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Abstract—In this paper, we propose a Hierarchical
Image Model (HIM) which parses images to perform
segmentation and object recognition. The HIM represents
the image recursively by segmentation and recognition
templates at multiple levels of the hierarchy. This has
advantages for representation, inference, and learning.
Firstly, the HIM has a coarse-to-fine representation which
is capable of capturing long-range dependency and ex-
ploiting different levels of contextual information (simi-
lar to how natural language models represent sentence
structure in terms of hierarchical representations such as
verb and noun phrases). Secondly, the structure of the
HIM allows us to design a rapid inference algorithm,
based on dynamic programming, which yields the first
polynomial time algorithm for image labeling. Thirdly, we
learn the HIM efficiently using machine learning methods
from a labeled dataset. We demonstrate that the HIM is
comparable with the state-of-the-art methods by evaluation
on the challenging public MSRC and PASCAL VOC 2007
image datasets.

I. INTRODUCTION

Language and image understanding are two major
tasks in artificial intelligence. Natural language re-
searchers have formalized this task in terms of pars-
ing an input signal into a hierarchical representation.
They have made great progress in both representa-
tion and inference (i.e. parsing). Firstly, they have
developed probabilistic grammars (e.g. stochastic
context free grammar (SCFG) [1] and beyond [2])
which are capable of representing complex syntactic
and semantic language phenomena. For example,
language contains elementary constituents, such as
nouns and verbs, that can be recursively composed
into a hierarchy (e.g. noun phrase or verb phrase)
of increasing complexity. Secondly, they have ex-
ploited the one-dimensional structure of language to

obtain efficient polynomial-time parsing algorithms
(e.g. the inside-outside algorithm [3]).

By contrast, the nature of images makes it much
harder to design efficient image parsers which are
capable of simultaneously performing segmentation
(parsing an image into regions) and recognition
(labeling the regions). Firstly, it is unclear what
hierarchical representations should be used to model
images because there are no direct analogies to
the syntactic categories and phrase structures that
occur in language. Secondly, the inference problem
is formidable due to the well-known complexity
and ambiguity of segmentation and recognition. In
most languages the boundaries between different
words are well-defined (Chinese is an exception)
but, by contrast, the segmentation boundaries be-
tween different image regions are usually highly
unclear. Exploring all the different image partitions
risks a combinatorial explosions because of the two-
dimensional nature of images (dynamic program-
ming methods can be used for one-dimensional
data such as language). Overall it has been hard
to adapt methods from natural language parsing
and apply them to vision despite the high-level
conceptual similarities (except for restricted and
highly structured problems such as text [4]).

We argue that to make progress at image parsing
requires making trade-offs between the complexity
of the representation and the complexity of the
computation (for inference and learning). Our work
builds on three themes in the recent literature.
Firstly, the use of stochastic grammars to represent
images and objects [5], [6], [7], [8]. This style
of research uses generative models for images and
pays less attention to the complexity of compu-



tation. Inference is usually performed by MCMC
sampling which is only efficient provided effective
proposal probabilities can be designed [5][6]. Sec-
ondly, the related work on hierarchical image mod-
els [9],[10],[11],[12]. This work has paid greater
attention to computational complexity, but been
largely focussed on image processing applications
[13]. Thirdly, the use of discriminative models, such
as conditional random fields (CRF’s) [14], which
have obtained promising results on image labeling
[15], [16]. These models use simpler representations
than the stochastic grammars but instead use non-
local features trained using discriminative training
methods (e.g. AdaBoost, MLE) and efficient algo-
rithms (e.g. belief propagation and graph-cuts). But
current CRF models have limited ability to represent
long-range relationships and contextual knowledge.

In this paper, we introduce Hierarchical Image
Models (HIM)’s for image parsing. Our strategy
is to combine the representational advantages of
stochastic grammars with the effectiveness of dis-
criminative learning techniques. We define a hi-
erarchical model of hidden states where the state
variables are segmentation and recognition tem-
plates which represent complex image knowledge
and are similar to the noun and verb phrases used
in natural language. Extending this analogy, we can
represent image structure coarsely at high levels of
the hierarchy and give more detailed descriptions
at lower levels. More precisely, each node of the
hierarchy corresponds to an image region (whose
size depends on the level in the hierarchy). The
state of the node represents both the partitioning
of the corresponding region into segments and the
labeling of these segments (i.e. in terms of objects).
Segmentations at the top levels of the hierarchy
give coarse descriptions of the image which are
refined by the segmentations at the lower levels.
Learning and inference (parsing) are made efficient
by exploiting the hierarchical structure (and the ab-
sence of loops). In summary, this novel architecture
offers two advantages: (I) Representation — the hier-
archical model using segmentation templates is able
to capture long-range dependency and exploiting
different levels of contextual information, (II) Com-
putation — the hierarchical tree structure enables
rapid inference (polynomial time) and learning by
variants of dynamic programming (with pruning)
and the use of machine learning (e.g. structured
perceptrons [17]).

To illustrate the HIM we implement it for parsing
images and we evaluate it on the public MSRC
image dataset [16] and the PASCAL VOC 2007
dataset [18]. Our results show that the HIM perform
at the state-of-the-art. We discuss ways that HIM’s
can be extended naturally to model more complex
image phenomena. A preliminary version of this
work was presented in [19].

II. BACKGROUND: IMAGE MODELS,
REPRESENTATIONS AND COMPUTATION

We review the background material using the
formulation of probabilities defined over graphs.
This will give us a set of considerations which gives
a classification of probabilistic image models.

A. Probabilities and Graphs

Probabilistic models on structured representa-
tions are defined by specifying a probability distri-
bution over a graph structure. The graph structure
is represented by its nodes V' and edges £. The
edges & specify the dependency structure of the state
variables w,, defined at the nodes (e.g., the Markov
property). A clique C1 is defined to be a subset of
nodes i € V such that every pair of nodes in the
subset is connected by an edge (i.e. Vu,v € Cl we
require (u,v) € £).

