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Abstract—Tracking human poses in video can be considered
as to infer the information of body joints. Among various
obstacles to the task, the situation that a body-part occludes
another, called ‘self-occlusion,’ is considered one of the most
challenging problems. In order to tackle this problem, it is
required for a model to represent the state of self-occlusion and to
efficiently compute inference, complex with a depth order among
body-parts. In this paper, we propose an adaptive self-occlusion
reasoning method. A Markov random field is used to represent
occlusion relationship among human body parts with occlusion
state variable, which represents the depth order. In order to
resolve the computational complexity, inference is divided into
two steps: a body pose inference step and a depth order inference
step. From our experiments with the HumanEva dataset we
demonstrate that the proposed method can successfully track
various human body poses in an image sequence.

Index Terms—Human pose tracking, Markov random field,
Self-occlusion.

I. INTRODUCTION

3D human pose tracking has great potentials for many
applications such as marker-free human motion capture (which
has environmental advantages compared to the marker-based
system), Human Computer Interactions (HCI), Human Robot
Interactions (HRI), video surveillance, and so on. This also
can be explained by the fact that more than hundred papers
are published on human pose estimation during the last two
decades [1]. This research can be divided into two categories:
discriminative approaches and generative approaches.

Discriminative approaches learn mapping between the set
of features and target poses, then these mappings are stored
in a database. After the learning, a set of features extracted
from the input image are used to find the best matching pose
from a database. Discriminative approaches can find the best
matching pose quickly, and have high accuracy results when
the input image is similar to the training data. However, they
have poor performance when the input image is quite different
from the training data [2], [3].

Generative approaches use graphical models, e.g., Bayesian
networks or Markov networks. In these approaches, a graph
node represents the state of a human body part and graph
edge model the relations between parts, and these components
construct probability distributions of the model and input
image. These approaches are able to estimate new motions
while the discriminative approaches can capture trained poses
only. However, they suffer from exponentially growing com-
putational complexity and the self-occlusion problem (a body

part occludes another). Previous approaches which do not
consider self-occlusion result in different parts indicating the
same image area [4], [5]. Sigal et al. [6] proposed a self-
occlusion reasoning method which uses occlusion-sensitive
likelihood model to get a correct image representation under
self-occlusion. However, although they made an important
contribution to the likelihood model for self-occlusion, this
approach is dependent on the type of input motion. Because
they don’t have a depth order estimation step, they require a
large amount of additional computation, and the depth order of
body parts has to be set manually for all input images. As the
result of this manually set depth order, the edge of occlusion
relationship, which is used for occlusion-sensitive likelihood,
is constructed with respect to the input image, e.g., to track
walking motion the occlusion relationship is constructed only
among arms and torso, and between legs. So, these constructed
occlusion relationship is only useful for walking motion.

In this paper, we propose an adaptive self-occlusion reason-
ing method that estimates not only body configuration but also
the occlusion states (depth order) of body parts which prevents
us from being dependent on the type of input motion. This is
based on the following experimental observation. When the
overlapping region (i.e. self-occlusion) between body parts in
the image is small, then pictorial structures [5], which does
not consider self-occlusions, and the self-occlusion reasoning
approach [6] give similar tracking performance. But as the
overlapping region gets bigger, the tracking performance of the
pictorial structures approach decreases while the self-occlusion
reasoning approach keeps relatively high performance, as-
suming manually set depth order. From this observation, we
postulate that if we are able to find overlapping body parts
with small overlapping regions (where pictorial structures can
have fairly good estimates) then we can update the occlusion
state among detected body parts and this information can be
used for the next inference. Therefore, we expect that this
novel scheme will lead to efficient occlusion state estimation
while avoiding the combinatorial problem.

