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Object boundary detection is an important task in computer vision. Recent work suggests that this task
can be achieved by combining low-, mid-, and high-level cues. But it is unclear how to combine them effi-
ciently. In this paper, we present a learning-based approach which learns cues at different levels and
combines them. This learning occurs in three stages. At the first stage, we learn low-level cues for object
boundaries and regions. At the second stage, we learn mid-level cues by using the short and long range
context of the low-level cues. Both these stages contain object-specific information - about the texture
and local geometry of the object - but this information is implicit. In the third stage we use explicit
high-level information about the object shape in order to further improve the quality of the object bound-
aries. The use of the high-level information also enables us to parse the object into different parts. We
train and test our approach on two popular datasets - Weizmann horses [3] and ETHZ cows [24] -
and obtain encouraging results. Although we have illustrated our approach on horses and cows, we

Keywords:

Boundary detection
Low-level information
High-level information
Shape matching

Cue integration

emphasize that it can be directly applied to detect, segment, and parse other types of objects.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Object boundary detection and foreground/background seg-
mentation are important problems in computer vision, and they
are often tightly coupled.

Local cues like gradients used in classical edge detectors (e.g. [4])
are often insufficient to characterize object boundaries [20,27]. For
example, Fig. 1 shows the results of the Canny edge detector [4] ap-
plied to some natural images with cluttered backgrounds [3]. The
edge map alone does not provide enough cues for segmenting the
object. Marr [26] proposed a strategy for addressing this problem
by combining low-, mid-, and high-level cues. However, despite
some progress made in this direction [9,10,32,37], the problem re-
mains unsolved.

Recent advances in machine learning had made it more practical
to combine low-, mid-, and high-level cues for object detection. For
example, Borenstein et al. [3] combined top-down information
(learned configurations of image patches) with bottom-up
approaches (intensity-based segmentation) in order to achieve
foreground/background segmentation. In the image parsing frame-
work [35], data-driven proposals (using low-level cues) were used
to guide high-level generative models. Fergus et al. [14] built a
top-down model based on features extracted by interest point oper-
ators. Conditional Markov random fields models [22,33] were used
to enforce local consistency for labeling and object detection. Other
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approaches combine bottom-up and top-down learning in a loop
[25]. OBJCUT [21] combined cues at different levels in order to per-
form object segmentation. He et al. [17] proposed a context-depen-
dent conditional random field model to take context into account.
In related work, Wang et al. [39,40] proposed a dynamic conditional
random field model to incorporate context information for seg-
menting image sequences. More recently, Zhu et al. [41,42] built
hierarchical models to incorporate semantic and context informa-
tion at different levels.

These approaches have shown the effectiveness of of combining
cues at different levels. But, when, where and how to combine cues
from different levels is still unclear. For example, it is very difficult
to build a generative appearance model, to capture the complex
appearance patterns of the horses in Fig. 1; the patches used in
[3,7,25] cannot deal with large scale deformations and they also
have difficulties in capturing complex variations in appearance.
Other approaches, like [16,17,21,23,39,40], lead to complex models
which require solving time-consuming inference problems.

In this paper, we use a learning-based approach to learn and
combine cues at different levels. This gives a straightforward meth-
od with a simple and efficient inference algorithm. More precisely,
we use probabilistic boosting trees (PBTs) [34] (a variation of
boosting [13]) for learning and combining low- and mid-level cues.
Then we use a shape matching algorithm [36] to engage high-level
shape information, and to parse the object into different compo-
nents, e.g. head, back, legs, and other parts of horses or cows.
Our strategy relates to Wolpert’s work on stacking, which builds
classifiers on top of other classifiers, but is very different in detail.
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Fig. 1. Examples of the Weizmann horse dataset. The first row shows three typical images, each containing a horse, where Cis the boundary we want to detect and R, denotes
the foreground region. The second row displays edges detected by Canny edge detector at scale ¢ = 1.0.

We note that Ross and Kaelbling [29] also addresses segmentation
using learning, but their approach is very different and involves
motion cues and learning Markov random field models.

We compare our system with other approaches for this prob-
lem. The most directly comparable one is the work by Ren et al.
[28] which gives detailed performance evaluations for combining
low-, mid-, and high-level information. Our results show large
improvement over their approach in many respects, particularly
at the low- and mid-levels. It is less easy to make direct compari-
son with other works [3,7,21,25] because some of them [21] were
not evaluated on large testing datasets, and the details of perfor-
mance evaluation were not all given. Also some approaches
[21,25] used color images. In [7], the authors first get a shortlist
containing 10 candidates, and then pick the best one by hand,
while our approach outputs only one result for each image. Hierar-
chical methods [41,42] obtain very good results but use more com-
plex object models and require heavy inference.

