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Abstract In this work we introduce a hierarchical represen-owes its success to its ability to cope with deformations,
tation for object detection. We represent an object in termscclusions and variations in scale, while exploiting spars
of parts composed of contours corresponding to object bourichage features for efficiency. However, it is still not clear
aries and symmetry axes; these are in turn related to edgehat a part is and what is the best way of composing an
and ridge features that are extracted from the image. object from its parts. During the last decade, parts (or ‘vi-
We propose a coarse-to-fine algorithm for efficient de-sual words’) have been defined in terms of image patches
tection which exploits the hierarchical nature of the model[1][2][3], descriptors extracted around interest poidis[b]
This provides a tractable framework to combine bottom-ugd6], edge contours [7-9] or regions [10] [11]. In our under-
and top-down computation. We learn our models from trainstanding, these structures are often not semantically mean
ing images where only the bounding box of the object is proingful and should be considered as equivalent to ‘letters’,
vided. We automate the decomposition of an object categoriypistead of ‘words’; treating them as parts of objects is to
into parts and contours, and discriminatively learn the cossome extent unjustified. For example, modeling a horse in
function that drives the matching of the object to the imagderms of corners, blobs, or junctions deviates from what we
using Multiple Instance Learning. perceive as the parts of a horse, namely its torso, head, neck
Using shape-based information, we obtain state-of-theand feet. It is more natural to define object parts in terms of
art localization results on the UIUC and ETHZ datasets. -potentially recursive- compositions of such simpler stru
tures. Hierarchical representations should thus link the o
jects with the image information extracted by front-end-pro
cessing via more abstract, intermediate structures. In our
modes we use shape-based parts, which can correspond to
. semantically meaningful structures such as wheels, handle
1 Introduction or necks. These parts are built by composing several con-

Obi ition h | q ) tours extracted from the image.
ect recognition has recently made major progresses us- . : .
) J Y 1o Prog Hierarchical representations can be supported on at least

ing part-based models. These decompose the problem of dt?free different grounds. First, they can expand the repre-

tection into the detection of simpler, individual parts alhi . . .
are then combined to detect the whole object. This approacﬁentatlonal power of current object models by allowing for
' structure variation using And-Or graphs [12] and by encod-
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(a) Object Model (b) Parse Tree (c) Image Tokens

Fig. 1: Object Parsing Task: Our goal is to compose objedtgsmple tokens (straight edge and ridge segments) dé&ttac
from the image. This amounts to buildingparse tree, that indicates how image tokens are composed to form ahject

in this paper. In our earlier works [15,16] we have been usrepresentation to devise a coarse-to-fine detection &hgori
ing bottom-up ‘proposals’, such as the response of a boundhat was inspired by the Generalizedalgorithm of [17].
ary or face detector, to drive the top-down fitting of moreOur algorithm first uses a simplified version of the repre-
complex probabilistic models. Here we use instaathgle  sentation for a quick initial detection, and then refines the
model for both detection and validation; this model is ex- search at a few promising locations. This scheme integrates
pressive enough to account for the whole object, but thankithe bottom-up information extracted from the image with
to its hierarchical nature can be simplified to deliver effi-the top-down guidance of the object model. which results in
ciently a small set of ‘proposals’. These proposals are now substantial speedup in detection time.
part of a single, principled inference algorithm. In the end  Our third contribution, described in Sec. 5 consists in
using a hierarchical representation allows us to deal with alearning an hierarchical model from training images where
object having tens of parts in reasonable time. only the bounding box of the object is known. We break this
Our contributions in this work are threefold: first, we task into three subproblems: initially we recover the objec
introduce a hierarchical object representation and a set &ontours by bringing the training images into registration
grouping rules to recursive|y compose an object from Sim.USing an automatica”y learned deformable model. Then, we
pler image structures —a task we refer to as ‘parsing’. Sedfoup contours into object parts by combining perceptual
ond, we present an efficient inference algorithm to perforngrouping with Affinity Propagation. Finally, we learn the-pa
the parsing task. Third, we describe a method to learn a hfameters of the cost function that drives parsing using Mult

erarchical model from minimally annotated images. ple Instance Learning. As demonstrated in Sec. 6, thisyield

Regarding our first contribution, in Sec. 3 we introduceStte-of-the-art shape-based detection results.

a hierarchical compositional representation for obje¢t ca
egories. At the highest level of the hierarchy we have th
object and at lowest level the image, which is represente
by a sparse set Of‘ stralgr]t edg.e apd rldge.segme.nts. We cill first give a brief overview of the current state-of-the-ar
these structures_ tokens’ to h|g_h||ght their atomic nature part-based models for object detection, and then focus
Our model desprlbes how an Ob@Ct can generate a set of 8% research that is most closely related to our work on: (a)
kens by recursively generating simpler structures. Eaeh o epresentation, learning and inference with hierarctaoal

jectis seen as a small ‘grammar’, which can explain a part 0éompositional models, (b) efficient optimization for detec

f[he image, while (jetectlng an object can _be phrgsed as Ol?Fon and (c) contour-based image and object represengation
ject parsing’. During parsing we create increasingly com-

plex structures by composing simpler ones, starting fram th
image tokens, as shown in Fig. 1. Apart from localizing an, 1 p4rt-based models
object, we thereby also segment it, as we identify the image