In this paper we will be concerned with hierar-
chical graph structures where the graph nodes can
be organized into levels: V = | J, V', where V' is the
set of nodes at level I. A node i € V! at level [ has
vertical edges connecting it to nodes at other levels
— e.g., child nodes at level | — 1 and parent nodes
at level [ 4+ 1 — or horizontal edges connecting it to
sibling nodes at the same level [ (note that the HIM
will use vertical edges only).

We let W = {w, : 1 € V} denote the states
of all the graph variables. We denote the states of
all nodes in clique Cl by w¢;. Factor functions of
form ¢y (W¢y) are defined over the variables in the
cliques. There are also factor functions 1, (w,,I)
relating the state variables to the input image I.
These factor functions will be weighted by param-
eters a,, a¢y to yield potentials «, - ¢, (w,,I) and
act - Yo (Wer).

We define probability distributions over the state
variables by Gibbs distributions. This can be done
in two ways. For discriminative models we combine



all the potential terms together to form an energy:

E(W;T) == a, (w,T) =) ac - ¥(wea),
Ci
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(D)
and define a conditional distribution:

P(W[I) = xexp{—E(W;D}. (2

1
Zla, 1]
For generative models, we define a prior P(W)
and likelihood function P(I|W) as Gibbs distri-
butions using energies — >, acy - Yei(Wer) and
— 2 ey Q- (wy, ) respectively.

Using this framework, we can categorize proba-
bility models by the following considerations:

1) Hierarchical or Flat: Is the graph structure
hierarchical with three or more levels? Are the
majority of the edges vertical between levels,
or horizontal within levels?

2) Fixed or Variable Topology: Is the graph
structure fixed or variable? Can the number
of nodes, or the edges, vary between images.

3) State Variables: What do the state variables
represent? Do they represent the same quan-
tity at all levels of the hierarchy?

4) Discriminative or Generative: is the model
generative or discriminative? — i.e. is the
model formulated in terms of a prior P(W)
and a likelihood P(I|W) (generative) or only
by a conditional, or posterior, distribution
P(W|I)?

5) Inference Algorithm: which algorithms are
used to compute the most probable state
W* = argmax P(W|I)? Or to compute other
estimates for W? The choice of algorithm is
influenced by the nature of the graph structure
(e.g., loopy or non-loopy) and the form of the
state variables.

6) Learning Algorithm: Are the parameters a of
the model set by hand, or are they learnt from
the training data? If learnt, what algorithm is
used? Is the graph structure also learnt?

These considerations are related. In particular,
if the graph structure has no closed loops then
efficient algorithms (e.g., dynamic programming)
can be used for inference. By contrast, if the graph
contains multiple closed loops then inference is
usually intractable except in special cases (e.g., if
the energy function is submodular which enables
max-flow algorithms).

We now briefly review the literature of image
segmentation using these criteria as a guide.

B. Weak Membrane Models

These are a historically influential class of mod-
els for image segmentation which assumed that
images were piecewise smooth (weak membranes)
[201,[21],[22]. These models were flat with fixed
topology. The graph nodes {u € V} corresponded
to the pixels of the image (i.e. each p corresponded
to a lattice site (¢,7) on a two-dimensional grid).
The graph edges £ link neighboring pixels sites (i.e.
lattice site (4,7) to (¢ & 1,7) and (4,7 £ 1)).

The state variables W = {w, : p € V}
represent smoothed versions of the image intensity
I ={l,:p €V} (which could be augmented by
another layer of binary-valued line process variables
indicating the presence of edges).

The models were generative with prior P(W)
and likelihood P(I|W) of form:

P(IIW) = H P(Iu|wu)a
%
1
Z(O{) eXp{_ Z Oyt ¢(wuva)}7 (3)
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P(W) =

where the prior P(W) only enforces highly local
constraints on the W because the graph edges £
only link neighboring pixel sites.

A variety of inference algorithms were applied
to these models. Geman and Geman [20] used
simulated annealing — Markov Chain Monte Carlo
(MCMC) while lowering a temperature parameter.
Blake and Zisserman [21] developed graduate non-
convexity. Geiger and his collaborators described a
range of inference algorithms — including mean field
theory (an early variational method), and the ex-
pectation maximization algorithm [23], [24]. Koch
et al. [25] conjectured that these algorithms were
biologically plausible and might be implemented in
cortical area V1.

The weak membrane models were not learnt
from data. But subsequent work [26],[27] showed
that prior distributions P(W) learnt from natural
images were very similar to those assumed by weak
membrane models.

The weak membrane models were historically
influential but they are only effective on a restricted
class of images due to their simplistic assump-
tions. Studies of natural images show that piecewise



smoothness is only, at best, a first order approxima-
tion and fails to capture the texture and appearance
qualities required to parse an image and label its
components.

C. Discriminative Models

Discriminative  models learn  distributions
P(W|I) directly. They can be applied to image
labeling and hence can parse images. These models
tend to be flat with fixed topology and with state
variables W = {w, : p € V} representing the
labels at each pixel — e.g., the labels can be “sky”,
“vegetation”, ‘“edge”, “road”, and “other”. The
simplest models of this type are factorizable [28]:

P(WT) = [] P(wulD), )

ney

where P(w,|I) o< exp{—ay, - ¥(w,,I)} For these
factorized models, learning of P(w,|I) can be per-
formed by standard statistical methods (e.g. regres-
sion or AdaBoost). Inference is also straightforward
since it can be performed independently at each
node — e.g. W* = arg maxw P(W|I) can be found
by computing w? = arg max,,, P(w,|I) for all ;€
V. Factorizable models are surprisingly successful
for labeling certain types of image regions (e.g., sky,
vegetation, and road) because these regions tend to
have homogeneous intensity properties which can
be captured by non-local feature functions [28]. But
these factorizable models ignore context and are
less successful for non-homogeneous regions (e.g.,
buildings).