2. Problem formulation

Given an image I, we assume there is an object of interest in the
foreground. The goal is to automatically detect the boundary of this
object, and thus, perform foreground/background segmentation. In
addition, it is desired to parse the object and identify its parts (e.g.
head, leg, back, etc. of a horse or cow).

More precisely, we seek to decompose an image defined on a 2D
image lattice A into two disjoint connected regions Ry, Ry so that
RoUR; =A and RyN Ry =0. Ry is the background region and R, is
the foreground (i.e. corresponding to the object). We denote a solu-
tion by:

W = (R, Ry),

We can also represent this by the object boundary curve C = R,
with the convention that the object is in the interior of the bound-
ary, i.e. Ry =interior(C). In this paper, the object boundaries are
closed curves and are represented by point sets.

Ro background, R; foreground. (1)

2.1. The bayesian formulation

The optimal solution W for for this boundary detection task can
be obtained by solving the Bayesian inference problem:

W* = arg maxwp(W|I) = arg maxwp(I|Ro, R1)p(Ro, R1), 2)

where p(I|Ro,R;) models the image generating process in the fore-
ground and background regions, and p(Ro,R;) defines the prior for
the boundary contour. For example, we can use a probability model
for the shape of the object.

However, it is difficult to use Eq. (2) directly because the image
generating process is very complicated. Objects, such as horses and
cows, have complex image appearance due to their varied texture
patterns and the lighting conditions. Moreover, the background is
even more varied and complex to model. Hence it is hard to model
the image appearance p(I|Ro,R;) directly although might be easier
to model the boundary shape p(Ro,Ry).

2.2. An alternative perspective

We avoid the difficulties above by defining the conditional dis-
tribution P(W|I) directly:

P(W|I) < exp{—E(W;I)}.
Then we seek to estimate:
W* = argmax P(W|I) = arg min E(W; I). 3)

From the definition of C and W, finding the optimal W is
equivalent to finding the optimal C. As such, we can rewrite Eq.
(3) as

C" =argminE(GI),
where the energy function E(C;I) is defined by:
E(C§ I) = Edis(c l) + TEshape(C)v (4)

where Ey;(C;I) models the image appearance cues discriminatively,
and Espqpe(C) models the boundary shape.

In our approach, the low- and mid-level cues are captured
implicity by Eg(C;I). The high-level cues are represented explicitly
by Esnape(C), which is analogous to —logP(Ro,R1) in the Bayesian for-
mulation given by Eq. (2). The parameter t balances the impor-
tance of E4s(CI) and Egpqpe(C) and is determined by cross-
validation.

We define E;i(C;I) to be:

Eas(C:1) = — ) logp(I(r), y(r) = O[I(.4"(r) /1))
reA/C

= logp(I(r),y(r) = 1I(¥'(1)/1)), )

reC
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where ./7(r) is a neighborhood of pixel r; p(y(r)|I(/(r))) is a dis-
criminative (classification) probability; I(-) is the intensity value(s)
at the given pixels(s); y(r) is a binary variable indicating whether
a point r is on the boundary or not, which is defined as

(r)—{l’ if reC
Yo = 0, otherwise’

If we add -, logp(y(r) = O[I(.#(r)/r)) to the first term on
the right side of Eq. (5) and subtract it from the second term on
the right side of Eq. ( ) we would have

Z log =1 (r

rec = 0|l(A (r
= O\I(W(r)/r))- (6)
The second term in the right hand side of Eq. (6) does not de-

pend on C and hence can be ignored. Therefore Eg;(C;I) can be for-
mulated as a sum of log-likelihood ratio tests:

) S 1P = T )
Fas O == 0 108 by oy ol

where p(y(r) = 1]I(.#(r))) is the discriminative probability of a pixel
r belonging to the object boundary given an image patch centered
at r. The next section discusses how we learn Eg;(C;I) to integrate
the low-level and mid-level information.

We also need to learn the shape prior term Egpqpe(C) correspond-
ing to the high-level information. We build the shape model on
exemplar based approach and use a mixture model to define a
shape prior by

Eshape(c) = - IOg [DB' Z pC :| (8)

C;eDB

EdlS C l

Z log p(y

reA

(7)

where DB includes all the shape templates manually labeled for the
training images, and p(G;) [36] allows global affine and local non-ri-
gid transformations for a template C; in the training images.