structures that it consists of. In Sec. 4.1 we formally déscr gased on the image structures used to represent parts most
parsing and present a simple bottom-up parsing algorithrgpproaches can be classified as interest point & descriptor-
for composing an object with minimal cost. based [18][4][5][19][20][21], patch- or filter-based [2]][23],
Our second contribution addresses the problem of effieontour-based [7][8][9][24][25] or region-based [10] [126] [27].
ciently finding good object parses. In Sec. 4.2 we describ&he constraints among the relative locations of parts are
an inference algorithm that deals with the huge number o€ommonly expressed using graphical models, e.g. star graph
candidate compositions. For this, we exploit the hierax@hi [7][9][23][28], trees [1], k-fans [29,22] or fully-connéed
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graphs [5]. Other works, for example the Implicit Shapeamong similar categories [39,44]. During training, object
Model [30] or boosting-based approaches [8][25] includemodels are discovered by computing the maximal common
these constraints implicitly, while ‘bag-of-words’ modelis-  subtree from a set of hierarchical image segmentations. Dur
card location and form a histogram of parts [19][20][21] oring testing, the hierarchical segmentation of a new image is
allow each model part to match several image parts [31]. matched to the learned tree, which allows for the simulta-
The works above involve a diverse set of techniques foneous detection and segmentation of objects. This method
image and object representation, training and inferemre; f deals with changes in scale, orientation and multiple cate-
lack of space, we now present at some further extent onlgories, but heavily relies on hierarchical segmentatidmlav
works to which our research is more closely related. Somé still lacks a clear probabilistic interpretation.
technical differences will be clarified during the preséiota In the work of Fidler and Leonardis [40,14] a hierar-
of our approach in the following sections. chical representation of objects is learned using edgeebas
information. For this a Gabor filterbank is used to capture
the image information at the lowest level, and the intermedi
ate layers are obtained by hierarchical clustering. Tlidde
to increasingly complex structures until in the end forming

The syntactical/compositional approach to recognitios hathe whole object. Still, this work does not clearly optimize
its roots in the works of Fu and coworkers [32], while hierar-Criterion either during training or detection.
chies also underly the approach to recognition proposed by Related work by L. Zhu et. al. [45] gives a probabilis-
Marr [33] However, grouping-based approaches to recogjc formulation for Ieaning a hierarchical representaﬁl;n
nition were primar"y app“ed to r|g|d objects [34] and were |earning probablllty models of substructures which are com
hindered by the limited feature extraction and statisticatl- Posed together to form larger structures. This gives good
eling tools available at the time. Therefore, with the excepPerformance on detection tasks.
tion of research on recognition from binary shapes [35][3H] Finally, in the same way that Conditional Random Fields
or articulated person detection [38], the ideas of composi(CRFs) have replaced Markov Random Fields in low-level
tionality and grammars had long been ignored. However reimage labelling, recently discriminative training of hitgvel
cent influential works such as [15,12,13] and recognitiormodels has gained ground, as it allows to ‘tune’ the model
systems such as [39,40] which can simultaneously deal witfor the task at hand, e.g. parsing or classification. Irtial
multiple categories have resulted in increased interest.  the work of [46] used CRF training to increase the likelihood
The work of S.C. Zhu and coworkers [12,41] aims atof the ground-truth body poses under a graphical model. In
accurately modeling complex object categories by relyind47] an algorithm was proposed to train CRFs with hidden
on And-Or graphs to account for structure variation and b;ayers so as to maximize the likelihood of the class labels.
using context-sensitive relations among parts. Learniag e In the work of L. Zhu et. al. algorithms developed for lan-
tends the FRAME model [42] to include relations amongduage parsing, namely Max-Margin parsing [48] and struc-
parts and to deal with attributes such as position, scale arfire perceptron [49] were used for body parsing [50] and
orientation, while inference relies on the bottom-up/tigwvn ~ deformable model training [51] respectively. Finally, #8]
scheme developed in [15]. There, discriminative techrsquelatent SVMs were proposed for training a star-graph model
such as Adaboost [15] or RANSAC [43] provide proposals,for detection, which as we describe in Sec. 5.3 is closely
which are then refined by generative models in a top-dowfelated to our Multiple Instance Learning approach.
manner. Instead, we use the same model to suggest object
locations during coarse-level search and for validatioa at
finer level, in an integrated optimization algorithm. 2.3 Efficient Optimization for Object Detection
Jin and Geman [13] use a perturbation of a context-free
model that incorporates context-sensitive relations amonEven though efficient detection algorithms exist for detec-
parts through attribute functions. Their model involves-di tion using global object models, e.g. [52,53], the problem
crete variables that encode ‘part-of’ relationships dedént ~ becomes harder when part matching gets involved. The com-
levels of the object hierarchy and they resort to greedy opbinatorics of matching have been extensively studied fpdri
timization to deal with the NP-hard problem emerging fromobjects [34], while [54] used Xor detecting object instances.
the context-sensitive relations. The authors argue thagus In[21] branch-and-bound is used for efficient detectiorwit
continuous attributes is hard in a Markov system; howevea bag-of-words model, while [55] combine Graph-Cuts with
our inference scheme allows us to incorporate the continranch-and-bound for object segmentation.
ous variables of location and scale in our model. An efficient algorithm for detection of a single closed
Todorovic and Ahuja use segmentation for both learncontour is presented in [56]. In [17] the detection of geo-
ing and detection [26] and to exploit the shared structuremetric structures, such as salient open and convex curves is

2.2 Grouping and Hierarchical Models



formulated as a parsing problem. In our work we extend thi8 Hierarchical Object Representation
approach to deal with high-level structures, i.e. objedth w
many parts and of potentially different types. In this section we introduce our hierarchical represeoiati

In the work of [57] a pruned version of dynamic pro- for objects. At the highest level of our object hierarchglie
gramming is used to efficiently detect deformable objectsthe whole object. One level below are the object parts; these
This involves a rough initial detection which is then refinedshould intuitively correspond to semantically meaningfarts,
in a top-down manner. At a high-level this is similar to our such as fingers, wheels, or legs. We use the term ‘object part’
method, but our work has been based on thalgorithm  for structures at this level in the hierarchy, while ‘pant’ its
which has guaranteed optimality properties. In the more reewn will have the broader meaning used in vision. The ob-
cent work of [58] a Steiner tree formulation is introduced fo ject parts are decomposed into (potentially) long and alrve
learning and performing inference on an hierarchical modelcontours. At the lowest level we have simple image struc-
The authors use approximate optimization to identify thetures, namely straight edge and ridge segments (‘tokens’).
optimal manner of putting together low- and intermediate- We phrase object detection as the interpretation of some
level structures within images of an object category. In ounf the image tokens in terms of an object; in quantifying the
work we focus on the more limited problem of performing quality of this interpretation we start in this section fream
inference with a predetermined hierarchical model, whiclprobabilistic point, and describe what the interpretatiost
allows us to perform exact optimization of a cost functionwould be under a suitable generative model. In Sec. 5.3 how-
defined on a fixed tree-structured graph. ever we will see how to ‘tune’ this cost in a discriminative

setting, so as to optimize detection performance.

