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Abstract

Machine learning (ML) has become a popular tool for mining functional neuroimaging data, and
there are now hopes of performing such analyses efficiently in real-time. Towards this goal, we
compared accuracy of six different ML algorithms applied to neuroimaging data of persons
engaged in a bivariate task, asserting their belief or disbelief of a variety of propositional
statements. We performed unsupervised dimension reduction and automated feature extraction
using independent component (IC) analysis and extracted IC time courses. Optimization of
classification hyperparameters across each classifier occurred prior to assessment. Maximum
accuracy was achieved at 92% for Random Forest, followed by 91% for AdaBoost, 89% for Naive
Bayes, 87% for a J48 decision tree, 86% for K*, and 84% for support vector machine. For real-
time decoding applications, finding a parsimonious subset of diagnostic ICs might be useful. We
used a forward search technique to sequentially add ranked ICs to the feature subspace. For the
current data set, we determined that approximately six ICs represented a meaningful basis set for
classification. We then projected these six IC spatial maps forward onto a later scanning session
within subject. We then applied the optimized ML algorithms to these new data instances, and
found that classification accuracy results were reproducible. Additionally, we compared our
classification method to our previously published general linear model results on this same data
set. The highest ranked IC spatial maps show similarity to brain regions associated with contrasts
for belief > disbelief, and disbelief < belief.

Keywords

Machine learning; Classifier; fMRI; Interpretability; Optimization; Independent component
analysis

Introduction

In the early 1950s, Shannon developed an iterated penny-matching device designed to
perform simple “brain reading” tasks (Shannon, 1953). Although this device performed only
slightly better than chance, it created a fascination with brain reading technology (Budiansky
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et al., 1994). Recent advancements in neuroimaging have provided a quantitative method for
visualizing brain activity that corresponds to mental processes (Cox and Savoy, 2003), and
certain brain reading feats have been accomplished by applying pattern classification
techniques to functional magnetic resonance imaging (fMRI) data (Norman et al., 2006).

The application of machine learning (ML) to fMRI analysis has become increasingly
popular, following its initial application to Haxby's visual object recognition data (Hanson et
al., 2004). Neural networks (Hanson et al., 2004), Naive Bayes (Pereira et al., 2009), and
support vector machine classifiers (LaConte et al., 2005) each have yielded varying levels of
predictive capability. However, fMRI data sets are extremely large, and one of the key
challenges in fMRI classification has been to mine these vast data effectively.

Although certain studies have used the entire fMRI data set for predictive purposes
(LaConte et al., 2007), most investigators perform a preliminary dimension reduction step to
reduce the number of inputs used for classification. Reducing dimensionality has a number
of benefits; specifically, computational burden is reduced and classification efficiency is
often improved, and problems with over-fitting that may lead to poor generalization are
reduced (Yamashita et al., 2008).

Determining an optimal method for dimension reduction is an active area of research.
Physiologically driven approaches for data reduction have been employed to incorporate
spatial dependencies. For example, selecting regions of interest (ROIs) in the brain,
diminishes input size substantially (Cox and Savoy, 2003). However, these techniques
typically require user-input and a priori knowledge about brain morphology associated with
a given task (Mourdo-Miranda et al., 2006). Searchlight analysis (Kriegeskorte et al., 2006)
has yielded powerful results. Multivoxel pattern analysis (Norman et al., 2006) and sparse
logistic regression (Yamashita et al., 2008) provide useful methods for determining voxel
subsets with high signal-to-noise ratio. However many voxels, especially those in adjacent
spatial locations, may provide approximately the same information, and subsets of voxels
selected may differ fold to fold. Using a method like independent component analysis (ICA)
allows basis images to cover the entire brain, and may prove to be a more reproducible
method for parsimonious dimension reduction.