More advanced models use additional informa-
tion by taking into account the properties of neigh-
boring labels — as described in the classic work on
relaxation labeling [29] (which was not formulated
probabilistically and did not use learning). This can
be done using conditional random fields [14]. It
gives models of form:

P(WIT) = ﬁ
exp{— Y, ¥(w, 1) = > aci- ¥(wer)}. (5)

Such models have been applied to labeling images
and detecting buildings [30]. For these models in-
ference and learning are more difficult and, as for
MREFs, a variety of techniques have been proposed.

Since the labels are discrete algorithms like max-
flow and belief propagation have been applied for
inference and maximum likelihood for learning.
Other work of this type includes [15],[311],[32],[16]
which has shown success on image labeling tasks.
Also related is work on segmenting and labeling
hand-drawn ink figures with a tree-like structure
which enabled efficient inference and learning [33].
In summary, discriminative models are effective for
image labeling, because they use non-local image
features in their data terms v (w,,I), but usually
have simple local ‘prior’ terms 1(W).

D. Regional Models

Another class of models assume that the im-
age consists of a variable number of regions and
the intensity properties within each region can be
specified by a parameterized probability model.
Examples include [34], [5], [6]. This is a flat model
with variable topology — the number of graph nodes
corresponds to the number of image regions and the
state variables represent the properties of the region
(i.e. the shape of the region and the parameters of
the model that generates the intensity properties of
the region). The graph edges relate the states of
neighboring regions (e.g., ensuring that the region
boundaries do not overlap). These models are gener-
ative with a distribution P(I|W) and a prior P(W).

More formally, regional models seek to decom-
pose the image domain D into disjoint regions
D = UM, D, with D,ND, = 0,V a # b
and where the number of regions M is a random
variable. The intensity I, within each region D, is
generated by a distribution P(Ip,|7,,7.), where 7,
labels the model type and ~, labels its parameters
— e.g., 7 could label the region as ‘texture’ and -y
would specify the parameters of the texture model.
In graphical terms, there are M graph nodes whose
state variables w, = (Dg,T,,7,) represent the re-
gion, its model type, and the model parameters (with
the constraint that | J, D, = D). There is a prior
probability on W specified by a distribution P (M)
on the number of regions/nodes, and on the regional
properties P({D,}|M) ], P(7.)P(Va). Inference is
very challenging for these models because of the
changes in topology and the high-dimension space
of the variables — e.g., there is an exponentially large
number of possible boundaries 0D, for the regions.
Inference was done using a stochastic algorithm



— data driven Markov Chain Monte Carlo (DDM-
CMC) [5], [6] — which is guaranteed to converge
to the optimal solution. But the convergence rate
of this algorithm is unknown. Region competition
[34] is an alternative greedy algorithm which is
successful for limited classes of problems.

This approach uses learning for components of
the model, but these are treated independently.
For example, Tu et al. learnt both generative and
discriminative models of faces and text [6] (the
discriminative models were used to create proposal
probabilities for DDMCMC). But there is no global
criterion which is optimized during learning.

Although the regional models are able to have
some long range interactions (due to the size of
the image regions) they are of fairly simple form,
partially because of their shallow graph structure.
They cannot, for example, represent the spatial
relations between windows in a building.

E. Stochastic Grammars and Hierarchical Models

The models we have described so far are limited
in their ability to represent images and, in particular,
to enforce long-range interactions and structures at
multi-scales. We now present two approaches which
address these issues.

One approach is stochastic grammars [35], [8]
have been proposed to model images and objects
at different levels. This is an attractive research
program which is described in more detail by Zhu
and Mumford [8]. The work by Geman and his
collaborators are also related to this framework [7].
Stochastic grammars are a very promising approach
since they have great representational power and
can model complex knowledge. However, applying
probabilistic grammars to images is not straightfor-
ward. The major challenges are: (i) what are the
corresponding syntactic categories and phrase struc-
tures in the image domain? (ii) can we design an
efficient inference algorithm on 2D image space to
make model learning and computing tractable? Our
recursive segmentation and recognition templates
are proposed to address these two critical issues.

There is also related literature on multiscale (i.e.
hierarchical) Markov tree models, particularly in the
image analysis community, which is reviewed in
[13]. These models can capture long-range inter-
actions but do not have as sophisticated representa-
tions as the stochastic grammars. These hierarchical

models are often designed using quadtree structures
[13] (which we will use for HIMs). Other examples
includes multiscale random field models [9] and
hidden markov models using wavelets [10]. More
recent examples of this approach includes [36],[11]
and [12]. But these models have simple state vari-
ables (not as complex as those used by HIMs) and
do not use discriminative learning. Other hierar-
chical approaches to image segmentation include
Sharon et al.’s segmentation by weighted aggrega-
tion [37] and multiscale spectral segmentation [38],
but these are not expressed within a probabilistic
framework and have not been applied to image
labeling tasks.

III. THE HIERARCHICAL IMAGE MODEL (HIM)

The Hierarchical Image Model (HIM) combines
properties of the models described above. It has a hi-
erarchical graph structure with fixed topology based
on the quadtree models for image processing [13].
There are only vertical edges which means that the
graph has no closed loops. The state variables are
segmentation recognition templates, which represent
the segmentation and labeling of image regions, and
relate to stochastic grammar models. The inference
algorithm is dynamic programming (exploiting the
lack of closed loops in the graph structure). The
model is discriminative with a set of pre-specified
factor functions whose parameters are learnt by the
structure perceptron algorithm [17]. The restrictions
of using fixed topology are compensated by the
greater representation of the state variables).

Notation Meaning
I input image
w parse tree
Ly V node index
Ch(p) child nodes of
s segmentation template
c object class
P1(L, s,,Cu) object class appearance potential

1/12(17 Sps Eﬂ)
Y3(8p5 Cpus Su, Cv)
2/14(6117 Cjs EAMEU)

¥s(su)
¢6(8M7 Cj)

appearance homogeneity potential
level-wise labeling consistency potential
object class co-occurrence potential
segmentation template potential
co-occurrence of segment and class potential

TABLE I
THE TERMINOLOGY USED IN THE HIM MODEL.