2.4 Contour-Based Representations

Edges are largely invariant to intra-class appearance var8.1 Object Model
ations and were therefore used early on for object recog-
nition [59, 60,34]. However, boundary detection is still anOur object representation consists of a graph structute wit
open problem, due to occlusions, noise, etc., while descrignodesi € V and edgesi,j) € E; the nodes correspond
ing and matching contours is challenging. Therefore stgrti to the structures in the hierarchy and the edges to the part-
from [6,61] most recent works use point-based image represubpart relations. Each noddies at a certain level of the
sentations, which are easier to extract, model, and match. hierarchy, and is connected to a single parent nede) at

A revival of interest in contour-based representations hathe level above, and several children node@) at the level
been observed lately however, due to the increasingly bebelow. By ch*(i) we denote all descendants of nad&@he
ter performance of boundary detection methods on groungraph has three levels — root notlg, object parts/,,, and
truth datasets [62], and the understanding that contoers apbject contourd’.. The parent of the root node is empty,
better suited to capture shape information than points. Thehile the children of the contour nodes are the edge and
technique that is currently most commonly used for objectidge tokens; these are our observatibns
detection using contours is that of forming codebooks [8,9, Each node is associated with pose, namely a contin-
63, 24]; there ‘contour templates’ are formed during train-uous, vector-valued state varialsle= (x;, log o;) describ-
ing by clustering, and during testing the observed contour#g its positionx = (z1,z2) and scales. By position we
are matched to these templates. However, as observed linean the coordinates of the part's center, while scale is un-
[9],[64],[65]this lets the contour segmentation problewep derstood as the difference in size between the observed and
in the model representation: this results in several differthe corresponding, ‘nominal’ structure. The probabilify o
ent codebook entries encoding essentially the same struan object configuratio® = (s;,...,sy) can be expressed
ture. Therefore, in this work we cater for the fragmentatiorby a Bayes ne’(S) = [, P(si[spa(s)), OF by a more
problem by developing a simple and efficient algorithm forgeneral exponential form:
matching broken curves, detailed in Sec. 3.2 and App. A.

Another approach that relies on contours for detection iso gy — 1 ox _§ : (s, ,
- p d)’L S’La S al? ’ 1
that of [66]. There long, smooth contours are put together by Z[A] eV (85 8pa(9) @
phrasing their grouping into objects as an optimizatiorbpro bi(s1,82) = —\; log P(s1s2)

lem that involves the context of each contour within the ob-

ject. This context-sensitive approach avoids the probleins where for a Bayes net; = 1, Vi andZ = 1.

forming a codebook and is shown to give results of high pre-  The P(s;|s,,(;)) terms describe the distribution of a child’s
cision, but involves solving a computationally demandingpose given the pose of its parent. The relative pose of the
optimization problem. Our approach is context-free, whichchild is estimated as;|,,o(i) = Si — Spa(;)- We use a Nor-
facilitates our efficient detection algorithm. mal distribution N (14 pa (i), ipaiy) for the relative loca-



tion and another normal distributioN (0, .1) for the scale an object part is missing thel —y; factor enforces penalties

coordinates, allowing for moderate relative scale changes for missingi as well as all of its descendants; if a contgur
At the lowest level of the hierarchy the pose of an objecis missing thel — y; factor penalizes it bwg.

contours; is related to a group of image tokehsusing an

observation potentia}; (In,,s;), detailed in Sec. 3.2, that

compares the obiect contours o the imade contours. Thi In the rest of the paper we will be dealing with this cost
P 0] . 9 - ""Rinction. In specific, during inference (Sec. 4) our unknswn
provides us with the data-fidelity term for our model, in

: . " are the pose-S, assignment-H and missing part-y vari-
volving the poses of the contour nodés the image tokens P SIghme L gparty
; . ables and our objective is to minimize Eq. 3 with respect
I, and the assignment variablEs= (h;):

to them. Note that due to the independence assumptions we
1 made when formulating our model the cost function is de-
P1S,H) = — exp( Y ~i(In, 51)). 2) | ormuatng ©
composed into simpler terms that can be optimized sepa-

o ) rately. This underlies our inference algorithm.
We allow for missing parts at any level of the hierar-

chy, using a binary variablg; that indicates if nodé is

observed. When a node is missing, ie.= 0 we replace During training (Sec. 5), we use data that contain only
every summand in Eq.s 1,2 that involves either nbdea  the bounding box of the object to learn our hierarchical rep-
descendanj € ch* (i) with a ‘missing’ potential function resentation. This includes, first, the structure of the rhode
¢? = —log P(y; = 0) that ‘penalizes’ the missing noge namely its contours and their groupiljg into quect parts.
So conditioned on the parent being missing, all descendan®ecOnd, the:; pa (i), X pa(i) Parametersinvolved in the parent-
are forced to be missing; if the parent is present the probzhild relationships; these are estimated using maximuen lik

bilities of missing its children are considered independen lihood from registration information (Sec. 5.1). Thirdeth
Combining all terms we write: A parameters related to thepotentials in Eq. 3. In spe-

cific, note that the binary potentials in Eq. 1 are obtained as
P(I,S,H,y) = P(I|S,H,y)P(S,H,y) x exp(—C(I, S, H, yhe product ofP(s;|s,.;)) with a parameten; which can
_ o } o0 vary across, namely across different parent-child relation-
CU,8, Hyy) = Z (vidi(si spai)) + (1= y1)7) ships. Therefore, the distributions used here constraiy on

1€Ve

Ve, Vel the form of our energy function (for instance, it is quadrati
+ Z yiti(In;,s:) (3)  inlogs; —log s,4,) while its exact expression is obtained af-
i€Ve ter learning the\; parameters (Sec. 5.3). Moreover, we also
= Z yidi(sisv) + (1 —yi) Z o learn the missing cost pote_ntia;l:@ usgd in Eq._3, and the
icv, jefich* (i)} parameters of the observation potentig)glescribed in the

following subsection. All of these quantities are estindate
discriminatively as described in Sec. 5.3.