To summarize, in our model as Eq. (4), the first term Eg;(C;I)
integrates low-level and mid-level cues, and the second term Egp,.
pe(C) explicitly models the high-level shape information. One thing
worth to mention is that Eq. (7) depends on both C and the dis-
criminative model p(y(r)[I(.4"(r))). Eq. (7) is just a classification ra-
tio for a fixed C. To achieve the minimal energy in Eq. (7) w.r.t. C,
reducing the number of pixels on C will not necessarily reduce
the energy because log2¥5- 3}'( <o can be either positive or nega-
tive. Therefore, Eq. (7) will not lead to trivial solution where there
is either no point in C or C being the entire image lattice.

3. Learning E ;5(C;I)

We now describe how to learn and compute p(y(r)|I(./"(r))) in
Eq. (7). This will be performed by training classifiers which classify
a pixel r based on the image intensities I(.4"(r)) within a neighbor-
hood #/(r). The information within the neighborhood is required
because images are locally ambiguous.

The size of the neighborhood .4"(r) determines the range of con-
text used to classify the pixel. There are two extreme situations.
Firstly, the neighborhood is very small and may, in the extreme
case, only contain the pixel r itself. It is easy to learn and compute
a classifier defined over a small neighborhood, but the classifica-
tion performance will be poor since the neighborhood contains
too little information to classify the pixel. Secondly, the neighbor-
hood is very large - e.g., the entire image. In this case there is suf-
ficient information in the neighborhood to classify the pixel. But
the problem is how to learn and compute a classifier that takes
advantage of this information. Moreover, training a classifier over
such a large neighborhood requires a large amount of data to avoid
over-fitting.

In this paper, the low-level cues will be defined using small
sized neighborhoods. The mid-level cues will take the low-level
cues as input and combine them using larger neighborhoods and
hence introduce short and long range context.

3.1. Low-level cues

Classic edge detectors [4,18] only depend on the intensity gra-
dients which correspond to using a very small neighborhood
A°(r). The relative ineffectiveness of Canny edge detectors, as
shown in Fig. 1, demonstrate that these local cues are not rich en-
ough. Learning-based approaches using larger neighborhoods have
shown to outperform the Canny edge detector [11,20,27], and our
approach follows and extends this line of work.

To model low-level cues, we learn classifiers based on image
properties computed in local neighborhoods. We learn two types
of low-level cues. Firstly boundary-cues p(y(r)|I(#"(r))) which clas-
sify whether pixels are on (i.e., y(r) = 1), or off (i.e., y(r) = 0), the ob-
ject boundary. Secondly, body-cues p(z(r)|I(#'(r))) which classify
whether a pixel is foreground (i.e. inside the object, z(r)=1) or
background (i.e. outside the object, z(r) = 0).

3.1.1. Learning boundary cues

We model boundary-cues by p(y(r)[I(/"
age patch I(4(r)) centered at pixel r.

The number of samples from a single training image is the num-
ber of pixels in that image, of which most (over 90 percent) are
negative samples.

We use Boosted Edge Learning (BEL) [11] which is designed for
learning edge detection. We restrict it to learning boundary cues -
i.e., we distinguish between boundary and non-boundary, instead
of between edge and non-edge. BEL is trained by using the proba-
bilistic boosting tree (PBT) algorithm [34], which is a variant of
boosting. We briefly describe below how to learn and compute
py(r)[I(4(r))), and we refer to [11] for more details.

We use a dictionary of 30,000 candidate features. These include
image intensity, image gradients, Haar filters, Gabor filters, differ-
ences of Gaussians (DOGs), and differences of offset Gaussians
(DOOGs)). All are evaluated at different scales and locations.

For training:

(r))) using 31 x 31 im-

(1) Collect a set of training images in which the object bound-
aries are manually labeled.

(2) Sample a number of positive examples (image patches with
a boundary pixel at the center) and negative examples
(image patches with a non-boundary pixel at the center) to
form a training set.

(3) Train a boosting classifier [13] using a dictionary of roughly
30,000 features computed in each image patch - including
Canny edges at different scales, the magnitude and orienta-
tion of gradients, Gabor filter responses at different scales
and orientations, and Haar filter responses [38].

(4) Divide the training set (or bootstrap more samples from the
training images) into left and right branches and recursively
train sub-trees.

(5) Return to step 3 until a stopping criterion is met (either it
reaches the specified level or there are too few training
samples).

