
Author’s Accepted Manuscript

Adaptive occlusion state estimation for human pose
tracking under self-occlusions

Nam-Gyu Cho, Alan L. Yuille, Seong-Whan Lee

PII: S0031-3203(12)00398-6
DOI: http://dx.doi.org/10.1016/j.patcog.2012.09.006
Reference: PR4595

To appear in: Pattern Recognition

Received date: 27 September 2011
Revised date: 16 July 2012
Accepted date: 2 September 2012

Cite this article as: Nam-Gyu Cho, Alan L. Yuille, Seong-Whan Lee, Adaptive
occlusion state estimation for human pose tracking under self-occlusions, Pattern
Recognition, http://dx.doi.org/10.1016/j.patcog.2012.09.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

www.elsevier.com/locate/pr

dx.doi.org/10.1016/j.patcog.2012.09.006
dx.doi.org/10.1016/j.patcog.2012.09.006
dx.doi.org/10.1016/j.patcog.2012.09.006
dx.doi.org/10.1016/j.patcog.2012.09.006
dx.doi.org/10.1016/j.patcog.2012.09.006
dx.doi.org/10.1016/j.patcog.2012.09.006


Adaptive Occlusion State Estimation for
Human Pose Tracking under Self-Occlusions
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Abstract

Tracking human poses in video can be considered as the process of inferring the

positions of the body joints. Among various obstacles to this task, one of the most

challenging is to deal with ‘self-occlusion’, where one body part occludes another

one. In order to tackle this problem, a model must represent the self-occlusion be-

tween different body parts which leads to complex inference problems. In this pa-

per, we propose a method which estimates occlusion states adaptively. A Markov

random field is used to represent the occlusion relationship between human body

parts in terms an occlusion state variable, which represents the depth order. To

ensure efficient computation, inference is divided into two steps: a body pose

inference step and an occlusion state inference step. We test our method using

video sequences from the HumanEva dataset. We label the data to quantify how

the relative depth ordering of parts, and hence the self-occlusion, changes during

the video sequence. Then we demonstrate that our method can successfully track
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human poses even when there are frequent occlusion changes. We compare our

approach to alternative methods including the state of the art approach which use

multiple cameras.

Keywords: 3D human pose tracking, Computer vision, Self-occlusion

1. Introduction

The goal of human pose estimation is to find the human body configuration in

2D or 3D space from an input image. Pose tracking refers to the case when the

input is an image sequence. Pose tracking has many potential applications such

as human motion capture without using markers, Human Computer Interactions

(HCI), Human Robot Interactions (HRI), video surveillance, etc. A marker-free

human motion capture system has great advantages in an environmental setting,

since it only uses one or a set of cameras, while a marker-based motion capture

system requires not only a set of markers, but also special cameras (e.g., infrared

cameras).

After pioneering work by Rohr [1] more than a hundred papers have been pub-

lished on human pose estimation during the last two decades [2]. This research

can be divided into two categories: discriminative approaches and generative ap-

proaches. Discriminative approaches learn mapping functions between the human

pose and sets of features extracted from images. These methods can find the best

matching pose quickly, and also give highly accurate results when the input image

is similar to the training data. But, they have poor performance when the input im-

age differs markedly from the training data. Model-based generative approaches

use graphical models, e.g., Bayesian networks or Markov networks. In these ap-

proaches, graph nodes represent the state of a human body part and graph edges
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model the relationships between the parts. Probability distributions are defined

over this graphical structure to specify the probable poses of human figures and

how they generate features in the image. Generative methods have the advantage

that, unlike discriminative methods, they can deal with novel poses which the sys-

tem has not been trained on. However, they suffer from exponentially increasing

computational complexity of inference, largely due to the self-occlusion problem.

Self-occlusion means that one body part occludes another one, therefore, one

body part will be overlapped by another one in the image. For example, it oc-

curs when a human rotates with respect to the camera or a human is performing

dynamic motion, such as boxing. Self-occlusion poses challenges for standard

methods for object detection. For example, pictorial structures methods [3], which

represent the human body as a set of linked rectangular regions, does not take self-

occlusion into account. Sigal et al. [4] argue that the self-occlusion problem can

be reduced by explicitly modeling it by an occlusion-sensitive likelihood model.

This works well if the occlusion states (i.e. the depth ordering of parts) is known,

for example if it is specified at the start of the motion and then does not change

over time. But, in practice, the depth order of object parts – e.g., right arm, torso,

and left arm – will change during a motion sequence, as we will quantify in our

experiments.

In this paper, we propose an adaptive self-occlusion state estimation method

that estimates not only the body configuration but also the occlusion states of body

parts. The occlusion states are modeled as a state variable which takes three val-

ues and which represents the depth order between pairs of body parts, and hence

enables adaptive estimation of the occlusion states. To simplify the combinatorial

problem of estimating the occlusion states, we propose a novel inference scheme
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that estimates the body pose and occlusion states separately. Our method is based

on the following experimental observation: when the overlapping region (i.e. the

self-occlusion) between body parts in the image is small, then pictorial structures

[3] and the self-occlusion reasoning approach [4] give similar tracking perfor-

mance. But as the overlapping region between two body parts expands, the track-

ing performance of [3] decreases while [4] maintains relatively high performance,

provided the depth order is known and unchanging. From this observation, we

postulate that if we can find overlapping body parts with small overlapping regions

(where pictorial structures have fairly good performance) then we can estimate,

and hence update, the occlusion state of overlapped body parts. This information

can be used for the next inference step to simplify the search. In short, we use

the occlusion estimates from the previous time frame to simply the estimation of

body pose in the next frame, hence enabling us to re-estimate the occlusion states.