Yy D ¥ [8i(ssis) + 0 (Tng,sy)] + (1 —y;)e)

i€V jEch(i)
(4)
We introduce our representation as a graphical model,
We note that the first term in Eq. 3 would be identicalpyt we can also think of it as a simple probabilistic gram-
to Eq. 1, if we sey; = 1,Vi, i.e. if we consider all parts as mar: the production rules start at the root node and gener-
being present. Now if paftis missingy; will equal zero, so  ate the object parts, then the object contours, and finadly th
instead we pay the cogf of missing part. Using the latent  edge and ridge tokens. All production rules are probatilist
variable vectory thus allows us to compactly incorporate gnd involve continuous attributes. The missing part véesb
missing parts inside our cost function. The second term iyjiow us to choose among observing or not a part, thereby
Eq. 3 corresponds to the data-fidelity term in Eq. 2. implementing a simple version of the ‘OR-ing’ advocated
The expression in Eq. 4 is a rewrite of Eq. 3 which un-jn [12]. This could be extended to a mixture distribution on
derlines that the cost can be computed recursively on thgarts, (e.g. a chair having 4 feet versus a chair with wheels)
tree-structured graph. In specific, it breaks up the parenyyt we leave this for future research. Structures at a certai
child relationships into root-part and part-contour gr@up  |ayer of the hierarchy can only be built from structures at
I Note that by ‘scale’ of a part we mean the ratio of the parte si the_ layer below, so there can be e.g. no infinite recursion
(e.g. the radius of a disk) to the part's nominal size in thigattem- @S IS the case for language grammars. Finally, the grammar
plate. The scale coordinate in the relative pose equal®; /o ,q i) ); is context-free, as we assume independence among the sub-
in words, we first measure separately how larger the parathtte®  parts given the part at the layer above. The last three points

child are from their nominal scales,(ando,, ;), respectively), and . s _
constrain the ratio of these scales to be close to one. The g@frithe indicate that we are exploiting only part of the grammat

pose tolerates moderate changes in relative scale: laaje ctanges €@l formalism_’s potential; Sti_”: we present state-_oé-thrt
can be accommodated for by modifying the root node’s scale. results on the image categories we experiment with.




set-difference is denoted by, = (So U Sur) \ Se. Our
matching cost for two curves writes:

2
EQO,QM(CY,T,C) :/ (71 |:90(£+7—)—9M(S)+Cj|
sESe «

h
~_E
|
/ 2
+72¢)ds + 3] Sal. (5)

b
@ (®) © The first term is the square norm between the observed and

Fig. 2: Contour fragmentation problem: the model arc in (aynodel angles, and penalizes differences in the tangen¢ angl

has to match the fragmented observations in (b) and (c). ©Of the registered curves on their common domain; the term
y2¢? acts as a penalty on wide rotations; gisdi denotes

the length ofS, sov;|S4| equally penalizes protrusions and
3.2 Image-to-Object Contour Matching missing curve parts. We emphasize that in Sec. 5.3 we dis-
criminatively estimate the degrees of flexibility, 2, 3

We now describe how we relate the nodes at the lowest levéeparately for each contour.
of the hierarchy (object contours) to the image tokens via We evaluate the similarity of two contous, 0, as:
the observation potential term in Eq. 2. A design choice ing=
our model is that we allow object contours to be long and
correspond to large groups of edge or ridge points (edgelshs detailed in App. A, since our image contours are formed
Apart from higher discriminative power, this also dealshwit by grouping piecewise straight edge segments we can evalu-
the contour fragmentation problem. ate the quantity in Eq. 5 in constant time, instead of linear i

In specific, the grouping of edgels into edge tokens ighe length of the contours. This allows us to perform the op-
difficult and ambiguous. Suppose that we want an Object{imization in Eq. 6 overy, T using brute force search, while
contour to represent the wheel of a car, shown on Fig. 2(afh® minimum over: is obtained analytically.
As shown in Fig. 2(b),(c), the low-level grouping of edgels ~ Putting things together, consider that we want to find
can give different edge tokens on relatively similar images Matches for the model contouMatching a group of image

For this we propose a two-step approach: first we fornfdges t? the Imodel contquramounts to determiping that
groups of edge and ridge contours, starting from Lindelserg CONtoUr's assignment variablés. Each grourh; yields a
primal sketch [67] (details can be found in App. B). We thendifferentangle functiodo, denoted a8y, . As an example,
match these groups efficiently to the (long) object contourd! B groups tokens: andm, of lengthsl;. andl,,, angles
The first step bypasses contour fragmentation by regroufk: m @nd with in-between gap, we would have

0.0m = g}}_% Eo6.00 (a,7,0). (6)

ing the image tokens into longer contours. This allows us to O 0<s<I
have long contours in our object representation, instead @, (s) = O lLi+g<s<lg+ln+yg (7
forming codebooks of contours as e.g. in [8,9,63,24]. undefined elsewhere

A crucial problem is to match these groupings with the  Once we form the,,, function we can efficiently find
model curves. We want to compare contours efficiently angheq, 7, c variables that minimizé&s,, ¢,, (o, 7, ¢), using the
in away that can deal with missing parts, small deformationsechnique described in App. A. From the optimal value of
and changes in orientation. For this we now build a sim, 7, ¢ in Eq. 5 we obtain the observation potential for the
ilarity criterion that accommodates these kinds of vasiati model contous in Eq. 3:
gnd can also be op_t|m|zeq efficiently. We describe object ang/i(lh“ st) = By, o, = min E(a, 7, ¢). ®)
image contours using their tangent functiin), parameter- i a,Tye
ized in terms of the contour’s arc-length A model contour  For a certain assignmeht the pose? is obtained by setting
¢ and an observed contotls can then be registered using the scale of the node equal to the estimaieahd its location
three parameters: rotation bylegrees amounts to adding a equal to the center of the model arc, estimated numerically
constant to the tangent function, scaling amounts to divid-based on the, - parameters.