For testing:

(1) Scan through the input image pixel by pixel.

(2) Compute the discriminative probability p(y(r)[I(./"(r))),
based on the features selected by the overall classifier from
a 31 x 31 image patch.

(3) Output the edge probability map.
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In the testing procedure, the overall discriminative probability
is given by:

(y ‘l /V Zq “17
zzq < b IA(T)) -
Iy

/(1)))q(l 1(A(r)))

q(La|l, (A7) q (L [1(A7(r)))

where the I;'s are augmented variables denoting the tree levels in
PBT. ;€ {+1,—1} indicates which branch node i points to, i.e.,
li=+1 and ;= -1 point to the right branch and the left branch
respectively. q(L|li_1,---,11,I(.4/"(r))) is the discriminative probabil-
ity computed by the AdaBoost strong classifier at the node specified
by (i, - -lhn_1), and gy(r)|ly, - - -, 1;,I(4"(r))) is the fraction of exam-
ple having class label y at the leaf node, which is estimated in the
training process. At the top of the tree, information is accumulated
from its descendants and an overall posterior is calculated.

Fig. 2a illustrates the boundary classifier learnt using BEL.
Fig. 2b shows an example of the output probability boundary
map representing the probability of each point being on the
boundary (the darker the pixel the higher the probability is). The
result shows significant improvement over the Canny results in
Fig. 1.

3.1.2. Learning body cues

Our second low-level cue exploits knowledge about the regional
properties of the object and the background. This provides comple-
mentary information to the edge-based information described
above.

We learn a model p(z(r)[I(.#"(r))), where z(r) = 1 if pixel r is on
the object, and z(r) =0 otherwise. This gives an implicit way to
model the texture and other appearance properties of objects
and the background. We use PBT learning, as described above.

We use a dictionary of 35,000 features. These include the 30,000
features used for the boundary classifier with an addition 5000 fea-
tures which are histograms of Gabors filters (designed to capture
texture properties of regions).

Fig. 2c shows an example of a probability map of the foreground
object (the brighter the pixel, the bigger the probability is).

3.2. Mid-level cues: exploit context information

We now proceed to build a mid-level classifier which combines
low-level cues such as the boundary map and the body map. This
enables us to add context information - for example, a boundary
edge is more likely if the body map provides evidence for back-
ground on one side of the edge and for foreground on the other
side. This gives a refined boundary map.

More precisely, we learn a probability distribution for the re-
fined boundary map pg(y(r)|I(4"(r))). This will be based on the
probability boundary map p(y(r)[I(.#"(r))) and the probability body
map p(z(r) 14 (r))).

Conditional random fields [22] or hierarchical random field
models [1,16,23] are able to exploit some context information,
but are limited by the number of neighborhood connections and
require time-consuming inference algorithms. By contrast, we
learn a direct classifier to combine the context information.

We design two schemes to learn the refined boundary map

PrY@)I(A(T))).

3.2.1. Short-range context

We first use a simple approach to learn another classifier using
inputs from the edge and body maps. To improve the precision of
the edges, we prune the edge map by removing all points for which
there is no Canny edge at small scale (e.g., ¢ = 1.0). This assumes
that the majority of the boundary pixels will appear in the Canny
edge map at small scale.

N(z)—py | NE)

4 -
=5

& Bk I !_( a ' - E

features

(a) IMlustration of the boundary classifier based on BEL.

(b) The boundary map output by the classifier.

(¢) Classified foreground.

Fig. 2. The boundary and body maps based on BEL and learnt by PBT. Panel (a) shows some positive examples and features, (b) shows a boundary map, which is clearly better

than the Canny edges, and (c) shows the body map.
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From Fig. 1, we can see that the Canny edge map has good local-
ization, but it has many false positives. The probability boundary
map has fewer false positives, as shown in Fig. 2b, but poor local-
ization. Therefore, the Canny edge map provides complimentary
information to probability boundary map. For a pixel r on the Can-
ny edge map, we consider image patches of size 31 x 31 centered
at pixel r. We then train a classifier using a dictionary of 5000 fea-
tures, which includes Haar feature responses from the edge map,
the body map, and the Canny edge map. The training/testing pro-
cedure is identical to that described in learning/computing pro-
cesses of the probability boundary or body map. Fig. 3a shows
the result of an example image.

We call this “short-range” context information and it is illus-
trated in Fig. 4a.

3.2.2. Long-range context

We design an alternative strategy to exploit long-range context.
Intuitively, any point on the boundary of the foreground object has
similar appearance properties to a point on “the other side” of the
object.