This leads to efficient estimation of the occlusion state and prevents a possible

combinatorial explosion.

2. Related Work

Estimating 2D human pose is difficult because of image noises (e.g., illumina-

tion variation and background clutter), self-occlusion, and the varieties of human

appearances (e.g., clothing, gender, and body shape) [5, 6]. Estimating and track-

ing 3D human pose is even more challenging because of the large state space of

the human body in 3D and our indirect knowledge of 3D depth [7].

Discriminative approaches proposed matching algorithms which specify map-

pings between 2D features extracted from the image and 3D object models. For

example, Agarwal et al. [8] used shape context features which can be matched
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to the 3D object models. Lee et al. [9] proposed a method that matches image

descriptors to silhouettes of the 3D object. Raskin et al. [10] also matched to

3D silhouettes and proposed an annealed particle filtering method to perform the

matching. But these approaches suffer from the ambiguities of the input images.

Although the silhouette is fairly easy to extract, it has limited power to discrimi-

nate between possible 3D poses largely because of self-occlusion. Using multiple

cameras can help handling self-occlusion problem by summing up all possible

information from each camera [11, 12]. It also helps other fields such as action

recognition [13, 14].

Model-based generative approaches use graphical models to represent humans

and define a conditional probability distribution for the input image given the ob-

ject pose. These graphical model approaches algorithms to infer the most probable

3D pose. Particle filters [15] is a standard way to perform inference using these

models. In particular, Sminchisescu et al. [16] implemented a mixture density

propagation approach for addressing the depth ambiguity problem from a sin-

gle viewpoint. Bernier et al. [17] and Gupta et al. [18] used multiple cameras

to overcome the depth ambiguity of input images, but these methods are inap-

plicable to video surveillance applications where there is typically only a single

camera. Having a strong priors also can help for tracking motion [19]. However,

it becomes hard when try to learn from various motions. In general, inference on

graphical models suffer from computational complexity that increases exponen-

tially as the number of nodes increases, although approximate methods like Belief

Propagation (BP) can sometimes be used to reduce complexity [20]. Variants in-

clude non-parametric Belief Propagation (NBP), which represents distributions

non-parametrically (e.g., avoiding Gaussian assumptions) and use Monte Carlo
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sampling methods [17]. But typically large numbers of particles are required by

this approach, as the complexity of the model increases, which becomes very

computationally expensive although there are ways to improve this, such as Mean

Shift Belief Propagation (MSBP) [21].

The use of generative models for objects for pose estimation and tracking is

made challenging because of occlusion, which includes self-occlusion between

different parts of the object. Occlusion not only complicate the modeling but also

make the inference task considerably harder. It can result in inaccurate measure-

ments of the object or the object parts. Recent methods suggest addressing the

problem by using a state variable to represent the pseudo depth which depends on

the object pose. This state variable enables us to improve the generative model by

specifying which parts of the object are visible or invisible [22, 23].

For human pose estimation, the self-occlusion problem is the more challeng-

ing. Body parts tend to have similar visual appearance and so it becomes hard

to distinguish them by image measurements (otherwise we could deal with self-

occlusion by estimating which body parts are present directly from the image).

Sigal et al. [4] developed an approach to human pose estimation building on

previous work on hand tracking with self-occlusion [24]. Sigal et al. developed

an ‘occlusion-sensitive likelihood model’, which used hidden variables to specify

the visibility of pixels. Wang et al. [25] used this occlusion-sensitive likelihood

model to estimate 2D human pose. They used a linear programming algorithm to

get fast inference under self-occlusion. But all these methods assume the depth

ordering of body parts is known in advance. Hence they cannot be directly applied

to applications like tracking where the depth order of parts keeps changing (e.g.,

for boxing or dancing).
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Our approach in this paper builds on Sigal et. al [4]. We use an explicit occlu-

sion state variable that represents not only the depth order but also the visibility

of different body parts. This enables us to relax the assumption that depth order,

and part visibility, is unchanging. Instead we develop an adaptive inference algo-

rithm which enables us to update the occlusion state variable while estimating the

3D body pose. This enables us to track human motion efficiently without making

assumptions about the depth order.

3. The Adaptive Occlusion State Estimation Method

3.1. Overview of the Adaptive Occlusion State Estimation Method

The proposed adaptive occlusion state estimation method is formulated by a

probabilistic graphical model with a corresponding 3D human model. Figure 1

gives an overview of the proposed method and Table 1 describes the terminology

of the graphical model. In this paper, we propose a novel inference scheme which

estimate the 3D body pose and the occlusion state Λ in alternation. The occlusion

state variable estimated at time step t− 1 is used to estimate the 3D body pose at

time t which, in turn, is used to estimate the occlusion state at time t.