ing the arc-length by, while adding/subtracting to the A caveat of this is that we choose a singleper im-
arc-length of one curve registers the two curves to reducgge group-object contour combination, namely the one that
the length of missing parts/protrusions. minimizes the matching cost. It may be better to have a high

The scaling and offsetting is applied to the observed curyeatching cost if it gets balanced with an agreement with the
0o; the support of the transformed function depends on theseverall pose of the object. We therefore perform separate
parameters, and will be henceforth called, temporarily  searches in different ranges @f and perform separate de-
assuming fixed values fat, 7; the support of the model tections for each such range. In specific for an object lytng a
curve is denoted by,,. The intersection of the supports scale 1 we use as search range {.7, 1, 1.3}. For different
of the two curves is denoted I8, = So N Sar, while their  object scales we scale appropriately the range'sf



The main advantage of this contour-based approach iwheres” is the pose of a structure, p, ¢ stand for root,
that on the one hand we have continuous models for corebject part, and contour respectively, ahgdis the set of
tours, represented as 1D functions of arc-length, and at thenage tokens assigned to contéwe call a set of values of
same time we can work with a sparse image representatiothe pose/assignment/missing part variables an ‘inst#oria
Our model can thus capture a large part of the object bounaf the structure. An instantiatiof’ of a structurej comes
aries, while working with a small set of image structures. at a certain cost: for an object structure this will be thet cos
in Eqg. 3, while for intermediate-level structures this viié
their contribution to the overall cost.

Note that the cost is additive and defined on a tree struc-

During detection we find the set of tokens and part poses thélt".e’ as can be.seen f“’”.‘ Eq. 4. We can therefore define it
using the following recursion:

minimize the cost function in Eq. 3. Our object representa-

4 Inference: Efficient Object Parsing

tion is a tree-structured graphical model, so we could use Z VY, if S7 = ()
a message-passing algorithm such as Max-Product for this. ie{j,ch*(j)}

However, the data likelihood terms are multi-modal and can€(57) = { v;(In,,s;), ifjeVe
not be approximated with Gaussians. Performing message- Z bi(si,85) + Z c(pi)7 else.
passing would require either discretization, whose corple i€ch(j):Pi#() icch(j)

ity scales in the best case linearly with the size of the imag

1 ticle filtering [68] which Id h [ . ;
[1] or particle filtering [68] which would however require & to the cost of missing the structure and all of its descersdant

huge number of particles if no initialization is provided. . . . ) :
. ._Otherwise, if it is a contour, its cost is equal to its matchin
We propose to exploit two aspects of our representation

to perform inference more efficiently. First, in Sec. 4.1, Wecost with the tokens assigned to it. And if it is a higher level

. o I . structure, its cost is the sum of the spatial consistency cos
describe how to exploit its compositional nature to build up ;
eC(S ) = Dicen(j),piz() Pi(si;s;) between the structure

the whole object from a small set of sparse image tokens. : . . . .
. . . and its children and the recursively defined costs of itsspart
thus ignore the vast portion of the image where no tokens are

present. Second, in Sec. 4.2 we exploit the hierarchy in o Missing parts do not have a spatial consistency cost, and are

u .

L ' . t%erefore excluded from the summation f'.

model to perform detection in a coarse-to-fine manner: we ) . ) . _
The goal of inference is to find low-cost instantiations

use our model to quickly identify a few promising areas, to

which more computational resources are then devoted infé)r the whole object (goal’ structure). We refer to an in-

top-down/bottom-up computation setting inspired from theStamlaltlon of t_he goal structure asparse for the object, .
) . namely a relation between structures extracted from the im-
Generalized Aparsing of [28]. . )
age and the object parts and subparts. There is a huge num-

ber of instantiations, corresponding to different assignta

fn words, if a structure is missing’ = (), its cost is equal

4.1 Bottom-Up Object Parsing of image tokens to contours, poses of object parts, or ngissin
parts, while our goal is to efficiently explore the small setbs
4.1.1 Recursive Structure [ nstantiation of these that has low cost. In this subsection we phrase the

. . computation of instantiations as a ‘bottom-up’ algorithm;
Our approach to inference exploits the sparse, edge- anfle next subsection we describe how this algorithm can be
ridge- based representation of the image. Starting frosethe sped up using ‘top-down’ guidance.

elementary tokens we aim at building the whole object by At iteration 1, we estimate the matching cost of each

recursively composing its intermediate structures. group of image tokens to each object contour. If the cost is
To formalize this, we describe a structyret a certain  pelow the penalty paid for missing the contour, we instanti-

level in terms of its pose and its constituent parts: ate the contour with its pose estimate and the edge tokens.

Si = (s, Pt ... PN). (9) Otherwise it is cheaper to consider the contour as missing.

S7 is the description of the structuse, is its pose, described At iterationk + 1 we instantiate structures lying at level
in Sec. 3.1 ancP! ... PN are the descriptions of the chil- k+ 1 of the hierarchy. The previous iteration provides possi-
dren; if a child is missing, its description is empR,= ().  Pleinstantiationssy. ; = {(),s1,...,sn, ., 1,0 = 1...[Vil,
Otherwise it contains in turn the subpart's own pose, subfOr €ach part at levelk. Including the empty element al-
parts, and so on. At the lowest level, a contour is describelpWs for missing parts. A structurg can instantiate itsv

by its pose and the indexes of the tokens assigned to it. FGarts fromsy ... Sk n:

example the description of an object with two parts, with theS’ = (s/, P', ..., PY), P! € Sp1,...PY € Sp.y (10)
first having two and the second having one contour woultyng its cost is estimated recursively in terms of the part
have this LISP-like form: costs. The location is set to the value that minimizes the spa
SVr = (s (sV1, (sVe1 hy), (sVe2, hy)), (s"72, (sV**, h3))) tial consistency costSC/(S7) given the observed children



as shown in Fig. 3 for a 3-part structure. In this diagram
boxes correspond to structures, and when two structures are
connected the one lying higher has more elements than the
one below it. Gradually building up structures amounts to
following a path that starts from the minimum element and
gradually goes to its maximum.