A. The Representation

We represent an image by a hierarchical graph V
with edges £ defined by parent-child relationships,



see figure (1). The hierarchy corresponds to an im-
age pyramid (with 5 levels in this paper) where the
top node of the hierarchy represents the whole im-
age. The intermediate nodes represent different sub-
regions of the image and the leaf nodes represent
local image patches (27 x 27 in this paper). This is
similar to the quadtree representation used in image
processing [13] (but the state variables, the learning
algorithm, and the application are very different).
We note that quadtree representations are known to
have boundary artifacts because pixels nearby in the
image may be assigned to different branches of the
tree. But this does not cause significant problems
for HIMs, as we quantify in section (VI), because
we use nonlocal feature functions.

The notation for the model is summarized in table
I. We use ;o € V to index nodes of the hierarchy.
R denotes the root node, VEFAF are the leaf nodes,
V /VEEAE are all nodes except the leaf nodes, and
V/R are all nodes except the root node. A node p
has a unique parent node denoted by Pa(yu) and four
child nodes denoted by C'h(u). Thus, the hierarchy
is a quad tree and C'h(u) encodes all its vertical
edges £. The image region represented by node p
is fixed and denoted by R(u), while pixels within
R(u) are labeled by r.

A configuration of the hierarchy is an assignment
of state variables W = {w,} to the nodes p € V
(all state variables are unobservable and must be
inferred). The state variables are of form w, =
(Su,Cy), wWhere s and ¢ specify the segmentation
template and the object label respectively. We call
(s,C) a Segmentation and Recognition template,
which we abbreviate to an S-R pair. They provide a
description of the image region R(u). Each segmen-
tation template partitions a region into X < 3 non-
overlapping sub-regions R(u) = Ufi | Ri(p), with
Ri(p) N Rj(n) = 0 (i # j), and is selected from
a dictionary Dy, where |Ds| = 30 in this paper.
This dictionary of segmentation templates is shown
in figure (1) and was designed by hand to cover
the taxonomy of shape segmentations that happen
in images, such as T-junctions, Y-junctions, and so
on. We divide the segmentation templates into three
disjoint subsets S, S5, S3, where Ui{:1 Sk = D,
so that templates in subset Sk partition the image
into K subregions. The variable ¢ = (cq, ..., ck),
where cx € {1,..., M}, specifies the labels of the
K subregions (i.e. labels one subregion as ‘“horse”
another as “dog” and another as “grass”). We allow

neighboring subregions to have the same label. The
number M of labels is set to 21 in this paper. The
label of a pixel 7 in region R(u) is denoted by
0, € {1..M} and is computed directly from s, ¢,
— 0, = ci(p), provided 7 € R;(y). Note that any
two pixels within the same subregion must have the
same label. Observe also that each image pixel will
have labels oL defined at all levels of the hierarchy,
which will be encouraged (probabilistically) to be
consistent. We do not want to impose complete
consistency, because as described below, we want
the higher levels of the HIM to represent only
the coarse levels structure of the image enabling
the lower levels to represent the more finer-scale
structure.

We emphasize that these hierarchical S-R pairs
are a novel aspect of our approach. They explicitly
represent the segmentation and the labeling of the
regions, while more traditional vision approaches
[16], [15], [31] use labeling only. Intuitively, the
hierarchical S-R pairs provide a coarse-to-fine repre-
sentation which capture the “gist” (e.g., semantical
meaning) of the image regions at different levels of
resolution. One can think of the S-R pairs at the
highest level as providing an executive summary of
the image, while the lower S-R pairs provided more
detailed (but still summarized) descriptions of the
image subregions. This is illustrated in figure (2),
where the top-level S-R pair shows that there is a
horse with grass background, mid-level S-R pairs
give a summary description of the horses leg as
a triangle, and lower-level S-R pairs give more
accurate descriptions of the leg. We will show this
approximation quality empirically in section (VI).
Note that this means that there are fewer variables
used to represent the image at higher levels and so
we cannot enforce complete consistency between
the representations at different levels, nor do we
want to.

B. The distribution
The conditional distribution over the state vari-
ables W = {w, : p € V} is specified by a Gibbs
distribution:
1
W o) = —— —FE(ILW

where I is the input image, W are the state vari-
ables, «v are the parameters of the model, Z(I; «) is
the partition function and F(I, W, «) is the energy.

(6)
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Fig. 1. The left panel shows the structure of the Hierarchical Image Model. The grey circles are the nodes of the hierarchy. All nodes,
except the top node, have only one parent nodes. All nodes except the leafs are connected to four child nodes. The middle panel shows a
dictionary of 30 segmentation templates (hand designed). The color of the sub-parts of each template indicates the object class. Different
sub-parts may share the same label. For example, three sub-parts may have only two distinct labels. The last panel shows that the ground
truth pixel labels (upper right panel) can be well approximated by composing a set of labeled segmentation templates (bottom right panel).

Multi-level Segmentation-Recognition Representation

Horse

Glaobal Mid-level Local

Fig. 2. This figure illustrates how the segmentation templates and labels (i.e. the S-R pairs) represent image regions in a coarse-to-fine way.
The left figure is the input image which is followed by global, mid-level and local S-R pairs. The global S-R pair gives a coarse description
of the object identity (horse), its background (grass), and its position in the image (central). The mid-level S-R pair corresponds to the region
bounded by the black box in the input image. It represents (roughly) the shape of the horse’s leg. The four S-R pairs at the lower level
combine to represent the same leg more accurately.