Estimating the occlusion state Λ is computationally challenging. In this paper

we use 15 body parts to represent the human body and define 3 different occlu-

sion states for describing the occlusion relationships between pairs of body parts,

which yields 314 (≃ 105) possible occlusion states. These states affect the likeli-

hood functions for the image observations, which are time consuming to compute.

To address this challenge we exploit our experimental observation discussed in

Section 1. We determine a 3D cylindrical human body model from our estimates

of the body configuration and use this model to find those body parts which oc-
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Table 1: The notations used in the proposed method.

Notation Description

X = {X1, ..., X15} set of nodes for body parts

xi = (x, y, z) position of Xi in 3D space

θi = (θx, θy, θz) orientation of Xi in 3D space

Υ(Xi) set of pixels in the area in the image

where Xi is projected

Wi = {wi(u)}, (u ∈ Υ(Xi)) set of visibility variables of pixel u’s

Λ = {λ1, ...,λ15} set of occlusion state variables

λi = (λi,1, ...λi,15), λi,i = 0 set of occlusion state variables between

node Xi and the others

E = (EK , EO|Λ, ET ) set of edges

EK Xi, Xj ∈ EK such that Xi, Xj ∈ X

EO|Λ Xi, Xj ∈ EO|Λ such that Xi, Xj ∈ X

ET Xt−1
i , Xt

i ∈ ET such that Xt−1
i , Xt

i ∈

(Xt−1, Xt)

I input image

νi,j indicator for overlapping body parts

ϕi potential of observation

ψK
ij potential of kinematic relationship

ψT
i potential of temporal relationship
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Estimating  occlusion state

Updating occlusion state

Input image

Inference

Generating 3D observation

& Detecting occluded region

Estimated pose 

Figure 1: Overview of the adaptive occlusion state estimation method. There are two steps. At

the first step of time t, the body pose X̂t is estimated with respect to the occlusion states Λ̂t−1

that was estimated at the previous time t− 1. At the second step of time t, overlapping body parts

are detected from a 3D observation that was generated from X̂t. Then Λ̂t is estimated from these

detected body parts.

clude each other. The occlusion state is only estimated for these occluding body

parts (see Section 3.3.4 and 3.3.5 for the details).

3.2. 3D Human Model

Figure 2 describes the 3D human model used in this paper. This 3D human

model consists of 15 3D cylinders. Each cylinder has one of two types of DOFs

(Degrees of Freedom): C1, C2, C3, C5, C6, C8, C9, C11, C12, C14 and C15 have

3 DOF (rotation about the x, y, and z axes) and C4, C7, C10, and C13 have 1

DOF (rotation about the x axis). Cylinder C1 has 3 additional DOFs (the x, y,

and z positions). The global position and orientation of the 3D human model is
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determined by the 6 DOFs of C1.

C1

C2

C12

C13

C14

C9

C10

C11C6

C7

C3

C4

C1: Torso (TOR)

C2: Pelvis (PEL)

C3: Left Upper  Leg (LUL)

C4: Left Lower Leg (LLL)

C5: Left Foot (LF)

C6: Right Upper Leg (RUL)

C7: Right Lower Leg (RLL)

C8: Right Foot (RF)

C9: Left Upper Arm (LUA)

C10: Left Lower Arm (LLA)

C11: Left Hand (LH)

C12: Right Upper Arm (RUA)

C13: Right Lower Arm (RLA)

C14: Right Hand (RH)

C15

(a) 3D human model.

R
t

R
b

H
X

Y

Z

R
t
: top radius

R
b
: bottom radius

H: height

X-axis rotation: roll

Y-axis rotation: pitch

Z-axis rotation: yaw

(b) 3D cylinder parameterization.

Figure 2: The 3D human model used in the proposed method. The names of the body parts and

the parameterization of the 3D cylinders are described in 2(a) and 2(b) respectively.
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3.3. MRF for Adaptive Occlusion State Estimation
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(a) Graphical representation of the kinematic and
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(b) The temporal relationship.

Figure 3: The MRF used for adaptive occlusion state estimation. The left panel of Figure 3(a):

each node Xi (i = 1, ..., 15) corresponds to each Ci of the 3D human model in Figure 2(a). The

solid lines represent the kinematic relationships between adjacent body parts and the dashed blue

lines represent the occlusion relationships between body parts. The right panel of Figure 3(a): the

graphical representation of the occlusion relationships encoded by blue edges with respect to the

occlusion state variable λi,j . wi(u) represents the visibility of pixel u in Υ(Xi). Υ(Xi) is the area

in the image where Xi is projected to. Figure 3(b): the temporal relationship is set between Xt−1
i

and Xt
i .

We track the 3D human pose under self-occlusion using a Markov Random

Field (MRF) with a state variable Λ representing the occlusion relationship be-

tween body parts. These are illustrated in Figure 3. The variable wi(u) is used to

explain the visibility of pixel u, which is in the area of the image where Xi is pro-

jected. This variable depends on the occluders of Xi. Node Xi corresponds to Ci
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of the 3D human model. The probability distribution over this graph is specified

by the set of potentials defined over the set of edges. These edges are defined by

the occlusion, kinematic, and temporal relationships between nodes. This proba-

bility distribution specifies the body configuration under self-occlusion.