Here, we utilized independent component analysis (ICA) as an unsupervised method for
both dimension reduction and feature extraction. ICA is a powerful blind source separation
technique that has found numerous applications in the field of functional neuroimaging to
include: data exploration (Beckmann et al., 2006), noise component elimination (Tohka et
al., 2008), and more recently by our group (A. Anderson et al., 2009) as a dimension
reduction technique in fMRI ML classification. We hypothesize that ICs themselves may
represent a reasonable basis to describe certain brain states. To the extent that this is true,
output from certain classifiers could be interpreted as a weighting of these primitive bases to
describe higher-level cognitive states.

Lack of parameter optimization at key steps along an fMRI data processing pipeline can
substantially affect analysis outcome (Strother et al., 2004). Here, we have paid particular
attention in parameter optimization at multiple steps in the decoding process. First, we
compare classification accuracy using six different ML classifiers, across a range of
complexity. Where applicable, hyperparameters within ML algorithms were also optimized
simultaneously with optimizing the number of IC features. Optimal feature subset selection
has been useful a number of fields (Dash and Liu, 1997) where machine learning has been
applied including: brain computer interfaces (Garrett et al., 2003), voice recognition (Pandit
and Kittler, 1998), and in classifying gene microarray expression data (Bo and Jonassen,
2002). Nonetheless, there have been relatively few efforts to perform this analysis on fMRI

Neuroimage. Author manuscript; available in PMC 2011 May 23.



yduosnuepy Joyiny vd-HIN yduosnuel JoyINy Yd-HIN

yduosnuep Joyiny Vd-HIN

Douglas et al.

Methods

Overview

Study data

Page 3

data. Optimal feature selection can clearly improve computational efficiency, which may be
a consideration when applying tools in near real-time, especially in a neurofeedback
protocol. However, there are multiple reasons why this optimization step is useful when
computation time is not a consideration. Improved classification accuracy (Kohavi, 1997),
reduced data storage requirements (Aha, 1992), and diminished probability of overfitting
(Hastie et al. 2001) are three motivating factors. Generalization capability also increases
with the ratio of training patterns to features (Theodoridis and Koutroumbas 2009).

For the experiments performed here we utilized a previously published data set (Harris et al.,
2008). Some of the present results have been shown in abstract form (Douglas et al., 2009,
2010).

Our methodology, in brief, is as follows:
i. Data Preprocessing
ii. Dimension Reduction & Feature Extraction Using [CA
iii. Machine Learning Algorithms
iv. Training, Testing, and Iterative Optimization
v. Comparison across Classifiers and Feature Subsets.

This methodology was applied within subject. A variety of decision criterion were aplied to
determine the optimal number of features. A block diagram illustrating this methodology is
shown, Fig. 1.

Prior to the experiment we obtained IRB approval from UCLA and written informed consent
from fourteen healthy adult subjects (18—45 years old; 7 women) with no medical history of
psychiatric disorder, as assessed by a medical history survey. Participants underwent three
7-minute functional MRI scans (Siemens Allegra 3T). Each scanning session consisted of
~100 trials, yielding a total of ~300 trials per subject. While in the scanner, subjects were
presented with short statements through video goggle displays. The presentation of stimuli
was self-paced, with an inter-stimulus interval of 500 ms. Subjects were asked to evaluate
the truth content from seven different statement categories: mathematical, ethical, factual,
geographic, autobiographical, religious, and semantic. After reading each statement, subjects
were asked to press a button indicating that they believed, disbelieved or were uncertain
about the veracity of each statement. These data were collected as part of a published study
(Harris et al., 2008) but are re-analyzed here.

Data preprocessing

FMRI preprocessing included conventional motion correction (Jenkinson et al., 2002) and
brain extraction (Smith et al., 2002), and was carried out using FSL
(www.fmrib.ox.ac.uk/fsl).