The number of paths that can be followed eqt]ﬁ[tjél |Sk.ql,
Fig. 3: Hasse diagram for a 3-part structure: structure wittwhere N is the number of the structure parts, d54d ;| the

more constituents are closer to the top. The binary vectdrardinality of the candidate subparts. We deal with this po-

L - - tentially huge number with an algorithm described by the
inside the box indicates which parts have been found. following Matlab pseudocode:

function cnmp = Conpose(parts, Cost MaxPart, Cost Structure)

cnp = []; % conpositions
poses: for i = 1l:length(parts),
1 % conpose ol d structures with i-th part
- cnp_new = Conpose(cnp, parts(i));
; _ _ ; % upgrade i-th part (parts 1:i-1 are mi ssing)
1 1
x) = Z Em- Z Ez‘.,j (XZ - ,Ui,j)a (11) upgr aded_part = Upgrade(parts(i));
i:Pi() iPi() cost _up = sun(CostPart(1:i-1));
’ ’ upgraded_part.cost = upgraded_part.cost + cost_up;
and the log-scale coordinate is set equal to the mean of the % Ppenalize missing i-th part in old structures
< cnp. cost = cnp.cost + CostPart(i);
part coordinates. cnp = [cnp, cp_new, upgr aded_part];
bel ow = find(cnp.cost < CostStructure);
cnp = cnp(bel ow);
4.1.2 Ordering of Compositions " = nonmi ni mum suppress(cnp)
en

We now propose an algorithm to deal with the large number Before each iteratioithe structures formed so far (‘cmp’)
of candidate compositions. It is also useful in formulating have only partd ...7 — 1 instantiated, while parts... N
‘coarsening’ of the parsing problem in Sec. 4.2. are in the ‘dummy’, non-instantiated state. At thth itera-

The main idea is to put parts together ‘one at a time’tion, we combine these with structures that can correspond
Consider a structur§ with N partsS = (s, P1,..., Py). to theiri-th part (‘parts(i)’). Then we allow each part to di-
Initially we setP; = x, Vi, wherex is a special ‘dummy’, rectly form a structure at the higher level (Upgrade func-
non-yet instantiated part. This means that there areligitia tion); but this implies that all of the parts.. .7 — 1 will be
no state variables assigned to the nodes, and is not the saméssing, so we penalize missing them. We also keep the old
as having a missing part. We gradually build structures bytructures in our pool of structures, but augment their wost
applying composition rules of the forms, C) =5 S/, where  account for missing pait
C € Sy, is the new constituent, attached to padf S; r; We finally merge the upgraded parts with the compo-
is the rule used to instantiate partand is applicable t&  sitions and then compare the composition costs to the cost
only if its i-th part is not-yet instantiated. E.g. for= 2 we  of missing the whole structure. Those that have higher cost
would haveS = (s, S1, *, S3) andS’ = (s/,51,C, S3). are rejected: their cost can only increase by the further ap-

These rules are similar to the Greibach Normal Fornplication of rules, so it will be cheaper to treat the whole
[69] where production rules decompose a nonterminal intstructure as missing instead. We order parts so that the ones
a terminal and a nonterminal. Here we compose a structumgith higher missing cost come first. This quickly rules out
of layerk + 1 using a structure of laydr+ 1 and a structure weak compositions that do not include them.

of layerk. Finally we keep only the cheapest composition within
The cost of the structure is updated based on the cost @ small neighborhood (nonminimum suppression), to avoid
C and the change in the spatial-consistency cost: dealing with multiple candidates with higher costs. These
N N two steps can drastically reduce the number of utilized com-
C(§) = C(5) +C(€) + SC(S7) - SC(S). (12) positions. In the next subsection we show how to further
Initially, when S = (x,...,x),C(S) = 0. Note thatC € limit their number using top-down information.

Sk,; mean< can also be empty g3 € Si;. This amounts
to missing the-th part; in that cas€C(S’) = SC(S) and  4.1.3 Caveats
the cost ofS’ is increased by the cost of missing its part.

This way of composing structures introducepaitial ~ We mention two caveats of our method. First, we assume
ordering < among them, withP* < PJ if P7 has all the that for a given set of subparts, the pose of the part can
parts of P?; the ordering is partial as two structures are in-only take one value, the one for which the probability of its
comparable if e.g. each has a part that the other does n@bparts is maximized. This ignores all other possible part
This ordering can be visualized with a Hasse diagram [70]poses, which could potentially lead to an overall lower cost



This would be the case if a different pose estimate turns
out to be in better accord with the parent’s pose. We take

this shortcut as it avoids exploring all possible locatitors | j |_
Exit

the pose of a part. In practice, the provided poses estimates ‘ I
look reasonable. Further, we expect that during training we

can account for the systematically larger spatial consiste _| .
costs that are potentially introduced by this process.