The primary goal of visual tracking is to determine the posterior distribution

p(Xτ |I1:τ ) for the current joint configuration of the model Xτ at the current time

step τ , conditioned on all the input images I1:τ = {I1, ..., Iτ} up to that time step

[26]. In this paper, the posterior distribution of model X conditioned on all input

images up to the current time step τ and occlusion state variable Λ is,

p(Xτ |I1:τ ; Λ1:τ ) =
1

Z
p(Iτ |Xτ ; Λτ )

∫
p(Xτ |Xτ−1)

p(Xτ−1|I1:τ−1; Λτ−1)dXτ−1

, (1)

where Z is a normalization constant. This distribution is an example of a pairwise

MRF defined over the time steps from 1 to τ [24],

p(Xτ |I1:τ ; Λ1:τ ) =

1

Z
exp

−
∑

i∈X1:τ

ϕC
i (I,Xi;λi)−

∑
ij∈E1:τ

K

ψK
ij (Xi, Xj)

−
∑

i∈E1:τ
T ,t∈1:τ

ψT
i (X

t
i , X

t−1
i )


, (2)

where Z is a normalization constant. Details will be explained in following sec-

tions.

3.3.1. The Structure of MRF for the Proposed Method

The notations and descriptions of the MRF are listed in Table 1. Formally,

the MRF is a graph G = (V,E) where V is the set of nodes and E is the set of
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edges. In this paper, the graph has state variables X,W and Λ. The edges are

defined by the set of relationships (occlusion, kinematic, and temporal) and these

relationships are modeled as the set of potentials. An occlusion relationship EO|Λ

is formed between Xi and pixels u in Υ(Xi) with wi(u), and λi,j where j is a pos-

sible occluder of Xi. The occlusion relationship changes its topology with respect

to the occlusion state variable Λ, e.g., if node Xi and Xj has no occlusion rela-

tionship, the link between Xi and Xj (over related pixels and visibility variables)

disappears. This will be explained in detail in the following section. The kine-

matic relationship EK is defined over adjacent nodes. The temporal relationship

ET is formed over X t
i and X t+1

i .

3.3.2. The States of Nodes (Variables)

The state of Xi consists of the 3D position xi and 3D orientation θi. wi(u)

represents the visibility of pixel u generated byXi and it has a binary state defined

by,

wi(u) =

 0, if pixel u is occluded

1, if pixel u is not occluded,
(3)

where the value of this state variable is determined by the state of the occluders of

Xi with respect to the state of λi (see Section 3.3.3). We introduce the state vari-

able Λ to represent the occlusion relationship between body parts. As illustrated

in Figure 4, λi,j is only defined between different body parts (i.e. λi,i = 0). It

represents one of three occlusion states between two different body parts Xi and

Xj . State 1 indicates that neither of the two body parts occludes the other one,

state 2 indicates that body part Xi occludes body part Xj , and state 3 indicates

that body part Xi is occluded by body part Xj . The topology of G (actually EO|Λ)

is changed with respect to the state of λi,j . When λi,j = 1, sets of pixels defined
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by the states of Xi and Xj are independent, and observation potentials of Xi can

be calculated without considering occluder Xj’s. Therefore, the edge between Xi

and wj(s), and the edge between Xj and wi(u) disappear. When λi,j = 2, only

those pixels ofXi that lie in the overlapping area are dependent on the pixels ofXj

(i.e., the edge between Xi and wj(s) disappears). When λi,j = 3, the dependency

is changed inversely. Consequently, in terms of adaptivity, the proposed occlusion

state adapts to the changes of self-occlusions in the input image by changing its

topology.

3.3.3. The Potentials

In order to define a conditional probability distribution for the human body

configuration X given the input image I , we use the three potentials listed below

in Table 1 in Section 3.3.1.

Observation Potential. The observation potential is calculated with respect

to the occlusion relationship between body parts. That is, a body part located at

the top of the depth order, calculated from Λ, is calculated first. We use two image

cues, color and edges, to calculate the observation potential as follows:

ϕi(I,Xi;λi) =ϕ
C
i (I,Xi;λi) + ϕE

i (I,Xi;λi), (4)

where ϕC
i is the observation potential for the color cue and ϕE

i is the observation

potential for the edge cue. We modified the occlusion-sensitive likelihood model

[4] for the observation potential with respect to the occlusion state variable Λ.