Given a boundary point, we shoot a ray along its normal direc-
tion until it hits another boundary point. Often: (1) the intensity
patterns in between the two boundary points obey some regulari-
ties and (2) the local geometric properties of the two boundary
points also have some consistency (e.g., the gradient directions
are parallel). This relates to previous work [15] which uses Gestalt
rules [19] to exploit this type of information.

This motivates us to study image patches centered at two
points, and measure their similarity. As before we use patches of
size 31 x 31.If both points are on the object boundary, we consider
them as a positive pair example; otherwise, it is a negative pair
example. Then we build a classifier to classify the positive and neg-
ative examples.

For each example, we extract around 20,000 features, which in-
clude differences of the texture patterns of the two image patches,
differences of geometric properties of the two ending points, differ-
ences of filter responses of the two ending image patches, and dif-
ferences between the boundary/body map of the two ending
points. Fig. 4b shows an illustration. The training process is similar
to that described earlier, except now each example is a pair of
points. The classifier tries to select and combine a set of features,
based on these difference measures, to estimate how likely two
points lie on the boundary of an object. In the testing stage, for
every point in the Canny edge map, we shoot a ray along its normal
direction. For any edge point on the ray, we apply the learned clas-
sifier to compute how likely the two form a pair of object boundary
points. The probability of each point being on the object boundary
is given by the maximal probability among all the pairs for this
point. Our results also demonstrate an improvement over the ori-
ginal boundary map and Fig. 3b shows some results.

In Fig. 3a and b, we observe that both short-range and long-
range context information improve the quality of the boundary

body map

i e b EE-
ﬁ’?w‘ﬂ]

boundary map

"’m%ag o 6;'{7“‘%2?
Canny at a low scale
(a) Short-range context information

'l'vjl—f zi\f‘

l:“i%

o .q_.-:ﬁ-_.-\};\_vv——'-W_j) i =)

g ‘Léf" &4
I e T ¢ e R A =1 v
Canny at a low scale

(b) Long-range context information

Fig. 4. Illustration of the refined probability map using short-range and long-range
context.

map, with the classifier using short-range context being more
effective. We will give quantitative measures and a detailed analy-
sis in Section 6.1.

(a) Short Range Context

(b) Long Range Context

Fig. 3. The refined probability map on an example image.
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4. Incorporating high-level information by shape matching

Once the refined boundary map pg(y(r)|I(/"(r))) has been
learned by integrating the low- and mid-level cues, we proceed
to infer a solution C from Eq. (4). This requires taking into account
the shape prior Eguqpe(C), which is regarded as high-level informa-
tion in this paper. We perform this by shape matching using a
method reported in [36]. This method can be viewed as a probabi-
listic combination of the approaches in [5] and shape context [2].
Recall that Egyqpe(C) is represented by a mixture model, as shown
in Eq. (8). We formulate the term pc, (C) oc €Xp{—Esnape(C, Ci)} by

Eshape(c C) Ematchmg(c T (Cl)) +Eprior(9—) (9)

where C; denotes one of the templates in the training set, and
7 = (A, f) includes a global affine transformation (A) and a local
non-rigid deformation (f) on C. The first term is the similarity be-
tween C and a transformation of C; by 7, and the second regularizes
the transformation 7. Intuitively, we prefer the template which
best matches to C without undergoing a large deformation.

We represent the shape as a point set sampled from the bound-
ary. Suppose the point set for the target shape is {x;i=1,...,M},
which is sampled from the refined boundary map according to
probability pg(y(r)[I(.4(r))); we denote the template point set as
{ys:a=1,...,N} which is sampled from the boundary of a training
object. We want to morph the template to the target with a small
energy on the transformation. Then the energy function for the
shape matching can be defined as in Eq. (10):

M N
shape {mm} A f = Z Zmai{Hxi _Aya _f(YG)HZ}

M N M N
+AILFP 4+ T Zma, logmgi — ¢ me (10)
i=1 a=1 i=1 a=

where (A,f) is the geometric transformation and A corresponds to
the affine part and f is the non-rigid deformation part. mg; € (0,1)
measures the goodness of match between point X; and the trans-
formed point Ay, + f(y,); Lf measures the smoothness of the non-ri-
gid part of the transformation; /, T, and { are positive parameters
which balance the importance of each term; The detailed explana-
tion of these parameters and the optimization process can be found
in [36]. Fig. 5 gives an illustration of the basic idea.

