. SVM-Light package. http://svmlight.

joachims.org. 6
[15] H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional

deep belief networks for scalable unsupervised learning of
hierarchical representations. In ICML, 2009. 2, 6, 8

[16] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman.
Supervised dictionary learning. In NIPS, 2008. 2, 6, 8

[17] B. A. Olshausen and D. J. Field. Emergence of simple-cell
receptive field properties by learning a sparse code for natu-
ral images. Nature, 381:607 – 609, 1996. 2

[18] M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsuper-
vised learning of invariant feature hierarchies with applica-
tions to object recognition. In CVPR, 2007. 2

[19] Y. N. Wu, Z. Si, C. Fleming, and S. Zhu. Deformable tem-
plate as active basis. In ICCV, 2007. 2

[20] L. Zhu, Y. Chen, A. Torralba, W. Freeman, and A. Yuille.
Part and appearance sharing: Recursive compositional mod-
els for multi-view multi-object detection. In CVPR, 2010.
2