An important issue of the occlusion-sensitive likelihood model is how to find the

configuration ofWi, the set of visibility variables aboutXi, in order to measure the

observation potential. The depth order for the current image was assumed to be

known in previous studies [4] [24] [25]. However, using the proposed occlusion
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Figure 4: Definition of three occlusion states between two body parts. The topology of EO|Λ

(dashed edges in blue) changes as the value of λi,j changes. For example, when λi,j = 2 informa-

tion (probability) of node Xj about pixel u is not necessary for calculating the probability of node

Xi about pixel u. This relationship is represented by the light gray dashed edge.
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Figure 5: An example of self-occlusion between body part j and i (j = TOR and i = RLA)

where i is occluded by j. The green and gray regions are non-overlapping regions of Xj and Xi

respectively. The yellow region is the overlapping region of Xj and Xi.

state variable Λ, the configuration of Wi can be calculated deterministically. For

example, in Figure 5, Xi is occluded by Xj (i is RLA and j is TOR). In this

case, we assume that ϕj is calculated in advance. The configuration of Wi is

determined by the calculated overlapping region of Xi and Xj . Therefore, Wi can

be represented as,

Wi = {wi(u
′), wi(u)}, (5)

where wi(u
′) = 0 for u′ ∈ Υ′(Xi) where Υ′(Xi) = (Υ(Xj) ∩ Υ(Xi)). And

wi(u) = 1 for u ∈ (Υ(Xi) − Υ′(Xi)). This leads to separate calculations of the

observation potential. The observation potential for the color cue is formulated as

follows:

ϕC
i (I,Xi;λi) = ϕCvisible

i (I,Xi;λi) + ϕCoccluded
i (I,Xi;λi), (6)

where the first term is for the visible area, and the second term is for the occluded
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area. The visible term is formulated as,

ϕCvisible
i (I,Xi;λi) =

∏
u∈(Υ(Xi)−Υ′(Xi))

pC(Iu), (7)

where Υ′(Xi) = (Υ(Xi) ∩Υ(Xj)) and the pixel probability is,

pC(Iu) =
p(Iu|foreground)
p(Iu|background)

, (8)

where p(Iu|foreground) and p(Iu|background) are the distributions of the color

of pixel u given the foreground and background. These distributions are learned

from the foreground and background image patches of the data set. The occluded

term is formulated as,

ϕCoccluded
i (I,Xi;λi) =

∏
u′∈Υ′(Xi)

[zi(Iu′) + (1− zi(Iu′))pC(Iu′)], (9)

and zi(Iu′) is calculated as follows,

zi(Iu′) =
1

NO

∑
∀Xj s.t. λi,j=4

ϕC
j (I(u

′), Xs
j ;λi), (10)

where NO is the total number of parts that occlude part i.

Kinematic Potential. We model the kinematic relationship between two ad-

jacent parts using kinesiology, also known as human kinetics, which defines the

Range of Motion (ROM) of human joints [27]. Table 2 shows an example of

ROM for arm joints. In this paper, we use ROM to approximate the possible

range of orientation of adjacent body parts in 3D space, e.g., the ROM of shoulder

flexion-hyperextension is converted to the rotation range [-50 180] on the x-axis

and abduction-adduction is converted to the rotation range [-50 180] on the z-axis.

ROM is relative to its parent joint. In other words, since the human body can be

represented as a kinematic tree, the orientation of a joint is determined relative to
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Table 2: The example of ROM of joints related to arm

Joint/Segment Movement Range (degree)

Shoulder Flexion 180

Hyperextension 50

Abduction 180

Adduction 50

Elbow Flexion 140

Hyperextension 0

Forearm Pronation 80

Supination 80

Wrist Extension (dorsiflexion) 60

Flexion (palmar flexion) 60

its parent joint. This kinematic relationship of the position and orientation of two

adjacent body parts is formulated as,

ψK
ij (Xi, Xj) = N(d(xi,xj);µk, σK)f(θi,θj), (11)

where Xi, Xj ∈ EK (i < j) and d(xi,xj) is the Euclidean distance between

Xi’s proximal joint and Xj’s distal joint (in this case, i < j). N() is the normal

distribution with µk(= 0) and standard deviation σK to allow adjacent body parts

to be loosely linked and f() is,

f(θi,θj) =

 1, if LowerBoundij ≤ θi − θj ≤ UpperBoundij

0, otherwise
, (12)

whereLowerBoundij andUpperBoundij are the lower and upper bound of ROM

between Xi and Xj defined by kinesiology. For more accurate tracking, we learn
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the distribution of kinesiology from the HumanEva data set et al. [28].

Temporal Potential. This potential models the temporal relationship of a part

between two consecutive time steps t− 1 and t as a Gaussian distribution,

ψT
i (X

t
i , X

t−1
i ) = p(X t

i −X t−1
i ;µi,Σi), (13)

where µi is the dynamics of Xi at the previous time step and Σi is a diagonal ma-

trix with a diagonal elementis identical to |µi|. Both the kinematic and temporal

edges are illustrated in Figure 3.

3.3.4. Inference: Body Configuration Estimation

The goal of inference is to obtain the best state ofX and Λ from the conditional

probability distribution in (2) at time step t. In this paper, we use two steps to

estimate the 3D body configuration and occlusion state variable separately. We

can assume that Λ was estimated at the previous time step t−1 as Λ̂t−1 and this is

given in order to estimate the body configuration X̂ t from the input image at the

current time step t. This is formulated as follows,

X̂ t = argmax
Xt

p(X t|I1:t; Λ̂t−1). (14)

In order to perform efficient inference, we use the Belief Propagation (BP) algo-

rithm. BP uses local messages that sum up the entire set of probabilities about

neighbor nodes with regard to their states. Two types of messages are used: kine-

matic and temporal. The kinematic message, which propagates from X t
i to X t

j

about the kinematic relationship, is calculated as,

mK
ij (X

t
j) =

∑
Xt

i

exp
{
ϕ(I t, X t

i ; λ̂
t−1
i ) + ψK

ij (X
t
i , X

t
j)
}

mT
i (X

t
i )