II. ADAPTIVE SELF-OCCLUSION REASONING METHOD

Fig. 1 shows the 3D human model used in this paper. The
3D human model consists of 15 3D cylinders. Each cylinder
has one of two types of DOF (Degree of Freedom): C1, C2,
C3, C5, C6, C8, C9, C11, C12, C14 and C15 have 3 DOF
(orientation about the X, Y, and Z axes) and C4, C7, C10, and
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Fig. 1: The 3D human model and the parameterization of the
3D cylinders.
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Fig. 2: The MRF for adaptive self-occlusion reasoning. Left
panel: Xi (i = 1, ..., 15) corresponds to each Ci in Fig.
1. Edges represent relationships: the kinematic (solid line)
and occlusion (dashed blue line) relationships of body parts.
Right panel: the graphical representation of the occlusion
relationships encoded by dashed blue edge with respect to the
occlusion state variable λi,j . See the text for the detail (Sec.
II-A).

C13 have 1 DOF (orientation about the X axis). Cylinder C1

has 3 additional DOF (the x, y, and z positions). The global
position and orientation of the 3D human model is determined
by the 6 DOF of C1.

We formulate Markov Random Field (MRF) to represent
3D human body configuration and occlusion relationships of
human body parts with occlusion state variables Λ representing
depth order (Fig. 2). The probability distribution over this
graph is specified by the set of potentials defined over the set
of edges. These edges are specified by occlusion, kinematic,
and temporal relationship among nodes. This probability dis-
tribution specifies the body configuration under self-occlusion.

A. The Structure of MRF for the Proposed Method

Notations and descriptions of the MRF for the proposed
method are listed in Table I. Formally, the MRF is a graph
G = (V,E) where V is the set of nodes and E is the set
of edges. In this paper, the graph has state variables X , W
and Λ. The edges are defined by the set of relationships: the
occlusion relationships, the kinematic relationships, and the
temporal relationships.

The state of Xi consists of 3D position and 3D orientation.

TABLE I: The notations used in the proposed MRF.

Notation Description
X = {X1, ..., X15} the set of nodes for body parts
xi = (x, y, z) position of Xi in 3D space
θi = (θx, θz , θz) orientation of Xi in 3D space
Υ(Xi) the set of pixels in the area in the

image where Xi projects to
Wi = {wi(u)}, (u ∈ Υ(Xi)) the set of visibility variables of pixel

u’s.
Λ = {λ1, ...,λ15} the set of occlusion state variables
λi = (λi,1, ...λi,15), λi,i = 0 the set of occlusion state variables

between node Xi and the others
E = (EK , EO|Λ, ET ) the set of edges
EK Xi, Xj ∈ EK such that Xi, Xj ∈

X

EO|Λ Xi, Xj ∈ EO|Λ such that Xi, Xj ∈
X

ET Xt−1
i , Xt

i ∈ ET such that
Xt−1

i , Xt
i ∈ (Xt−1, Xt)

I input image
νi,j indicator for overlapping body parts
φi potential of observation

ψK
ij potential of kinematic relationship

ψT
i potential of temporal relationship

The scale of cylinder is determined by the z value of 3D
position (scaled orthographic projection [7]); the larger the z
value of xi, the closer it is to the camera.
wi(u) represents the visibility of pixel u generated by the

Xi and has binary state like following,

wi(u) =

{
0, if pixel u is occluded
1, if pixel u is not occluded,

(1)

where the value of this state variable is determined by the
state of the occluders of Xi with respect to the state of λi.
The occlusion state variable λi is only defined on between
different body parts (i.e. λi,i = 0). It represents one of three
occlusion states between two different body parts Xi and Xj :
state 1 indicates that none of two body parts occludes the
other, state 2 represents body part Xi occludes body part Xj ,
and state 3 is when body part Xi is occluded by body part
Xj .

B. The Probability Distribution

In order to define a conditional probability distribution for
the human body configuration X given the input image I , we
use three potentials listed at the below of Table I.