Dimension reduction and feature extraction using ICA

We performed a global ICA computation on each subject's data set. ICA is a powerful tool
for finding hidden factors that underlie multivariate data. Known input data is decomposed
into a linear combination of statistically independent latent variables, or components, in an
unknown mixing system, A. When applied to fMRI, the data are four-dimensional: ¢

Neuroimage. Author manuscript; available in PMC 2011 May 23.



yduosnuepy Joyiny vd-HIN yduosnuel JoyINy Yd-HIN

yduosnuep Joyiny Vd-HIN

Douglas et al.

Page 4

different voxel intensities are measured at p different time points. Spatial data is first
unwrapped and a two dimensional ¢ by p matrix, X, is formed, where columns and rows
represent spatial and temporal data, respectively. Classic ICA proceeds by the following
decomposition:

X=AS. (1)

The matrix S is optimized to obtain statistically independent spatial maps that correspond to
various regions of the brain with corresponding temporal aspects. This representation avoids
making specific assumptions, as occurs with regression or the general linear model.
However, it does not treat the possible introduction of noise. Probabilistic ICA introduces
Gaussian noise to the model with the underlying assumption that the p column vector is
generated by ¢ statistically independent non-Gaussian sources in a mixing process that is
corrupted by the addition of noise, ¢:

xi=As+u+e, (2)

where x; is a p-dimension vector of measurements at voxel location i. and g is the mean of x;
observations. In order to solve the equation a linear transformation matrix W is required
such that:

s=Wx, )

which provides a close approximation to the source of the signals s. Probabilistic ICA was
performed here, using the methodology described above, which forms the basis for the
computational program FSL MELODIC, (Beckmann et al., 2006).

IC timecourse values were then extracted and sampled at time points corresponding to belief
and disbelief events, and assigned the appropriate class label. More specifically, we modeled
belief and disbelief events as delta functions, (t), occurring at the mean time point between
stimulus onset and subject keypad response. These delta functions were then convolved with
the conventional double gamma hemodynamic response function, as implemented in the
SPM software package, to calculated the predicted blood oxygenation level dependent
(BOLD) response. IC timecourses were sampled at time points corresponding to the
maximum predicted BOLD response value. Due to the rapid, self-paced experimental
paradigm used in the Harris et al., 2008 study, multiple belief and disbelief events
sometimes occurred within a single TR. To avoid overlap in these cases, we included only
those data instances whose class label was identical for two or more consecutive trials.
Effectively, this sampling process reduced the number of data exemplars included by
approximately one third. Extracted IC timecourse features were subsequently used as inputs
in our classification analysis.

Classification techniques

We evaluated six machine learning algorithms over a range of complexity, each of which
was implemented and automated using Perl, WEKA (University of Waikato, New Zealand),
and MATLAB (v.7.6, Mathworks, Inc.) software. We describe each of these briefly here.

K-Star—K* is a simple, instance based classifier, similar to K-Nearest Neighbor (K-NN).
New data instances, x, are assigned to the class that occurs most frequently amongst the k-
nearest data points, y;, where j = 1,2...k (Hart, 1968). Entropic distance is then used to
retrieve the most similar instances from the data set. Using entropic distance as a metric has
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a number of benefits including handling of real valued attributes and missing values (Cleary
and Trigg, 1995). The K* function can be calculated as:

K* (vi,x)=—In P* (y;, x) (4)

where P* is the probability of all transformational paths from instance x to y. It can be useful
to interpret this as the probability that x will arrive at y via a random walk in IC feature
space. We performed optimization over the percent blending ratio parameter, which is
analogous to K-NN ‘sphere of influence’, prior to comparison with other ML methods.