∏
k∈N(i)\j

mK
ki(X

t
i ),

(15)
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whereN(i)\j is neighbors of i except j. The temporal message, which propagates

information from X t−1
i to the X t

i about the temporal relationship, is calculated as,

mT
i (X

t
i ) =

∑
Xt−1

i

exp
{
ϕ(I t−1, X t−1

i ; λ̂t−2
i ) + ψT

i (X
t
i , X

t−1
i )

}
mT

i (X
t−1
i )

∏
k∈N(i)

mK
ki(X

t−1
i )

, (16)

where mT
i (X

t−1
i ) is the temporal message from X t−2

i to X t−1
i . The belief of X t

i

is formulated as,

bi(X
t
i ) = exp

{
ϕi(I

t, X t
i ; λ̂

t−1)
}
mT

i (X
t
i )
∏

k∈N(i)

mK
ki(X

t
i ), (17)

and this belief approximates the marginal distribution.

We use the SIR (Sequential Importance Resampling) principle to represent the

posterior distribution (which approximately equals the belief) of each body part

by a set of N random samples with corresponding weights. The weights of the

samples are normalized and propagated over time using the temporal model and

then newly assigned with respect to their likelihood function [28]. In order to find

the modes of the posterior distribution better, we iterate the SIR steps twice to

infer the body configuration at each time step.

Tracking human poses using graphical models such as MRFs requires using

BP over the whole time sequence. This requires performing inference on a graph

defined the entire time sequence, but this is computationally too expensive. There-

fore, we conduct BP over two consecutive time steps t− 1 and t.

3.3.5. Occlusion State Variable Estimation

In this section, we describe how the occlusion state variable is estimated as

one of three states. First we have to consider the combination of occlusion states
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among the 15 body parts. There are 314 (≃ 105) possible combinations of occlu-

sion state variable Λt and this increases the complexity further (recall Section 3.1).

In this paper, we propose a novel occlusion state estimation method based on our

experimental observation (see Section 1). In order to find overlapping (occluding)

body parts, we first define a criterion, similar to [29], for detecting overlapping

body parts as follows,

νi,j =


1, if max

(
Υ(X̂ t

i ) ∩Υ(X̂ t
j)

Υ(X̂ t
i )

,
Υ(X̂ t

i ) ∩Υ(X̂ t
j)

Υ(X̂ t
j)

)
≥ T0

0, otherwise

, (18)

where Υ(X̂ t
i ) is the set of pixels in the area of the image where the estimate of X t

i

is projected. T0 is a threshold determined empirically as 0.15. νi,j is an indicator

for occluding body parts. If the value of νi,j is set to 0, the value of λti,j is set to 1.

Otherwise, λti,j is estimated using the following equation,

λ̂ti,j = argmax
λi,j∈{2,3}

ϕ(I t, X̂ t
i ;λi,j), (19)

where X̂ t
i is the estimate of X t

i from the previous step. This process is illustrated

in Figure 6.

3.3.6. Proposals

In human body pose estimation, strong priors improve the performance ro-

bustness, but also have limitations [30]. Robust body part detectors, e.g., for head,

torso, and limbs, ensure that the pose estimation task is easier. This reduces the

search space, but it is not always reliable, which is mainly due to the image noise

and self-occlusions [31, 32]. In this paper, we construct proposals for the head

and torso: a face detector [33] and a head-shoulder contour detector for the torso
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Figure 6: Process of occlusion state estimation. In order to estimate the occlusion state λtRLA,TOR

as either of 2 or 3, ϕ(It, Xt
RLA;λ

t
RLA,TOR) is calculated twice with respect to two the differ-

ent values of λtRLA,TOR. Then the state that has maximum value is assigned to the value of

λtRLA,TOR.
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[31]. 50 samples of each part that have the most likely states are selected for the

proposals, and these proposals are provided to the first step of body configuration

inference (see Section 3.3.4).

4. Experimental Results and Analysis

The HumanEva-I data set [28] is used for evaluation. It contains 6 different

motions: Walking, Jogging, ThrowCatch, Gestures, Boxing, and Combo. Each

motion is performed by 4 subjects and recorded by 7 cameras (3 RGB and 4

gray scale cameras) with the ground truth data of human joints. We evaluate

the performance on the first 5 test motions from HumanEva-I of subject S2 and

camera C1. In order to evaluate the performance of occlusion state estimation, we

hand-labeled the ground truth of the occlusion states for test motions. On average,

manually specifying the occlusion states takes three minutes per image. Figure 7

shows how the ground truth of occlusion state is specified.

We compare the proposed method, Adaptive Occlusion State Estimation (AOSE),

with the four state-of-the-art methods in the literature: Pictorial Structure (PS) [3],

Self-occlusion Reasoning (SR) [4], Mixture of Factor Analyzers (FMA) [12], and

Gait Generative Model (GGM) [34]. PS and SR take different approaches to tackle

self-occlusion. Unlike SR and AOSE, PS does not explicitly model self-occlusion.