1) Observation Potential: The observation potential is cal-
culated with respect to depth order among body parts. That
is, a body part located at the top of depth order is calculated
first. We use two image cues, color and edges, to calculate
this potential as follows:

φi(I,Xi;λi) =φCi (I,Xi;λi) + φEi (I,Xi;λi), (2)

where φCi is the observation potential for the color cue and φEi
is for the edge cue. A 3D cylinder is generated from the state
of Xi (i.e. a set of pixels are generated). We modified the
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occlusion-sensitive likelihood model [6] for the observation
potential with respect to the occlusion state variable Λ. A
critical issue of the occlusion-sensitive likelihood model is
how to find the configuration of Wi, the set of visibility
variables about Xi. The depth order for current image was
assumed to be known in [6]. However, using the proposed
occlusion state variable Λ, the configuration of Wi can be
calculated deterministically. For example, in Fig. 3, XRLA

is occluded by XTOR. In this case, let’s assume that φTOR
is calculated in advance. The configuration of WRLA is
determined by the calculating overlapping region of XRLA

and XTOR. Therefore, Wi can be represented as,

WRLA = {wRLA(u′), wRLA(u)}, (3)

where wRLA(u′)=0 for u′ ∈ Υ′(XRLA) where Υ′(XRLA) =
(Υ(XTOR) ∩ Υ(XRLA)). And wRLA(u) = 1 for u ∈
(Υ(XRLA) − Υ′(XRLA)). This leads to calculating the ob-
servation potential separately. The observation potential for
the color cue is formulated as follows:

φCi (I,Xi;λi) = φCVi (I,Xi;λi) + φCOCi (I,Xi;λi), (4)

where the first term is for the visible area, and the second
terms is for the occluded area. The visible term is formulated
as,

φCVi (I,Xi;λi) =
∏

u∈(Υ(Xi)−Υ′(Xi))

pC(Iu), (5)

where Υ′(Xi) = (Υ(Xi) ∩ Υ(Xj)) and the pixel probability
is,

pC(Iu) =
p(Iu|foreground)

p(Iu|background)
, (6)

where p(Iu|foreground) and p(Iu|background) are the distri-
butions of color of pixel u given foreground and background.
These distributions are learned from foreground and back-
ground image patches of the dataset. The occluded term is
formulated as,

φCOCi (I,Xi;λi) =
∏

u′∈Υ′(Xi)

[zi(Iu′) + (1− zi(Iu′))pC(Iu′)],

(7)
where zi(Iu′) is the probability of pixel u′ being explained by
occluder’s pixel probability. For example, again in Fig. 3, there
is no problem for calculating φTOR for both the gray visible
and the yellow overlapping regions (previously, we assumed
that φTOR is calculated in advance). But, a problem occurs
in the occluded yellow region for calculating φRLA. So, this
potential is approximated by weighting down the pixel prob-
ability pC(Iu′) of XRLA by the pixel probability of XTOR.
Therefore, zRLA(Iu′) is the normalized pixel probability of
XTOR about pixel u′ (normalized with respect to the whole
states of XTOR). φEi (I,Xi;λi) is calculated in the same way
as φCi (I,Xi;λi) where pE(Iu) is calculated from chamfer
distance transform.
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Fig. 3: An example of self-occlusion between TOR and RLA
where RLA is occluded by TOR. Green and gray region are
non-overlapping region of XTOR and XRLA respectively. The
yellow region is the overlapping region of XTOR and XRLA.

2) Kinematic Potential: We model the kinematic relation-
ship between two adjacent parts using Kinesiology, which
defines the Range of Motion (ROM) of human joints [8]. We
use ROM to approximate the possible range of orientation of
adjacent body parts in 3D space. This kinematic relationship
of position and orientation of two adjacent body parts is
formulated as,

ψKij (Xi, Xj) = N(d(xi,xj); 0, σK)f(θi,θj), (8)

where Xi, Xj ∈ EK (i < j) and d(xi,xj) is the Euclidean
distance between Xi’s proximal joint and Xj’s distal joint (for
this, i < j). N() is the normal distribution with mean zero
and standard deviation σK to allow adjacent body parts to be
linked loosely and f() has value 0 when the rotation relation
(ROM) is violated, and 1 for vice versa.