The overall shape matching algorithm combines low-, mid-, and
high-level information, and it give an estimate of the object bound-
ary. Using this estimate, we can perform foreground/background
segmentation, object detection, and object parsing.

An alternative way to incorporate high-level information is to
use GrabCut [30] algorithm, initialized with the probability body
map. However, this approach was not used in this paper.

5. Outline of the algorithm

We are now equipped with all components of our algorithm so
we give a complete outline.Training:

(1) Collect a set of training images with the object boundaries
manually annotated. Obtain the corresponding shape tem-
plates using these labels.

(2) Train a classifier on the object boundaries to obtain the
boundary maps.

(3) Train a classifier on the foreground label maps to obtain
body maps.

(4) Train an overall classifier based on the low-level maps (using
either short-range or long-range context, see Section 3.2).

Testing, given an input image:

(1) Run the boundary classifier to obtain the boundary map.

(2) Run the body map classifier to obtain the body map.

(3) Run the overall classifier using context to obtain a refined
boundary map (short-range context gives a better result).

(4) Sample points based on the probability boundary map
obtained in step 3.

(5) Use the shape matching algorithm to match the obtained
point set from step 3 against the shape templates in the
training set, select the one with the smallest energy as the
best match.

(6) Based on the best matching result, refine the boundary map,
and perform foreground/background segmentation and
object parsing (see Section 6.1).

Fig. 6 illustrates our approach showing how it uses low-, mid-,
and high-level cues. The Canny edge uses low-level cues since it
uses the intensity gradient only. The low-level boundary and body
maps also depend on local properties of the image. The mid-level
cues use either short-range context or long-range context, which
is more like traditional Gestalt grouping laws. Finally, the high-le-
vel stage uses object models to clarify ambiguities which cannot be
resolved without using explicit shape information.

6. Experimental results

We tested our approach on two publicly available datasets: the
Weizmann horse dataset [3] and the ETHZ cow dataset [24]. Both
datasets contain manually segmented foreground objects for train-
ing and evaluation. In both the experiments, we perform the task of
object boundary detection, foreground/background segmentation,
and object parsing (based on further annotated object parts). In

P \\ S
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Za ﬁJ\—\

A

(a) Target shape C

(b) Transformation 7

(c) Source shape C};

Fig. 5. Illustration of a shape matching case in which a source shape C; is matched with a target shape C through a transformation 7.
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Fig. 6. Illustration of our methods engaging the low-, mid-, and high-level cues.

this section, the probability maps are all normalized to [0,255] for
the purpose of visualization.

6.1. Results on the Weizmann horse dataset

In this experiment, the system was trained on 150 gray-scale
images randomly selected out of 328 images from the Weizmann
horse dataset [3], and we used the rest 178 images for testing.
For each image, there is only one foreground object and it mostly
appears in the center (but this knowledge is not exploited by the
algorithm). But these images have large variations in appearance,
scale, and pose.

We used the boundary and body probability maps which are
learnt as described in Section 3.1.1. Our analysis shows that the
boundary map mostly selects Haar features while the body map

prefers histograms of Gabors. This is not surprising since histo-
grams of Gabors are effective at capturing the appearance of tex-
ture patterns [43]. Fig. 7a shows some tests images, with the
detected boundary and body maps shown in Fig. 7b and c,
respectively.

The training of these low-level cues needs 10 h (it depends on
the size of the training set and the parameter settings of the prob-
abilistic boosting tree algorithm). The testing stage requires about
15 s for a typical 300 x 200 gray scale image. Standard code opti-
mization techniques can reduce these times significantly. The com-
puter used in this experiment was an ordinary PC with 2.4 GHz
CPU and 1.0 GB memory.

After the low-level cues were learnt, we trained another classi-
fier to use the mid-level cues. We trained both short-range context
and long-range context, as described in Section 3.2. Our results
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show that short-range context gives better results, see Figs. 10 and
3a and b. The output is the refined boundary map, as shown in
Fig. 7d. This stage — using mid-level context — gives the biggest per-
formance improvement in our system, as illustrated in Fig. 10.

Finally, we incorporate the high-level shape models to improve
the results of the refined boundary map. We use the exemplar
based approach described in Section 4. We sample 300 points from
the refined boundary map and match them to the 150 exemplars
by minimizing the energy given by Eq. (4). We define the final
match to be the match with lowest energy. The time spent on
matching is about 1 min despite having 150 templates.