The energy E(I, W, «) is the sum of six energy regions. We set:
terms {E£;(I, W,a) : i =1,..,6}: (1) E1(I, W, )

uses image cues to directly estimate the segmen- E(I,W,ay) = — Zalwl (I, sy, C)
tation and labeling, (i) Eo(I, W, ay) favors seg- neV

mentations where pixels in subregions have similar ) . 1 - er
appearance, (iii) F3(W, a3) encourages consistency with 1 (L, 5, 6) = | R(1)]| Z logp(0u|I ) @

between segmentation and labeling at adjacent lev- rekn)

els of the hierarchy, (iv) E4(W,ay) imposes con-
straints on the classes of adjacent sub-regions (e.g.,
cows are unlikely to be in the sky), (v) E5(W, as) is
a segmentation prior (e.g., which segmentation tem-
plates are most likely), and (vi) Es(W, ag) models

where I" is a local image region centered at the
location of r (its size scales with the level), F(-, ")
is a (strong) classifier learnt by multi-class boosting
[39] and p(o,|I") is given by:

the co-occurrence of the segmentation templates and exp{F(I",0")}
the labels. We now describe these six terms in more po|1") = 5= 7 (ITM 0 (8)
detail. o €XP ,0

The details of image features and boosting learning
will be described in section (VI-A2).
The second term FE>(I, W, ay) is designed to
The first term E;(I, W, 1) is an object specific favor segmentation templates for which the pixels
data term which represents the image features of belonging to the same sub-regions (i.e., having the



same labels) have similar appearance. We define:

By(LW,ap) = =Y antha(I, 5., ),
ney
S 1 r Ta|
QﬂQ(I, SM,C/L) = W Z ¢<I 7Iq’OM7OZ> (9)
(q,r)€OR(p)

where OR(u) are the set of edges (in the im-
age) connecting pixels ¢, in a neighborhood and
o(I", 170}, 0f) has form:

r a1y — 4 V9 if o= o
(b(I 7I IOH,OM) - { 0 Zf 07‘ # OZ (10)
where 7(r,q) = Aexp{~ 550} L () s a

distance measure on the colors I", 19 and dist(r, q)
measures the spatial distance between r and q.
(1", 1?07, 0%) is so called the contrast sensitive
Potts model which is widely used in graph-cut
algorithms [40] as edge potentials (only in one level)
to favors pixels with similar colour having the same
labels.
The third term is defined as:

Eg(W, Oég) = — Z

neV/R:v=Pa(p)

a3w3(3u7 5;m Su, 51/)

(11
i1s used to encourage consistency between the S-
R pairs at consecutive levels of the hierarchy (i.e.
by relating states of the nodes with those of their
parents). The potential 15(s,, ¢, s, C,) is defined
by the Hamming distance'
D 9(0)

rER(u)

12)

¢3(Su78u7suacu :’ (,u

where (07, 0;,) is the Kronecker delta, which equals
one whenever o, = o, and zero otherwise. The
hamming function ensures to glue the segmentation
templates (and their labels) at different levels to-
gether in a consistent hierarchical form. This energy
term is a generalization of the interaction energy in
the Potts model which is imposed hierarchically to
enable long-range interactions.

The fourth term E,(¢) is designed to model the
co-occurrence of two object classes (e.g., a cow is
unlikely to appear next to an aeroplane):

E4WC¥4

HeV cicj=1..M

>, > @

ueV/Riv=Pa(u) ci,cj=1..M

(13)

E E Oy Cucj 1/}4<Czacjacuacu

where 4(c;,¢;,C,,C,) is an indicator function
which equals one if ¢; is a component of ¢,, and c;
is a component of ¢,, and is zero otherwise. Here
oy is a matrix where the entries ay(c;, ¢;) encodes
the compatibility between two classes c¢; and c; at
the same level. Similarly @y(c;, ¢;) gives the com-
patibility between class labels at different levels.
The first term on the right hand side encodes the
class co-occurrences within a single template while
the second term encodes the class co-occurrence
between parent and child templates. Note that class
co-occurrence is encoded at all levels to capture
both short-range and long-range interactions.

The fifth term E5(W,as5) encodes a prior on
the segmentation templates (i.e. on the segmentation
into sub-regions):

E5 W Oé5 ZO&51/}5 S‘LL (14)
ney
where 15(s,) = logp(s,). (15)

5(s,,) is obtained directly from the training data by
label counting. Finally, the sixth term Fg(W, ag)
models the co-occurrence of the segmentation tem-
plates and the object classes.

Es(W,a6) = =Y > agts(su,cy)  (16)
HEV cj€ECy,
where 1g(s,, ¢;) = logp(s,, ¢;), (17)

where ‘c; € ¢, = 1 if ¢; is a component of ¢, and
is 0 otherwise. s(s,, c;) is directly obtained from
training data by label counting.

In summary, we can express the energy as
E(I,W,«a) = a- (I, W) where there are a total
of 676 parameters o obtained as follows: (i) 25
parameters for oy, oo, as, as, ag (five for each, one
for each level), (i1) 210 and 441 parameters of oy, &y
(calculated by 21 x 20/2 and 21 x 21 respectively).

C. The Summarization Principle

An important aspect of our Hierarchical Image
Model (HIM), which distinguishes it from most
other models, is the summarization principle. This
design principle is important both for representation
and to make computation tractable. It is partially

ased on the intuition of executive summary that
nodes at the upper levels of the hierarchy need only

a(ci, ¢5)Ya(cy, ¢4, €, 6, )provide coarse descriptions of the image because

more detailed descriptions can be obtained at lower
levels. This intuition relates to Lee and Mumford’s



[41] high resolution buffer hypothesis for the visual
cortex.

The summarization principle has four aspects.

(I) The state of w, the random variable at node
v € V/VEFAE ig a summary of the state of its
child nodes p € Ch(v), and hence summarizes their
states, see figure (2).

(IT) The representational complexity of a node
is the same at all levels of the tree — the random
variables are restricted to take the same number of
states.

(III) The clique potentials for a node v € V
depends on its parent nodes and it child nodes, but
not on its grandparents or grandchildren. This is a
Markov property on the hierarchy. But, as will be
described later, all nodes can receive input directly
from the input image.

(IV) The potentials defined over the cliques de-
pend only on simple statistics which also summarize
the states of the child nodes.