3) Temporal Potential: The temporal relationship of a part
between two consecutive time steps t − 1 and t follows a
Gaussian distribution as follows:

ψTi (Xt
i , X

t−1
i ) = p(Xt

i −Xt−1
i ;µi,Σi), (9)

where µi is a dynamics of Xi at previous time step and Σi
is a diagonal matrix with the diagonal elements are same as
|µi|.

The posterior distribution of model X given all input images
up to current time step τ and occlusion state variable Λ is an
example of a pairwise MRF over time steps from 1 to τ [9],

p(Xτ |I1:τ ; Λ1:τ ) =
1

Z
exp{−

∑
i∈X1:τ

φCi (I,Xi;λi)

−
∑

ij∈E1:τ
K

ψKij (Xi, Xj)−
∑

i∈E1:τ
T
,t∈1:τ

ψTi (Xt
i , X

t−1
i )},

(10)

where the observation potential and the kinematic potential are
calculated over whole time step. Therefore, only the temporal
potential contains on explicit time index t.

C. Inference: Body Configuration Estimation

The goal of inference is to obtain the best state of X and
Λ from the conditional probability distribution in (10) at time
step t. In this paper, we use two steps to estimate 3D body
configuration and occlusion state variable separately. Let’s
assume that Λ was estimated at the previous time step t−1 as
Λ̂t−1 and this is given in order to estimate body configuration
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X̂t from input image at current time step t. This is formulated
as follows:

X̂t = arg max
Xt

p(Xt|I1:t; Λ̂t−1). (11)

In order to calculate this inference efficiently, we use the
Belief Propagation (BP) [10] algorithm. The BP uses local
messages that sum up all the possible probabilities about
neighbor nodes with regard to a state of node. In this paper,
we conducted the BP over two consecutive time steps t − 1
and t using UGM (Undirected Graphical Model) toolbox [11].
In order to find the most likely body configuration Xt, we
adapted 2 annealing steps [12] for inference.

D. Occlusion State Estimation

To estimate the occlusion state among 15 body parts, we
have to consider 315(' 107) possible combinations of occlu-
sion state variable Λ. And, since the most time consuming
process of the inference is the observation potential, this
combinatorial problem makes the complexity even bigger. In
this paper, we propose a novel occlusion state estimation
method based on our experimental observation (see Sec. I).
In order to find overlapping (occluding) body parts, we first
define a criterion for detecting overlapping body parts as,

νi,j =

 1, if max

(
ORi,j

Υ(X̂t
i )
,
ORi,j

Υ(X̂t
j)

)
≥ T0

0, otherwise,

(12)

where ORi,j is the overlapping region between Υ(X̂t
i ) and

Υ(X̂t
j). T0 is a threshold set as 0.15, determined by experi-

ments. If the value of νi,j is set to 0, the value of λti,j is set to
zero. Otherwise, λti,j is estimated using the following equation.
This criterion was also used to find the overlapping areas
between two hands [13]. After the detection step, occlusion
state estimation is conducted only for detected body parts Xi

and Xj . So, one of occlusion state 2 and 3 is estimated as a
state that has higher observation potential value as follows:

λ̂ti,j = arg max
λi,j∈{2,3}

φ(It, X̂t
i ;λi,j), (13)

where X̂t
i is the estimate of Xt

i at previous step. If νi,j has
value 0 then λ̂i,j is assigned as 1.