We use the final match to improve the refined boundary map by
removing false alarms and inferring missing parts. In particular, we
make the following changes to obtain the final boundary: (I) If part
of the refined boundary map is far from the shape matching result,
then we decrease its magnitude by 10%. (II) If part of the Canny

edge map is close to the final match, then we enhance the corre-
sponding part of the refined boundary map by 10%. Given the final
boundary as a probability map, we apply thresholding to get a bin-
ary map.

In addition, the final match enables us to parse the object and
detect parts, such as the head, back, and legs (by annotating the ob-
ject exemplars with these labels). Fig. 7e shows the final results for
some test images including the labels of object parts.

We refer to Fig. 8 for more results on the horse dataset. Fig. 9
shows some “failure” examples by our algorithm, which are mostly
due to confusing and cluttered backgrounds. For these examples,
even human beings have difficulties in telling where the horse
boundary is.

We use precision-recall to evaluate the performance of our sys-
tem, which have been widely used in information retrieval [8]. The
task of boundary detection has a large skew of class distributions,

=, ‘__‘;.'__

(d)

Fig. 7. Results on some testing images from Weizmann horse dataset: (a) shows input images in gray scale; (b) are the probability oundary maps; (c) shows the probability
body maps; (d) demonstrates refined boundaries based on the short-range context information; and (e) gives final boundary maps after shape matching, and also labels
different parts of the horses according to the shape matching results. These images are representatives of the dataset, which have different appearances, poses, scales, and

lighting conditions. We see how cues at each level help to detect the boundaries.
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Fig. 8. More results on some testing images from Weizmann horse database. See Fig. 7 for the meaning of each column. For the clarity, the labels of the parsing result are not
presented.

so precision-recall rate would be a better measure than ROC [8]. ground truth, and recall is the fraction of the object belonging
Precision is the fraction of the object detected that belongs to the to the ground truth that is successfully retrieved. Formally, we set
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Fig. 9. Some failure results on test images from Weizmann horse database: (a) shows input images; (b) are the probability boundary maps (c) shows the probability body
maps; (d) demonstrates refined boundaries based on the short-range context information; and (e) gives final boundary maps after shape matching. These images are among
the most difficult images in the data set, even humans find it difficult to detect the horse boundary precisely.

D] and recall:‘Dm",

precision =
DI IL|

where L is the manually labeled target, and D is the detected target
which is obtained by applying a threshold value to the final bound-
ary probability map. The harmonic mean of precision and recall is
called the F-measure or balanced F-score, which is defined as:

F = 2(precision x recall)/(precision + recall),

and is often used as a measurement of the overall performance of
the system [8].

We allow for a tolerance of 3 pixel-width and a boundary point
within 3 pixel range of the ground truth is considered as a success
(this is a typical procedure in the evaluation of the edge/boundary
detection algorithm [27]). Changing the threshold for obtaining
detection result would result in a set of different precision and re-
call values. Fig. 10 shows the average precision and recall values,
and the four black curves are produced by our system. As we can
see, the performances improved when we use cues from more
levels.

We observe that short-range context information is more effec-
tive than long-range context information, as shown in Figs. 10 and
3. This may be because the long-range context relies on pairs of im-
age patches which are more difficult to classify than the single
patches used by the short-range cues.

Another observation is that we get a big performance improve-
ment by adding mid-level context cues to low-level cues than
when we add the high-level shape cues. This is surprising, but
may occur because the shape models used are not rich enough to
capture the large variations of articulated objects like horses and
COws.

Fig. 10 also shows the performance curves from [28] for com-
parison. Our system achieves better performance when their sys-
tem was trained on 174 images.

We obtain a similar set of precision-recall measures by compar-
ing the results with the ground truth. The detection rate curve is
shown in Fig. 11. For example, Fig. 11 shows that at a certain
threshold value, we have 95% of the foreground pixels and 83% of
the background pixels correctly labeled. This is better than the per-
formance reported in [3,25] (the two percentages they reported are
95% and 66%, respectively).