Second, when performing suppression we ignore some I
of the alternative structures which have high cost, butcoul - |

potentially lead to cheaper overall compositions based on
their better spatial configuration. This becomes prominent

if a large suppression neighborhood is used, but is negligil—:ig_ 4: A*combines the cost-so-far (dark line) with a heuris-

ble for a small neighborhood. In specific, the difference intiC estimate (dashed line) of the cost-to-go (green line).
the location cost is a quadratic function in the differenee b

tween the original coordinates and the ones resulting from
suppression - therefore for smaller neighborhoods this copath by backtracking. This algorithm explores all states
becomes negligible. As we describe in Sec. 4.2.4, we keeRith costC/(v) < L.
track of the suppressed nodes so that we initially perform  The priority by which states are explored in Dijkstra’s al-
suppression at a large scale, but then reexamine at a small@srihm is equal to their distance from the start, or the ‘cost
suppression scale the interesting image regions. so-far’ traveled by the agent.*{v1,72] is a search algo-
rithm that instead combines the ‘cost so far’ with an easily
computablesstimate of the ‘cost to go’, called deuristic.
The priority by which state’ is explored is now equal to
(v) + h(v), whereC is the distance from the start and
is the heuristic. When this estimate is a lower bound of
atHe cost to go, it is called aamdmissible heuristic. A lower
ound can be obtained by relaxing some of the problem con-
traints, which is callegroblem abstraction. This could be

Entry

4.2 Hierarchical Object Parsing

The inference scheme we have described so far is entireg
bottom-up, i.e. forming first all low-level structures ahen

using them to assemble higher-level ones. This however ¢
be ‘myopic’, as it forms numerous compositions of a single

object part, before checking if they can be used to build th i o
whole object. For example if we cannot form the trunk and or example the Manhattan distance, as it ignores the walls

the cabin of a car somewhere in the image, we should unf the maze, or the Euclidean distance which also allows the

forming compositions of the engine part there. ageni_to move diagonally. ) L
Our strategy for dealing with this consists in first per- A IS guarant_ee_d to lead to Fhe_ opUmaI solutlon_ ifit uses
forming a quick detection of the object by composing Onlyadm|35|ble heuristics; further it finds it by exploring only

roughly certain layers of the hierarchy. We then use these rdhose states for which C(v) + h(v) < L. If h(v) is a
sults to guide detection at a finer level. The first step quickl tightlower bound these can be substantially fewer tharethos

rules out a big portion of the image, and helps devote regxplored by Dijkstra’s method. This reduction in the number

sources to promising areas. This augments the ‘bottom—u;?f explored nodes comes at the cost of computing ,
computation with ‘top-down’ guidance. Recent advances in As the lower bounds computed by problem abstractions

A*Lightest Derivation (Parsing) [17] provide us with the C&N P€100se, another optionis to use instequcted costs.
tools to formalize this scheme. This can speed up Aut results in non-admissible heuris-

After briefly introducing Ain Sec. 4.2.1 and its adapta- tics, which can lead to suboptimal solutions [71].
tion to parsing in Sec. 4.2.2, we describe how we appipA In summary Akeeps search focused towards the goal,
object parsing in Sec.s 4.2.3,4.2.4. Our detection methoBY favoring partial solutions that seem to be getting closer
was initially based on a priority queue implementation oft© the goal. This is intuitively similar to the saying ‘keep
A*parsing that we describe in Sec. 4.2.2, but we have switch@4" feet on the ground and your eyes on the stars’. We do
to the simpler coarse-to-fine scheme described in Sec. 4.2.30t only want to have a good partial solution; we also want
it to lead us to the full solution with low cost.
4.2.1 Search: Dijkstra’s Algorithmvs. A*
4.2.2 Parsing: KLD vs. Generalized A*
Consider an agent who wants to move from the start of the
maze of Fig. 4 to the exit using the path of shortest lengthTo describe Aparsing we use an analogy between search
say L. We can use Dijkstra’s algorithm until the distanceand parsing. In parsing our ‘exit state’ is a ‘goal’ struetur
from the start to the exit is found and then get the optimal.e. a structure at the highest level of the hierarchy; aed th
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‘path length’ we are minimizing is the cost of the structsre’
instantiation. To get to our goal structure we need to first in

II
< <
1

stantiate structures lying in intermediate levels of thedui- 1 Coarsen 111
chy; similar to passing through intermediate states inckear s L T
The ‘cost-so-far’ for an instantiation is its cost, comlite- I w
cursively as described in Sec. 4.1. And the ‘cost-to-gdiés t ' (00 0|

additional cost that will be paid until we form an instantia-
tion of a whole object, while starting from this structure.  Fig. 5: Structure coarsening: a structure is considered-com

In the same way that Dijkstra’s algorithm prioritizes in- pleted if it contains a single part.

termediate states based on their distance from the stast{'c

so-far’), Knuth’s Lightest Derivation (KLD) [17] prioriies

intermediate structures based on their instantiation &agd ~ 4-2-3 Heuristics for Objects

maintains a list of minimal-cost structures (similar toitad

nodes in Dijkstra) and a priority queue of structures that ca Having shown how Acan use heuristics to speed up compu-
be composed from structures in this list (similar to the path tation without sacrificing optimality, we describe the hisur

in Dijkstra’s queue). At each step KLD removes the cheaptics for our problem, namely object parsing. The General-
est structure from the queue, and if it is not already in thézed A*algorithm was applied by [17] to finding the most
list it forms compositions that use this structure. KLD stop salient curve in an image and was demonstrated to deal with
when it generates the goal statement, and is guaranteedtfte large number of groupings formed by aggregating lo-
find the one of minimal cost.. However, it first needs to cal image features into longer structures. Here we consider
consider all structures with cost less thian detecting objects by composing multiple parts; we demon-
As in A*search, it is therefore beneficial to have an es—s.trate that Agpplies to_our problem based on the composi-
. ) ’ , T . tion mechanism described in Sec. 4.1.

timate of the ‘cost-to-go’ and use it prioritize the composi

tions. To articulate this, Felzenszwalb and McAllester-pro  We note that in our implementation we use a Coarse-to-
pose in [17] the concept of ‘context’. Loosely stated, theFine scheme which we found to be better suited to the prob-
contextCon(S) of structureS is what$ needs to get to the lem of detection, as described in detail in Sec. 4.2.4. This

goal; for a example, for a car the context of a wheel structur&Ses the ideas described in this subsection, which are-appli
would be the engine and trunk structures. cable to both the Aparsing and coarse-to-fine methods.