Naive Bayes—We applied Naive Bayes' classification to our belief, disbelief
discrimination task as follows. Posterior probabilities P(C;|x), or conditional probability of
observing class, C;, given data instance, x were computed as:

P(C;) p(x|Cy)

P(Cilx) =220,
p(x) %)

where, P(C)) is the prior probability of C; occurring, class likelihood P(x|C;) is the
conditional probability that an event in class C is associated with observation x, and P(x) is
the marginal probability that an event x is observed. Maximum a posteriori thresholding
P(Cj|x) was then applied:

Ci=B ifP(Cilx)>¢
Ci= B else ©)

As individual features are assumed to be statistically independent in the IC computation, we
extend this to assume independent conditional probabilities, as is the case in the Naive
Bayes classifier, computed for each (j = 1, ...N) IC time course:

N
P(IC)=[ | p(xiC)).
=1

(7)

Support vector classifier—Support vector machine (SVM) (Vapnik, 2000; Burges,
1998) were assessed for their belief/disbelief discrimination capability, since SVM
algorithms are computationally stable, generalize well, and have been applied successfully
to microarray (Golub et al., 1999) and fMRI (LaConte et al., 2005) data. The SVM
classifiers find the maximum-margin hyperplane using only those data instances that are
closest to the separation boundary or “support vectors” to determine soft margin for
classification (Corinna and Vapnik, 1995). Nonlinearly separable data may be projected into
a space of higher dimensionality with the use of a kernel function, making hyperplane
separation in this new space occur more readily. Here we optimized across multiple kernel
functions prior to classification assessment via cross validation.

Decision tree—We applied the J48 decision tree based on the C4.5 algorithm (Quinlan,
1993) here, which proceeds by partitioning data into local sets using a series of recursive
splits. Tree generation then begins with a root node, which utilizes all training data to search
for the best splitting of the data. Partitioning continues until a terminal leaf node, where data
instances are assigned a class label (Alpaydin, 2004). At each decision node, a threshold is
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applied sending incoming data instances into the appropriate branch of the tree. The

partitioning threshold is calculated by selecting values that result in the largest decrease in
impurity. This was calculated by taking the difference of the impurity, I, at node m:

k :
e i
!m_flp”’j h.ﬂpmj, ®

from the total impurity in the system:

/ n Ny i‘ i Iy’
total= & —— & P, inp
M =1 -I'\'I”.‘ =1 mj iy (9)
where
fl .
i mj
Pmi=
" Nom (10)

Here, N, is the number of data instances at node m, j is the branch, and i is the class label. A
split is considered pure if, after the split, all instances at the downstream nodes belong to a
single class. Additional branches in the tree are added in a similar fashion until a specified
purity threshold is reached, and instances at each terminal node are assigned a class label.
Pruning options were varied here, for optimization.

AdaBoost classification—AdaBoost is an adaptive boosting algorithm, whereby linear
combinations of weak classification features are constructed into a robust classifier. Initially
the weights on each feature are uniform. The most discriminatory feature is then reweighted
to count more substantially in the prediction outcome. The feature that most accurately
discriminates data instances that were misclassified by the first feature is selected next
(Viola and Jones, 2001). Because of this, a feature that is weak in a few examples would be
compensated by a feature that necessarily performed strongly on those same samples. The
first classifier a boosting algorithm selects is always the minimum-error weak classifier.
Boosting is a “greedy” algorithm that ultimately combines weak classifiers into a strong
classifier, and always accepts the additional classifier that most strongly reduces the
classification error at that particular iteration.

Random Forest—Random Forest algorithms employ a technique known as bagging,
whereby data instances are resampled multiple times to produce multiple training subsets
from the training data. Decision trees are then created from each training subset, until
ensembles of trees have been created (Breiman, 1996). Each tree then casts a unit vote for
the outcome of an incoming data instance class label. This is different from Adaboost where
each weak classifier casts a weighted vote. Here we used the method developed by
(Breiman, 2001), where individual class labels, i, are assigned based on the mode or most
popular class label is assigned to the input.