Meanwhile, SR includes a special node for self-occlusion in the model, but it is

assumed that the depth order with regard to self-occlusion is fixed and known a

priori. The proposed AOSE alleviates this limitation by adaptively estimating the

occlusion state in a frame. FMA tracks 3D human pose on a manifold space us-

ing multi-view information (camera C1-C3) while PS, SR, GGM, and AOSE use

a single view (camera C1). GGM tracks 3D human walking motion using two
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TOR PEL LUL LLL LF RUL RLL RF LUA LLA LH RUARLA RH HED

TOR 0 1 1 1 1 1 1 1 4 4 1 1 1 1 1

PEL 1 0 1 1 1 1 1 1 1 4 4 1 1 3 1

LUL 1 1 0 1 1 1 1 1 1 1 4 1 1 1 1

LLL 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

LF 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

RUL 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

RLL 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

RF 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

LUA 3 1 1 1 1 1 1 1 0 1 1 1 1 1 1

LLA 3 3 1 1 1 1 1 1 1 0 1 1 1 1 1

LH 1 3 3 1 1 1 1 1 1 1 0 1 1 1 1

RUA 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

RLA 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

RH 1 4 1 1 1 1 1 1 1 1 1 1 1 0 1

HED 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Figure 7: Illustration of how occlusion states are specified. In the upper right matrix image,

occlusion part pairs, e.g., TOR-LUA and LUA-TOR have occlusion state value 4 (red cell for

occluded one) and 3 (green cell for occluder) respectively. In this manner, every part pairs get

corresponding occlusion state values. Abbreviations for body parts are: TOR - torso, PEL - pelvis,

LUL - left upper leg, LLL - left lower leg, LF - left foot, RUL - right upper leg, RLL - right lower

leg, RF - right foot, LUA - left upper arm, LLA - left lower arm, LH - left hand, RUA - right upper

arm, RLA - right lower arm, RH - right hand, and HED - head.

kinematic and visual manifolds.

PS, SR, and AOSE were implemented in MATLAB R2009a on a desktop PC

(Intel core 2 Quad 2.66GHz CPU, 4GB RAM, and 64bit Windows 7 operating

system). During the experiment, initializations were done manually for PS, SR,

and AOSE. For body configuration inference, as described in Section 3.3.4, two

SIR iterations are conducted with 50 samples and BP is conducted over two con-

secutive time steps using the UGM (Undirected Graphical Model) toolbox [35].
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Table 3: The mean (and standard deviation) of tracking errors in millimeters over 150 frames of

each motion.

Motion PS [3] SR [4] FMA [12] GGM [34] AOSE

Walking 230.66 (209.85) 144.74 (76.05) 68.67 (24.66) 99.04 88.03 (42.71)

Jogging 113.99 (73.40) 164.02 (144.11) 72.14 (54.66) - 53.58 (17.95)

ThrowCatch 164.83 (122.25) 96.77 (47.62) 68.03 (22.18) - 99.30 (36.80)

Gestures 92.27 (34.97) 125.18 (69.83) 67.66 (23.85) - 83.76 (36.05)

Boxing 208.44 (73.78) 152.60 (86.20) 70.02 (22.74) - 89.48 (27.29)

Mean 155.39 (100.85) 120.97 (69.02) 69.30 (29.62) 99.04 82.83 (32.16)

4.1. Pose Tracking

In Table 3, the mean and the standard deviation of tracker error of the five

tracking algorithms are reported. The error is measured as the absolute Euclidean

distance in millimeters between the ground truth and estimated fifteen 3D joints

(marker) positions on the body parts as reported in FMA [12]. Since it is impos-

sible to estimate an invisible part from a single view image, we do not count the

error from completely occluded parts (for PS, SR, and AOSE). On an average,

taking these invisible part into the calculation gives roughly 10mm higher mean

error.

Overall, the proposed method outperforms PS and SR for the entire motions

except ThrowCatch. Because FMA tracks human pose using multi-views (3 cam-

eras), it can exploit more information such as appearance cues under self-occlusion

(it is possible to argue that there is no self-occlusion for multi-views since a part

occluded in one camera can be seen by the other cameras). But PS, SR, and AOSE

track from a single view. So it is not surprising that FMA shows a slightly better

performance.
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Table 4: Limb definition.

Each limb Components

L-ARM LUA (left upper arm), LLA (left lower arm), and LH (left hand)

R-ARM RUA (right upper arm), RLA (right lower arm), and RH (right hand)

L-LEG LUL (left upper leg), LLL (left lower leg), and LF (left foot)

R-LEG RUL (right upper leg), RLL (right lower leg), and RF (right foot)

As shown in Figure 9, PS, SR, and AOSE show similar performance for the

first few frames. But then performance of PS and SR starts degrading when the

human pose alters significantly causing depth order changes. For example, in

Figure 8, at frame 60 of Boxing, the depth order between the right arm and the

torso has changed compared to frame 30. The tracking error for individual parts

are plotted in Figure 10. In general, the tracking error of three methods for limb

extremities – feet and hands – is higher than for other parts.