The executive summary intuition is enforced by
aspects (I) and (IT) — the upper levels nodes can
only give coarse descriptions of the large image
regions that they represent and these descriptions are
based on the, more detailed, descriptions given by
the lower level nodes. The other two aspects — (II1)
and (IV) — help reduce the number of cliques in the
graph and restrict the complexity of the potentials
defined over the cliques. Taken all together, the four
aspects make learning and inference computation-
ally practical because of (i) the small clique size, (ii)
the simplicity of the potentials, and (iii) the limited
size of the state space.

IV. INFERENCE: PARSING BY DYNAMIC
PROGRAMMING

Parsing an image is performed as inference of the
HIM. We parse the image by inferring the maximum
a posterior (MAP) estimator of the HIM:

W* = arg mV%Xp(W]I; a) = arg H\l}%}n E(I W, a)
(18)

This will output state variables W* = {w’, =
(s5,Ch) o € V} at all levels of the hierarchy. But
we only use the state variables at the lowest level of
the graph when we evaluate the HIM for labeling.

The graph of the HIM has no closed loops so Dy-
namic Programming (DP) can be applied to calcu-

late the best parse tree W* from equation (18). But

the computational complexity is high because of the
large size of the state space. To see this, observe that
the number of states at each node is O(M¥|D,|)
(where K = 3,M = 21,|Ds] = 30) and so
the computational complexity is O(M?%|Dy|?H)
where I is the number of edges in the hierarchy.
Note that the choice of our representation, in par-
ticular the segmentation-recognition template, has
restricted the size of the state space by requiring that
node 4 can only assign labels o}, consistent with the
state w,, = (s,, ¢,). Nevertheless, the computational
complexity means that DP is still impractical on
standard PCs. We hence use a pruned version of
DP which will describe below.

A. Recursive Energy Formulation

The hierarchical form of the HIM (without closed
loops) means that the energy term E(I, W, «a) can
be computed recursively which will enable Dynamic
Programming with pruning.

We can formulate the energy function recursively
by defining an energy function FE, (I, Wges(), @)
over the subtree with root node v in terms of the
state variables Wgc4(,) of the subtree, where des(v)
stands for the set of descendent nodes of v — i.e.
Waes(w) = {wy, : 0 € V, }, where V, is the subtree
with root node v.

This can be computed recursively by:

EIJ(I7 Wd(:‘S(V)7 Oé) - agam ) 1/’§ata(17 wV)

+ Z {Ep(Ia Wdes(p)» Oé) + O‘f/nt : wzi/nt(ww wp)}7
pECh(v)

(19)
where the data terms qdfe . qpdale gre
Oéﬂph O[2¢2, Oé5¢5, 0661/16 (1e the terms in

section (III-B) that depend only on node v
and the data I) and the inter-level terms /™ . ¢t
are a3, as)y (i.e. the terms in section (I1I-B) that
depend on node v and its children Ch(v)).

By evaluating F, (I, Wges(), ) at the root nodes
we obtain the full energy of the model E(I, W, a).

B. Dynamic Programming with Pruning

We can use the recursive formulation of the
energy, see equation (19), to perform Dynamic
Programming. But to ensure rapid inference we will
need to perform pruning by not exploring partial



state configurations which seem unpromising. We
first describe DP and then give our pruning strategy.

DP proceeds by evaluating possible states w,
for nodes v of the graph. We will refer to these
possible states as proposals and denote them by
{wyp, }, where b, indexes the proposals for node
v. Each proposal is associated with a minimum
energy E,in(w,p,) which corresponds to the lowest
possible energy of the subtree whose root node v
takes state w,;, . More precisely, consider the set
of all possible state variables {Wgcs()5,} for the
subtree with state w,, at the root node v. Then set
Emin(wu,by) = minwdes(y)yby EV(L Wdes(v),by» O{).

Recursion for parent nodes: for each parent node
v we first access the proposals {w,;, } for its child
nodes p € Ch(p) and their minimum energies
{Emin(wpp,)}. Then for each state w,, of p, we
compute its minimum energy by solving:

Emin(wu,bu) = aZata ' wzata(:[’ w#ybu)

+ Z ur)nin{Emin(wp,bp) + aim : ¢Lnt(wmbw wp,bp)}

psb
peCh(p) 7

(20)

The initialization is performed at the leaf nodes
using the data terms only (F; and FEj).

The pruning strategy rejects proposals whose
energies are too high and which hence are unlikely
to lead to the optimal solution. To understand our
pruning strategy, recall that the set of of region par-
titions is divided into three subsets S, S5, S3, where
S; contains partitions with i regions. There are |C|’
possible labels ¢ for each region partition which
gives a very large state space (since |C| = 30).
Our pruning strategy is to restrict the set of labels
¢ allowed for each of these subsets. For subset S,
there is only one region so we allow all possible
labels for it ¢! € C and perform no pruning. For
subset Sy, there are two subregions and we keep
only the best 10 labels for each subregion — i.e. a
total of 10 x 10 = 100 labels (‘best’” means lowest
energy). For subset S5, we keep only the best 5
labels of each subregion (hence a total of 5% = 125
labels). In summary, when computing the proposals
for node p, we group the proposals into three sets
depending on the partition label s, of the proposal.
If s, € S, then the proposal is kept. If s, € S,
or s, € S3, we keep the top 100 and 125 proposals
respectively. (We experimented with changing these
numbers — 100 and 125 — but noticed no significant
difference in performance for small changes).

The top-down pass is used to find the state
configurations {Wg;} of the graph nodes Vg
which correspond to the proposals {wgr} for the
root nodes. By construction, the energies of these
configurations is equal to the minimum energies at
the root nodes, see equation (20). This top-down
pass recursively inverts equation (20) to obtain the
states of the child nodes that yield the minimum
energy — i.e., it solves:

{wy :p € Ch(p)} = arg {min}{ozd“m -qpdata (T w*)

wpy, b M Iz Iz

+ Z {Emin(wp,bp) + Oéznt : w;nt (w;7 wp,bp>}}7(21)

pECh ()

which reduces to:

wy = arg min{ B, (w,p,) + ozL”t . w;nt(w;, Wpp,)}

Wy b
p (22)
We then set the optimal solution to be:

W = {w, - p eV} (23)

V. LEARNING THE MODEL

There are a range of different learning algorithms
that we could use to estimate the parameters o of
an HIM. These include maximum likelihood, as
used in Conditional Random Fields (CRFs) [14],
max-margin learning [42], and structure-perceptron
learning [17].