Training, testing and iterative optimization of classifiers

Training—Data instances from each subject's data were partitioned randomly into ten equal
sets. Nine of these sets were used for training purposes, called the training data, which we
denote here as, d. The tenth subset of data was used for testing and validation purposes. This
data partitioning was done in order to avoid ‘double dipping’ (Kriegeskorte et al., 2009).
Following feature extraction, data parsed into the training set was used for IC ranking. A t-
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test was applied to each IC's data for belief and disbelief conditions, and ICs were then
sorted based on corresponding t-statistic. Ranking based on t-statistic is a computationally
efficient method that has proven useful in a number of applications including microarray
gene expression data (Liu et al., 2002).

Testing—The tenth data subset was then used for testing and validation purposes. We then
cycled through all blocks, such that each of the ten data subsets was given a chance to be the
test set, in a process known as 10-fold cross validation, as also described in the decoding
study by Norman et al. (2006). Classification accuracy was assessed as the percentage of
data instances that were labeled correctly after repeating this process ten times (Pereira et
al., 2009).

Hyperparameter optimization via nested cross validation—ML Algorithms
optimize certain internal parameters based training data and minimization of cost functions.
In SVM classifiers, for example, the maximum-margin hyperplane for shattering data is
optimized based on training data. Certain algorithms also have hyperparameters, which must
also be adjusted to data, but are not optimized in the training process. In order to optimize
these hyperparameters, we performed a nested cross validation, as has been done for brain—
computer interface ML applications (Muller et al., 2004). In this process, an inner cross
validation is used to optimize hyperparameter values, which are then applied to the outer set.
In this sense, data exemplars that were used for classification accuracy assessment were kept
in a ‘“vault’ until the final evaluation of the outer cross validation. Ten-fold cross validation
was used for both outer and inner sets. Specifically, we optimized over the percent blending
ratio for K*, a variety of kernel functions in SVM, the pruning ratio for decision trees, the
threshold for weight pruning in Adaboost, and the number of iterations used in Random
Forest.

Optimal feature subset selection

Forward search selection—Our objective is to select the set of components that will
result in the highest percent of correct classification using a minimal number of features.
Here, we utilized a forward search selection approach, whereby we start with no components
and add on additional ICs in order of increasing rank based on t-statistic. We truncated this
analysis at d = 25 components, at which point misclassification error on the test set had
become asymptotic. Stop criterion for this process are described below.

Stop criterion for forward selection

Rise threshold—Here, we utilize a control systems measure known as ‘rise time’ as
means for truncating the forward selection process. Additional ICs attributes are
successively added until classification error is less than or equal to a threshold, g, of the
maximum correct classification achievable when d =25 IC components are included, which
we use as our baseline, B. Specifically,

ICq=set of IC; such that E (IC,,) < ¢"max (1 - E (ICp)). (an
Here the term, ¢, represents what we are calling the rise threshold, which can be modified to
accommodate different tolerances on misclassification rates.

Classification output curve fitting—Modeling classification output may be useful in

assessing stop criteria for adding additional ICs to the classification vector. Mean
classification accuracy as a function of the number of ICs (N;¢,) was averaged across all
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subjects. Using a Marquardt-Levenberg algorithm (Marquardt, 1963), we fitted these output
curves to a first order exponential model of the form:

E (IC)) =E (IC4) + (E (ICp) - E (IC4)) [1 - /"] (12)

where, d is the number of ICs, E(IC ) is the accuracy with a single IC, E(ICp) — E(ICy) is
the asymptotic accuracy, and A describes the rate of asymptotic classification performance.

IC projection to other scans within subject—For certain applications, it may be
useful to avoid the computational bottleneck incurred by pICA calculation. We, therefore,
selected informative IC features for projection onto future scanning sessions within subject.
Binary IC spatial maps that resulted from the FSL MELODIC computation were projected
onto incoming functional data. Mean time series from each of these projections were
extracted and used as features for classification.