c
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Fig. 10. Precision-recall curves for boundary detection of the horse testing images.
The four black curves show the results of the proposed approach. Results on the
same dataset from [28] are also displayed for a comparison (three grey/green
curves). The F value shown in the legend is the maximal harmonic mean of
precision and recall and provides an overall ranking. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 11. Performance for the task of foreground/background segmentation on the
Weizmann horse database.
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There are other works [3,7,12,21,25,28,31] in the literature
tackling similar problem. The most comparable approach is the
work of Ren et al. [28] which gave detailed performance evalua-
tions for combining low-, mid-, and high-level information. Our re-
sults show improvements at all levels, as shown in Fig. 10. It is not
straightforward though to make direct comparison with other
works [3,7,21,25], because some of them [21] were not evaluated
on large testing datasets, and the evaluation details are missing.
Also, some approaches [21,25] used color images, which are less
challenging than gray-scale images used in our work. Levin et al.
[25] also assumed that the position of the object is roughly given
while there is no such assumption in our work; Kumar et al. [21]
only evaluated their algorithm on 5 images which is not as con-
vincing as our evaluation results because we evaluated on 178
testing images. Moreover, the details of the performance evalua-
tion in [3,21,25] are not so clear. In [7], the authors first get a short-
list of 10 candidates and manually pick the best one from the
shortlist. Corso [6] used Boosting on Multilevel Aggregates (BMA)
to add features into PBT classifier, and tested on the Weizmann
horse dataset. Our approach is a simple and clear one, and the
speed of our algorithm is about 1.5 min per image, while speed is
not reported in most of the above works.

(b) |
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Fig. 12. Results on some test images from the cow dataset: (a) shows the input images; (b) shows the probability boundary maps; (c) shows the final body maps after refined
by the high-level shape model; (d) demonstrates refined boundaries based on the short-range context information; (e) gives final results after shape matching, and also the
different parts of the horses are labeled according to the shape matching results; and (f) gives the segmentation results. These images are representatives of the dataset, which

have different appearances, poses, and background conditions.



1066 S. Zheng et al. / Computer Vision and Image Understanding 114 (2010) 1055-1067

Our approach can also be applied to color images by designing
color-dependent features, and we expect the system performs bet-
ter on color images than that on gray scale images since color
images provide richer information.

6.2. Experiment on the ETHZ Cow Dataset

In this experiment, the system was trained on 40 randomly se-
lected images from a dataset consisting 112 gray scale cow images
[24], and we used the remaining images for testing. Compared with
the Weizmann horse dataset, the ETHZ cow dataset has relatively
less pose change, smaller pose variations, simpler texture proper-
ties, and less cluttered backgrounds.

We use the same process as in the horse segmentation case,
with identical parameter settings. It took less training time due
to less number of images used with relatively simpler foreground
and background. Fig. 12 shows several typical images in this data-
set, with the corresponding results computed.

Fig. 13 shows the precision-recall curve for detected bound-
aries. The performance on this dataset is better than that of the

Precision

BEL(F=0.59)
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Fig. 13. Precision-recall curves for boundary detection of the cow testing images.

The F value shown in the legend is the maximal harmonic mean of precision and
recall and provides an overall ranking.
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Fig. 14. Performance for the task of foreground/background segmentation on the
cow dataset.

horse dataset. We observe that the short-range context informa-
tion improves the curve significantly, and the high-level shape
information further improves the performance.

Fig. 14 shows the performance for the task of foreground/back-
ground segmentation on the cow dataset. As we can read from the
curve, the performance is encouraging: we can achieve 95% accu-
racy of the foreground and 96% accuracy of the background .

The performance of OBJ CUT [21] on the ETHZ Cow Dataset was
reported as 95.8% accuracy of classification rate for the foreground
pixels and 98.7% accuracy for the background pixels. However, in
[21], color information was used and the performance was evalu-
ated only on 6 images in the testing stage. On the other hand,
the proposed system was evaluated on 72 gray scale images in
the testing stage. Levin et al. [25] reported the performance on
cow data set about 92% of pixel classification accuracy. However,
there is no accuracy for foreground pixel and background pixels.
Furthermore, the size of the testing dataset in [25] is unclear.

7. Conclusions and discussions

In this paper, we have proposed a general learning based ap-
proach for object boundary detection and foreground/background
segmentation. The algorithm described in this paper uses low-,
mid-, and high-level cues. The proposed approach incorporates
the low- and mid-level cues by a sequence of classifiers which re-
quires only limited computation. This can be contrasted with alter-
native ways to introduce context which require sophisticated
inference algorithms, - e.g., see [21,25,35], The learning processes
relies on standard existing methods and the same approach is used
for training all the low- and mid-level cues. Our experiments, on
the Weizmann horse dataset and ETHZ cow dataset, show big
improvement over many existing approaches. We also evaluate
the effectiveness of each stage of our approach, which facilitates
future research by identifying the importance of different cues.

The current limitations of our proposed approach are: it only
works for single objects, the high-level model is not adequate to
capture the bigger variations of the objects, and the link between
low-, mid-, and high-level information is not yet fully clear.
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