In this paper, we use structure perceptron be-
cause of its simplicity (and our previous experience
of using it in [43]). Structure-perceptron learning
is simple to implement and only requires us to
calculate the most probable configurations (parses)
of the model, see figure (3). By contrast, max-
imum likelihood learning requires calculating the
expectation of features which is difficult due to the
large states of HIM. Moreover, Collins [17] proved
theoretical results for convergence properties, for
both separable and non-separable cases, and also
for generalization. The structure-perceptron learning
will not compute the partition function Z(I;«) so
we do not have a formal probabilistic interpretation.

The goal of structure-perceptron learning is to
learn a mapping from inputs to output structures. In
our case, the inputs {I'} are a set of images, and the
outputs { W'} are a set of parse trees which specify
the labels of image regions in a hierarchical form
(in practice, the training set only contains the labels
of the pixels and we perform an approximation



to estimate the full parse W* for the training set,
see the implementation details in the Experimental
Results section). We use a set of training examples
{(I', W) : 4 = 1...N} and the feature functions
(I, W) € R? described in section (III-B).

The basic structure-perceptron algorithm is de-
signed to minimize the loss function:

Loss(a) = a- (I, W) —maxa - (I, W), (24)
W

where W is the correct parse for input I, and
W is a dummy variable. We use “the averaged
parameters” version whose pseudo-code is given
in figure (3). The algorithm proceeds in a simple
way (similar to the perceptron algorithm for binary
classification). The parameters are initialized to zero
and the algorithm loops over the training examples.
If the highest scoring parse tree for input I is
not correct, then the parameters « are updated by
an additive term. The most difficult step of the
method is finding W* = arg maxw « - ¢(I', W),
which can be solved by the inference algorithm
from section (IV). Hence the computational effi-
ciency of structure perceptron (and its practicality)
depends on the inference algorithm. As discussed
earlier, see section (IV), the inference algorithm has
polynomial computational complexity for an HIM
which makes structure-perceptron learning practical
for HIM. The averaged parameters are defined to be
v= SN o /NT, where T is the number of
epochs, N'T' is the total number of iterations. It is
straightforward to store these averaged parameters
and output them as the final estimates.

VI. EXPERIMENTAL RESULTS

We evaluate the segmentation performance of the
HIM on two public datasets, i.e. the MSRC 21-class
image datset [16] and the PASCAL VOC 2007
[18].

A. Experiment 1: MSRC

1) Implementation details: The MSRC dataset is
designed to evaluate scene labeling including both
image segmentation and multi-class object recogni-
tion. The ground truth only gives the labeling of
the image pixels. To supplement this ground truth
for learning, we estimate the true labels (i.e. the
states of the S-R pair ) of the nodes in the five-
level hierarchy of HIM by selecting the S-R pairs

which have maximum overlap with the labels of
the image pixels. This approximation only results in
2% error in labeling image pixels — this is for the
lowest 27 x 27 block — and shows that the quadtree
representation does not cause too many artifacts.
There are a total of 591 images. We use the identical
splitting as [16], i.e., 45% for training, 10% for val-
idation, and 45% for testing. The parameters learnt
from the training set, with the best performance on
validation set, are selected. This was used to set the
number of steps of the structure perceptron learning
algorithm.

For a given image I, the parsing result is obtained
by estimating the best configuration W* of the HIM.
To evaluate the performance of parsing we use the
global accuracy measured in terms of all pixels
and the average accuracy over the 21 object classes
(global accuracy pays most attention to frequently
occurring objects and penalizes infrequent objects).
A computer with 8 GB memory and 2.4 GHz CPU
was used for training and testing.

2) Image features and potential learning: The
image features used by the classifier (47 in total) are
the greyscale intensity, the color (R,G, B channels),
the intensity gradient, the Canny edge, the response
of DOG (difference of Gaussians) and DOOG (Dif-
ference of Offset Gaussian) filters at different scales
(13*13 and 22%*22) and orientations (0,30,60,...),
and so on. We use 55 types of shape (spatial) filters
(similar to [16]) to calculate the responses of 47
image features. There are 2585 = 47 x 55 features
in total. For each class, there are around 4,500
weak classifiers selected by multi-class boosting.
The boosting learning takes about 35 hours of which
27 hours are spent on I/O processing and 8 hours
on computing.

3) Parsing results: The segmentation perfor-
mance of the HIM on the MSRC dataset is shown
in table (II). The confusion matrix of 21 object
classes is shown in figure (4) where the diagonal
entries give the classification accuracy of individual
classes. Figure (5) (best viewed in color) shows
some parsing results obtained by the HIM and by
the E1(I, W, @) classifier term alone (i.e. p(o},|I)).
Observe that the HIM gives better results than the
classifier term alone and hence justifies the use of
the hierarchy in order to ensure long-range interac-
tions — see improvements of 20% and 32% in rows 6
and 7. This improvement is quantified in Table (II)
showing that HIM improves the results obtained by



vector o = 0.
Fort=1.T,:=1.N

ie., W* = arg maxw a - ¢ (I', W)

o Store: o' =«
Output: Parameters v = Y_, ;a"*/NT

Input: A set of training images with ground truth (I', W*) for ¢ = 1..N. Initialize parameter

o find the best state of the model on the i’th training image with current parameter setting,

o Update the parameters: o = o + (I', W) — h(TF, W*)

Fig. 3.

the classifier by 6.9% for average accuracy and 5.3%
for global accuracy. Observe also, from figure (5),
that the HIM is able to roughly capture segmentation
boundaries of different types of regions (e.g., cow
legs, sky boundaries, etc.). Observe that the results
look slightly ‘blocky’ due to the limited number of
segmentation templates.