Hyperparameter optimization

Each classification algorithm was optimized over key hyperparameters jointly with the
number of IC attributes. Optimization for K* was varied over percent blending ratio, which
corresponds to the sphere of influence in K-NN. We found that a single order polynomial
kernel was optimal for SVM, an 86% blending ratio was optimal for K* (Fig. 2), and a 10%
pruning ratio for our J48 decision tree.

Performance comparison across classifiers

Classification results using optimal parameter values across all six classifiers are shown in
Figs. 3 (a—f). Each curve represents classification output for a single subject run. Here, the
highest ranked component was added first, following with the second highest ranked
component, until all components had been included in the set considered by the classifier.
We used a 10-fold cross validation approach for training and testing each method. We
partitioned the data randomly into 10 sets, where 9 sets were used to train the classifier and
1 set, representing 10% of the data was used to test. We rotated the training and test sets
until all of the data sets had been used for testing. It should be noted that the total number of
ICs varied across data sets.

In order to determine how many components to include for the group as a whole, we
computed the mean classification accuracy across all subjects as a function of the number of
ICs included in the classification vector (Fig. 4). These means generally increased
monotonically as more components were considered, until an asymptotic performance was
reached. This was approximately the case for three of the classifiers. In the case of the K*,
the results degraded beyond considering two components. The percent correct classification
rose rapidly for AdaBoost and then leveled off. Naive Bayes produced comparable results to
AdaBoost, when a large number of components were considered.

Classification across number of ICs

We applied three measures to truncate our forward feature selection process. A rise
threshold of 95% was applied to each classifier, using the classification accuracy achieved
using 25 ICs as a baseline. In all but one of the classifiers, the number of components
needed to achieve specified classification accuracy would be reduced using the rise time
criterion, as illustrated for AdaBoost and Naive Bayes (Fig. 5). In the case of AdaBoost,
89% accuracy was obtained using of only four components.
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Exponential fit modeling results

Using a single exponential model, we were able to capture key features of the mean
classification output curves as shown in Fig. 4, with parameter estimates listed in Table 1.
The excellence of the fits leads us to believe that the performance of the classifiers might be
predicted from a relatively small number of ICs.

IC projection to other scans within subject

Using a 95% rise threshold, we found that an average of 5.67 +/— 3.26 IC features made up
an informative IC feature subset for describing belief and disbelief cognitive states. We
therefore selected the top six IC spatial maps from the first two scanning sessions within
subject, and then projected these IC masks to the third motion corrected functional scans.
Thereafter, the time series were extracted from each of these scans and classification
proceeded as described above (Fig. 6) keeping all previously-optimized hyperparameters
fixed. Performance accuracy diminished by 8.2% for J48 decision tree.

Discussion

Here we have described a method for unsupervised dimension reduction and feature
extraction of event related fMRI data. Dimension reduction was accomplished by
performing ICA, and feature extraction proceeded by sampling corresponding IC time
courses. Sampled IC timecourses were then used as inputs for training and testing of six
different ML classification algorithms with the goal of discriminating between the cognitive
states of “belief” and “disbelief” at each test event. Given that a priori knowledge is not
required for dimension reduction and feature extraction, the described analysis pipeline may
be particularly useful when then goal is exploratory analysis. Our goal was to perform robust
classification based on functionally meaningful patterns in neuroimaging data, and to
optimize parameters at key steps in the decoding process. In our framework, robustness
includes: classification accuracy, stability, interpretability, and generalization capability.

Performance comparison across classifiers

According to the “no free lunch” theorem (Wolpert et al., 1995), there is no single learning
algorithm that universally performs best across all domains. As such, a number of classifiers
should be tested. Here, the two best performing classifiers were AdaBoost and Random
Forest with Random Forest providing the highest overall correct classification. AdaBoost
achieved 89% with only four components. Naive Bayes produced correct classification rates
comparable to AdaBoost, but required more ICs to achieve this accuracy, and had several
classification rates below 80%. Although SVM performance was not as high as other
classifiers tested here, improvements in SVM performance would likely occur with
additional optimization of hyperparameters. Future optimization work might include
implementation of a cross-validated grid search within the training set to find optimal
parameter values.