E. Proposals

In human body pose estimation, strong priors improves
the robustness of performance, but also has limitations [14].
Robust body part detectors, e.g., for head, torso, and limbs,
make the pose estimation task easier. This reduces the search
space ,but is not reliable all the time mainly due to the image
noise and self-occlusions [15]. In this paper, we construct
proposals for the head and torso: face detector [16] and head-
shoulder contour detector for torso [15]. 50 samples of each
part that have the most likely states are selected to build
proposals.
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Fig. 4: Tracking performance for boxing motion. Felzenszwalb
et al. [5] gradually loses arm parts while Sigal et al. [6] and
the proposed method track with fairly good performance.
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Fig. 5: Tracking performance for gesture motion. Since gesture
motion contains small self-occlusions, the three methods show
similar performance.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The HumanEva dataset [17] is used for evaluation. It con-
tains 6 different motions with ground truth. For the evaluation,
however, we excepted the values of torso because these values
were set to NaN (Not a Number) in the ground truth data.
We compared three methods: pictorial structures [5], self-
occlusion reasoning [6] with known depth orders, and the
proposed adaptive self-occlusion reasoning method with 74
frames of boxing motion and 69 frames of gesture motion. To
make a fair comparison, we set all methods to have 15 nodes,
the same as the proposed method. We also initialized the body
configuration state, occlusion state parameter (especially for
the Sigal et al. [6] and the proposed method) and the 3D human
model for the three methods manually. And in order to evaluate
the performance of occlusion state parameter estimation, we
manually specified occlusion state for every single image of
three input sequences. On the average, it took 3 minutes. These
manually set occlusion states are used for Sigal et al. [6].
The method was implemented in MATLAB R2009a, and the
experiments were conducted on a desktop PC (Intel core 2
Quad 2.66GHz CPU, 4GB RAM, and Windows 7 operating
system).

A. Pose Tracking

The tracking performance of three methods are evaluated by
an Euclidean distance error between ground truth and estimate.
Although we estimated the 3D body configuration, it is hard
to compare our estimates and ground truth directly because
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TABLE II: Mean distance errors of three methods.

Motion Felzenszwalb et al. Sigal et al. Proposed method
Boxing 20.48 10.58 12.48
Gesture 11.32 9.10 8.61
Mean 15.9 9.84 10.54

*unit: pixel

TABLE III: Mean of occlusion state estimation error.

Motion Boxing Gesture
Mean 7.71 3.50

*unit: %

they have different coordinate system. Thus, we converted both
estimates and ground truth values into the same 2D coordinate
system. EtBC , an error of the estimation of body configuration
at time step t, is calculated by the following equation,

EtBC =

∑15
i=1 d(Xt

est,i, X
t
gnd,i)

15
, (14)

where d(Xt
est,i, X

t
gnd,i) is an Euclidean distance, Xt

est,i and
Xt
gnd,i are the estimate and the ground truth of individual body

part Xi at time step t respectively.
Fig. 4 and Fig. 5 illustrate the tracking performance of

three methods for boxing and gesture motion respectively. The
proposed method is able to track the human body pose from
an image sequence with adaptive estimation of depth orders
while Sigal et al. [6] is only able to track with when depth
orders are given.

The mean distance errors are represented in Table II. Felzen-
szwalb et al. [5] has the largest mean distance error for both
motions and Sigal et al. [6] has the smallest error for boxing
motion. The proposed method has a little larger than Sigal et
al. [6] and the smallest error for gesture motion. In particular,
the proposed method obtained this result without known depth
order. We insist that this proves that the proposed method is
robust to not only the self-occlusion but also the different types
of motions.

B. Occlusion state estimation

The performance of the occlusion estimation is evaluated
by the mean error. The error at time step t is calculated as
follows,

Etose =
UpperTriangular(Λtgnd − Λ̂t)

K
, (15)

where Λtgnd is the ground truth of occlusion state at time
step t and Λ̂t is the estimate by the proposed method.
UpperTriangular(Λ) is a function that returns the upper
triangular matrix of Λ and K is the total number of elements
in upper triangular matrix of Λ (K = 120). Table III shows the
mean of occlusion state estimation error for two input motions.

IV. CONCLUSION

In this paper, we proposed the adaptive self-occlusion
reasoning method for 3D human pose tracking. While the
previous self-occlusion reasoning approach [6] was able to
track only if the depth orders for the whole input images

are given our method successfully tracked without manually
set depth orders. The proposed method infers state variables
efficiently due to separating estimation procedure into body
configuration estimation and occlusion state parameter esti-
mation. This leads to efficient estimation with a small amount
of additional time cost. Experimental results have shown that
the proposed methods successfully tracks the 3D human pose
in the presence of self-occlusion.
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