4) Performance comparisons: In table (II), we
compare the performance of our approach with other
successful methods [16], [44], [45]. Our approach
outperforms those alternatives by 6% in average
accuracy and 4% in global accuracy. Our boosting
results are better than Textonboost [16] because of
our choice of image features. This raises a question
— would we get better results if we used a flat CRF
instead of an HIM but with the same image features?
We argue that we would not because the CRF only
improves TextonBoost’s performance by 3% [16],
while we gain 5% by using the hierarchy (and we
start with a higher baseline). Some other methods
[46], [31], [15], which are worse than [44], [45] and
evaluated on simpler datasets [15], [31] (less than 10
classes), are not listed here due to lack of space. We
also report recent progress [47], [48] on this dataset
(only available after our paper was submitted for
review). In particular, Ladicky et al.[48] achieves
better performance — 86% compared to our 81.4%
— probable because they use more powerful unary
classifiers, see table (II), and also adaptive image
partitioning.

5) Empirical convergence analysis of perceptron
learning.: The structure-perceptron learning algo-
rithm takes about 20 hours to converge in 5520 (7" =
20, N = 276) iterations. In the testing stage, it
takes 30 seconds to parse an image of 320 x 200 (6
seconds for extracting image features, 9 seconds for
computing the strong classifier of boosting and 15
seconds for parsing the HIM). Figure (6) plots the

The structure-perceptron learning algorithm. o and (I, W) represent all the parameters and factor functions from section (III-B).
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Fig. 6.  Empirical Convergence Analysis on the MSRC dataset.
The curves plot the average and global accuracy as a function of
the number of iterations (of parameter estimation). The accuracy is
evaluated on the test dataset

convergence curves evaluated by average accuracy
and global accuracy on the test set. It shows that
structure-perceptron converges in 7' = 20 epochs.

6) Object part detection by S-R pairs.: Figure (7)
shows how the S-R pairs can be used to detect parts
of objects. For example, the S-R pair consisting of
two horizontal bars labeled “cow” and ‘“‘grass” re-
spectively indicates the cow’s stomach consistently
across different images. Similarly, the cow’s tail can
be located according to the configuration of another
S-R pair with vertical bars. These results are only
approximate but they show proof of concept. In
future research we will develop this idea in order
to parse objects into their constituent parts.

B. Experiment II: PASCAL VOC 2007

The PASCAL VOC 2007 dataset [18] was used
for the PASCAL Visual Object Category segmen-
tation contest 2007. It contains 209 training, 213
validation and 210 segmented test images of 20
foreground (object) and 1 background classes. It
is more challenging than the MSRC-21 dataset due
to more significant background clutter, illumination
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Fig. 4. The confusion matrix for object classes evaluated on the MSRC dataset [16].

Textonboost[16] | PLSA-MRF [44] | Auto-context [45] | Region Ancestry[47] | HCRF[48] | Classifier only | HIM

Average 57.7 64.0 68 67 75 (72) 67.2 74.1

Global 72.2 73.5 77.7 - 86 (81) 75.9 81.2
TABLE 1II

PERFORMANCE COMPARISONS FOR AVERAGE ACCURACY AND GLOBAL ACCURACY ON THE MSRC DATASET. “CLASSIFIER ONLY” ARE
THE RESULTS WHERE THE PIXEL LABELS ARE PREDICTED BY THE CLASSIFIER OBTAINED BY BOOSTING ONLY (THE E1 (I, W, )
TERM). THE NUMBERS IN THE BRACKETS ARE THE RESULTS OBTAINED BY THE CLASSIFIER (UNARY POTENTIAL) USED IN HCRF [48].

Brookes | TKK | UoCTTI | HIM

Average 8.5 30.4 21.2 26.5

Global 58.4 24.4 - 67.2
TABLE III

PERFORMANCE COMPARISONS ON THE PASCAL VOC 2007
DATASET. THREE METHODS REPORTED IN THE VOC
SEGMENTATION CONTEST 2007 [18] ARE COMPARED.

effects and occlusions. We trained the HIM using
the same parameter settings and features as in the
experiment on the MSRC-21 dataset. Some parse
results are shown in figure (8). The segmented
results look visually worse than those on the MSRC
dataset because in the PASCAL dataset, a single
“background” class covers several object classes,
such as sky, grass, etc. while more accurate labeling
is imposed in the MSRC dataset. We compared our
approach with other representative methods reported
in the PASCAL VOC segmentation contest 2007
[18]. The comparisons in table (III) show that the
HIM outperforms most methods and is comparable
with TKK. We note that [49] obtains better results —
73.5 % correct — but they only gets 65.0 % correct
on MSRC.

VII. CONCLUSION

This paper describes a novel hierarchical image
model (HIM) for 2D image parsing. The hierarchi-
cal nature of the model, and the use of recursive
segmentation and recognition templates, enables the
HIM to represent complex image structures in a
coarse-to-fine manner. We can perform inference
(parsing) rapidly in polynomial time by exploit-
ing the hierarchical structure. Moreover, we can
learn the HIM probability distribution from labeled
training data by adapting the structure-perceptron
algorithm. We demonstrated the effectiveness of
HIM’s by applying them to the challenging task of
segmentation and labeling of the public MSRC and
PASCAL VOC 2007 image databases. Our results
show that we perform competitively with state-of-
the-art approaches.

The design of the HIM was motivated by drawing
parallels between language and vision processing.
We have attempted to capture the underlying spirit
of the successful language processing approaches
— the hierarchical representations based on the re-
cursive composition of constituents and efficient
inference and learning algorithms. Our current work
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(except the fourth “numerical accuracy” column) show the input images, ground truth, the labels obtained by HIM and the boosting classifier
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examples, HIM improves the classifier by 1%, -1% (an outlier!), 1%, 10%, 18%, 20% and 32% in terms of global accuracy.

attempts to extend the HIM’s to improve their repre-
sentational power while maintaining computational
efficiency.
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