Although Random Forest performed well, caution should be used when applying any
decision tree based classification scheme, as these methods are prone to overfitting when the
number of attributes is large. Given enough leaves, a decision tree often can specify all
training data with 100% accuracy, given that impurity generally decreases as data becomes
more specified. It is often useful to truncate the process by applying a threshold or pruning
technique. Although Random Forest classifiers may produce high levels of classification
accuracy, generalization of the results often is poor as compared to AdaBoost, and addition
of noise to learning subsets has proven useful in increasing model generalization (Breiman,
2001).
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In our observations, high performance with few features was achieved with both AdaBoost
and Naive Bayes. In parametric estimation, model parameters are estimated from training
data and defined over the entire input space. Thereafter, fixed parameter values are applied
to test data instances. Nonparametric models, like K*, can be computationally intensive,
requiring multiple operations to calculate the distances from the given input to all of the
training instances. Growing Random Forests of trees actually can be faster, because tree
growth depends on only a subset of the entire training set. In development of real-time
classification systems, computational burden must be considered, and the methods described
herein may be useful in selecting classifiers that perform well using a parsimonious feature
subset.

Optimal feature subset selection and generalization capability

In the analysis here, we utilized a forward search selection process, adding ICs
incrementally based on t-stat ranking. Improvements may be obtained via testing alternative
methods for ranking IC features, and more sophisticated search algorithms for finding
optimal feature subsets such as genetic algorithms. Automatic labeling of IC noise
components (Tohka et al., 2008) may also prove useful in reducing the number of features.
Using rise threshold measures in combination with a forward search may prove useful for
selecting a parsimonious, diagnostic subset of ICs. Additional stop criterion for forward
search including Akaike and information Criterion (Akaike, 1974) may also be tested in
future work. It is worth noting that our method of projecting a subset of six features forward
generalized well to other scanning sessions within subject as demonstrated here.

Comparison of this method to conventional general linear model analysis

Conventional analysis of fMRI BOLD data involves using model-driven general linear
model approaches (Friston et al., 1995) for brain mapping purposes (Poldrack, 2006). We
compared our classification method to our previously published GLM results on this same
data set. The highest ranked IC spatial maps (Fig. 7a) show similarity to brain regions
associated with contrasts for belief—disbelief, and disbelief-belief (Harris et al., 2008). IC
spatial maps that were ranked lowest for the same subject trial generally corresponded to
noise or artifact, and would generally carry little diagnostic capability in discriminating
between belief and disbelief states (Fig. 7b).

Interpretation of basis images used for classification

When used in neuroscience research, ML results vary widely in their interpretability, and
there is a need for transparency in ML methodology (Hanke et al., 2010). It is known, for
example, that in many cases the dimension used in classification are either artifact-ridden or
non-neural altogether. For example, in a recent study (Anderson et al., 2009) image features
that were obviously due to head motion contributed significantly to the classification of
schizophrenic vs. normal subjects. While this may contribute appropriately to the clinical
diagnostic value, it does little to inform the neuroscientist about the disease. Furthermore,
building classifiers based on noise may not be repeatable across scanning sessions. Poldrack
et al. (2009) showed that a decision tree formed by unsupervised machine learning was able
to generate a meaningful taxonomy of the loading of mental concepts in a variety of more
complex cognitive states.