4.2. Occlusion State Estimation

In Table 5, we analyze the complexity of 5 test motions in terms of the number

of occlusion state change (blue colored cell). The analysis is done for: (1) the

whole body (averaging over all parts) to give a global complexity measure, and (2)

for 4 limbs to measure the local complexity (see the definition of limbs in Table 4).

We use the mean frame interval per occlusion state change (FOC) as a complexity

measure. According to this measure, both globally and locally, Jogging is the

most complex motion in the dataset and, on average, the occlusion state of the

whole body changes every 1.84 frames. Note that the mean FOC for L-LEG and

R-LEG in the ThrowCatch, Gestures, and Boxing motions cannot be calculated

since subject S2 performs the motions in a standing pose (there is no occlusion
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Figure 8: Image frame 30, 60, 90, 120, and 150 of (from top to bottom row) Walking, Jogging,

ThrowCatch, Gestures, and Boxing motions. Jogging is the most complex motions in HumanEva-I

dataset. Boxing is the second complex motion and Gestures is the least complex motion (see Table

5 in Section 4.2 for detailed information).
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Figure 9: Tracking performance for 5 motions of the HumanEva-I dataset. Generally, PS loses

body tracking under self-occlusion, and SR does after depth order changes (see Figure 8 while

AOSE shows stable tracking performance with adaptively estimating occlusion state.
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Figure 10: Tracking performance of individual parts. AOSE shows lower tracking error among

three methods. By and large, three methods show relatively big error for both hands and feet.
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(a) Walking. (b) Jogging.

(c) ThrowCatch. (d) Gestures.

(e) Boxing.

Figure 11: At each subfigure, sample tracking result from three methods and three frames – PS

(1st row), SR (2nd row), and AOSE (3rd row), and frame 30 (1st column), 90 (2nd column), and

150 (3rd column) from test video sequence of S2 – are shown.
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Table 5: Motion complexity analysis of HumanEva-I (subject S2 and camera C1) and performance

of occlusion state estimation.

Motion Criterion Whole body
Limb

L-ARM R-ARM L-LEG R-LEG

Walking
Mean FOC 3.40 5.71 6.35 6.46 6.31

Mean error (%) 9.13 15.08 10.26 8.84 10.56

Jog
Mean FOC 1.84 2.93 3.18 5.73 5.96

Mean error (%) 4.25 17.38 17.38 8.07 11.44

ThrowCatch
Mean FOC 5.54 4.31 16.63 - -

Mean error (%) 3.34 23.68 17.66 - -

Gestures
Mean FOC 8.60 43.00 10.33 - -

Mean error (%) 2.65 15.38 17.16 - -

Box
Mean FOC 2.80 4.45 3.32 - -

Mean error (%) 2.83 25.48 22.17 - -

state change for these parts).

The mean error of the occlusion estimation is calculated as follows,

Et
ose =

∑K
i=1Diff(Λ

t
i, Λ̂

t
i)

K
(20)

where Λt
i is ith element of the ground truth data of the occlusion state at time step

t and Λ̂t
i is ith element of the estimate of the occlusion state at time step t. In

eqn. (20) only the upper triangular part of Λ (and Λ̂) is considered because Λ is

symmetric (in the sense that λi,j and λj,i yield the same information). Diff(a, b)

returns 0 if a and b have the same value, otherwise, it returns 1. K is the total

number of elements in the upper triangular matrix of Λ. K = n × (L − 1) − n

where L is the total number of body parts and n is the number of body parts of

limb.
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As can be seen in Table 5, the proposed method shows good occlusion state

estimation performance for both whole body and four limbs. Based on this result,

we can say that our method has advantages not only for tracking but also for

estimating the occlusion states of complex motion such as Walking and Jogging.

In particular, it shows even better tracking performance then FMA [12] which uses

multi-view informations for Jogging motion (see Table 3). However, it does not

show good performance for L-ARM and R-ARM of the ThrowCatch and Boxing

motions which are not complex in terms of FOC. Because the ThrowCatch and

Boxing motions contain a pose which makes one of body parts be oriented parallel

to the camera view – e.g., throw a punch towards to the camera – our current

appearance model cannot represent this accurately.

5. Conclusions and Future Work

In this paper, we proposed an adaptive occlusion state estimation method for

3D human body tracking. Our method successfully tracks without assuming a

known and fixed depth order. The proposed method can infer state variables effi-

ciently because it separates the estimation procedure into body configuration es-

timation and occlusion state estimation. More specifically, in the occlusion state

estimation step, we first detect body parts having an occlusion relationship using

the overlapping body parts detection criterion. Then we estimated the occlusion

states only for these overlapping body parts. This leads to an efficient state es-

timation algorithm. Experimental results carried on 5 motions of HumanEva-I

dataset showed that the proposed method successfully tracks the 3D human pose

and estimates the occlusion states in the presence of self-occlusion. The proposed

method outperforms three competing methods for Jogging and has the second best
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performance for the remaining test motions except ThrowCatch. We quantified the

occlusion complexity of the motions sequences using the FOC measure and used

this to determine how successful our method was for estimating occlusions.

We conjecture that the proposed method can be extended for tracking poses

from (two or more) interacting people. Tracking poses of interacting people,

however, will involve more complex problems such as dealing with more variable

motion, inter-person occlusions, and possible appearance similarity of different

people.
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