The IC based decoding method presented here can readily be used for interpretation
purposes via analysis of the loci of IC basis images used to construct a classifier. For
example, AdaBoost weights and nodal hierarchy of ICs used in constructing decision trees
(Fig. 8) may represent a basis for describing certain brain states. Interpretation of meta
classifiers like Random Forest may prove more challenging given that ICs across numerous
trees are used for classification.
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Future considerations

In a recent review (deCharms, 2008) speculated that real-time fMRI classification might find
clinical application in neurofeedback-based therapies. Although the current paper is not a
real-time paper, it presents a number of optimization and analysis steps that can be useful in
a near real-time protocol. The rapid self-paced experimental paradigm used for data
collection in this study is not ideal for real-time classification. Changing our stimulus
presentation to a rapid serial visual presentation (RSVP) paradigm (Poolman et al., 2008)
would minimize saccade artifact while also creating a longer interstimulus interval. This
would eliminate the need for sampling only identical consecutive responses when the
reaction time for different class labels occurred within a single TR. In the methodology
described herein, the most computationally intensive and rate-limiting step is the pICA
calculation. To avoid this computational bottleneck, IC spatial maps can be projected
forward in time, as demonstrated here. Optimizing this procedure is clearly a topic for future
work.
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Fig. 1.
Methodology flow diagram. Following preprocessing steps that included motion correction
and brain extraction, independent component analysis (ICA) was performed and time
courses associated with each spatial IC were sampled for “belief” and “disbelief” conditions.
IC component features were ranked and then sent as inputs into machine learning for
training and testing of the classifier, which proceeds over an n-fold cross-validated sample.
Classifier parameters are adjusted and optimized.

Neuroimage. Author manuscript; available in PMC 2011 May 23.



duosnuely Joyiny vd-HIN jduosnuely Joyiny vd-HIN

yduosnuep Joyiny Vd-HIN

Douglas et al. Page 15

K* Parameter Optimization

% Classification
(10-fold Cross Validation)

" 40
Number of 20 % Blending
IC Features 25 0 Ratio

Fig. 2.
Algorithm parameter optimization for K* classification. Output averaged across all subjects
and trial runs for varying numbers of ICs and % blending ratios.
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(a—f). Classification results using forward selection method for each subject for (a) K* (b)
Naive Bayes (c) J48 decision tree (d) support vector machine (¢) Random Forest, and (f)

AdaBoost, with chance for bivariate classification (50%) indicated with a dashed line.
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Fig. 4.

Classification accuracy averaged across all subjects, shown for each of the six classifiers as
a function of the number of ICs, with fits to 3-parameter first order exponential model
(lines).
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Fig. 5.
Rise threshold criterion applied to AdaBoost (left) and Naive Bayes (right).
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Fig. 6.
Methodology for projecting highly ranked IC spatial maps
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Six Lowest Ranked ICs

Fig. 7.

IC spatial maps of components ranked highest for a certain subject. (a) Comparison of
highest ranked IC spatial maps (left) with published GLM results (right). Ventromedial
prefrontal cortex activity appears in IC 5 and IC 19, consistent with the belief—disbelief
contrast. Superior frontal gyrus and left frontal gyrus activity in IC 11, ranked highest, is
similar to the disbelief—belief contrast. All images are shown with the same z-statistic
threshold (2.5-3.7). (Harris et al., 2008) (b) IC spatial maps of the six lowest ranked ICs in
the same subject, starting with IC 14 (left) and progressing in order to the lowest, IC 6
(right). IC numbers are derived from FSL MELODIC output.
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Fig. 8.

Structure of J48 decision tree nodal hierarchy for two subjects. IC spatial maps indicate
decision nodes. Blue and red circles indicate terminal leaves with discrete outcome labels
for belief and disbelief, respectively. Certain IC basis images used for recursive splits have
overlap with general linear model contrasts for belief-disbelief and disbelief-belief. For
example, in (b), IC 5, used for the initial data split, contains overlap with belief-disbelief
contrasts. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Parameter estimates for exponential modeling of mean IC classification results.

Algorithm Rate Init Asymptote
K-Star 3.663 69.627  88.273
Naive Bayes 4.677 68.55 89.617
SVM 32 68.497  83.288
Decision tree 0.01 84 86.251
AdaBoost 1.76 77.996  90.238
Random Forest 12.069  89.119  95.025
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