Formally,Con(S) is an instantiation of other structures ~ 1© COMPose a structure using for example three parts we
which, combined with, lead to a goal statement. So if "€ed to climb to the top of a Hasse diagram, as shown ear-
structureS can be combined with structude and lead to  €" N Fig. 3. For each move we pay the cost of the new part,
a goal structuré’, S is P’s context and vice versa. Further, plus the change in the compos?tion cost. Adding up the;e
the cost of these contexts will W&(Con(P)) = C(S') — costs along the path to the tqp gives the _cost of synthesizing
C(P) andC(Con(S)) = C(S') — C(S), so thatC(S) + the whole structure. The main (?omputatlonf';\! burdgn comes
C(Con(8)) = C(S'). Contexts can be defined recursively: from the large number of possible compositions: in the di-
if S and P lead to a non-goal structur, the context ofg  adramwe s.ho_vv only one path from one substructure to the
is what it needs to get t6' (P) plus whatS’ needs to get to one above it; in practice there are as many different paths

the goal. The context f will thus have cost'(Con(S)) = S structure instantiations, while the number of possiige t
C(Con(S")) + C(S") — C(P). Obviously, we are only in- nodes equals the product of the candidate part instantgtio
terested in the context with minimal cost. However, if we can construct a lower bound for all parts

. . lying above the first level, we can find only the first part (the
Contexts are however hard to compute; implicit in their P .
. o one at the lowest level), and then *fill in’ the other partstwit
recursive definition is that we knew how to compute the 4
. dummy structures having costs equal to the lower bounds of
goal statement, which means that we have already solved the o
: . : the part costs. This gives us a lower bound for the cost of
parsing problem. However, *Aequires only a lower bound . . .
S composing the whole structure that is rapidly computable.
of the cost-to-go. So to prioritize a structueve only need ] _
to lower bound the cost af'on(S). This can be performed ~ This amounts to what we callsiructure coarsening. It
quickly by computing”on(5) in a simplified setting (prob- CONSISts in cqllapsmg several of the n_ode.s of a Hasse d_|a-
lem abstraction), and then using its cost as an estimate §fam into a single one as shown e.g. in Fig. 5, and consid-
the ‘cost-to-go’. Formally, ifibs(S) is the mapping o to ~ €ring as identical structures that have one, two or threts par
the abstracted problem domain, the cos€ofi(abs(S)) is ~ instantiated, as long as they have one partin common.
used as a heuristic to determine the prioritySoét the fine The cost of acquiring pa®’ is ¢;(s?,s”*®)) + C(P?),
level. This is in brief the algorithm proposed in [17]. i.e. the location cost plus the part cost; a readily comgdatab
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Fig. 6: A*Parsing of a car: Initially (left) the car is coarsely parseing Knuth's Lightest Derivation. The coarsening
consists in considering that each car part needs only aesaagitour. Once a car is thus parsed its parsing is ‘rolled’bac
and generates contexts for parsing at the finer level. This$lp a single coarse-level node into a full-blown sub#tebe
fine level. The parse trees indicate the number of low-, naide, high- level structures (orange,blue/green/red,bthek are
involved in the coarse- and fine-level composition procedur

lower bound is thusning: ¢;(s?,sP*?) 4+0 = )\i% log|X;|, computed whose cost is a lower bound of the actual object’s

asg; = —\; log Pi(s? — sP*()) and P; ~ N (i, X5). cost. We reject object structures whose cost is higher than a
Our composition algorithm should thus be modified forconservative threshold and use the rest for fine-level bearc

coarsened parsing as follows: For this, we identify the low-level structures that can

- _ ) lead to the retained object instantiations. This requioases
nparts = length(parts);

for added_part = 1:nparts, book-keeping during the coarse detection, where for each
upgr aded_part = Upgrade(parts(added_part)); :
other parts = setdiff([1:nparts],added part): structure we keep track of the str_uctures it suppresses. We
bound_others = sun(Cost Bound( ot her_parts)); can then backtrack from each object to all low-level struc-
cost _bound = upgraded_part.cost + bound_ot hers; T .
upgr aded_part. cost = cost_bound: tures that can be used to build it at the fine level.
cnp = [cnp, upgraded_part]; We thus use a simplified version of‘that does not re-

end quire a priority queue, and is substantially easier to imple

ment: the process of ‘identifying’ the low level structures

tS(_) we n(? Ionger;orm c:)n;posﬁ]ons coptamllng rlnu“('jplzgescribed above amounts to providing them with a heuristic
parts, we only upgrade parts from the previous leveiand adfl,; equal to zero. The rest of the structures which were not

o thglr cost the lower bound of the other part cos.t§. Th'?dentified obtain a large heuristic cost which removes them
drastically reduces the number of explored compositions.

Apart f ruct . | ; from consideration. This quantized heuristic cost thus ast
part from SIUCIUre coarsening we can aiso periorm, ‘top-down’ signal, indicating if it is worth trying to com-

IoEatlon cc:arsemng, by cons!dermg as fgnt;]caldst_rrtﬁgurl ose structures towards building an object. This is exactly
WROSE parts are in a common image neighbornood. ThiS aixpy, o e \vere asking for initially, namely some indication

reduces the number of gxplored parts, Whllef we are able tgpout where it is useful to search for complex compositions.
go back and mend the inaccuracies of the first coarse-leve . .
This method seems to us more natural for detection, as

parsing by the simple book-keeping described in Sec. 4'2"\1/\'/e generate all instantiations that have a cost below atthres

. . old instead of focusing on the cheapest one; further it is sub
4.2.4 Coarse-to-Fine parsing stantially faster in Matlab as it is vectorizable, and weenav

. - . found it to be significantly easier to implement.
The original description of Amplies that we form a compo-

sition, compute its heuristic cost, and then insert it inghe

ority queue. However, computing the heuristic cost ‘on de4.2.5 Object Parsing Demonstrations

mand’ is computationally impractical. Instead, as in [L& w

consider the opposite strategy of first computing the heuriswe demonstrate how the algorithm works for an individual

tic and then using it to trigger the formation of a structures object in Fig. 6: Consider detecting a car structure com-
In specific, we first solve the parsing problem at the abposed of an engine, cabin and trunk structures, which are

stract level, by coarsening the object-part layer of thednie  in turn composed of multiple contours. Initially we simglif

chy. At the end of this stage a set of object instantiations ishe parsing problem by coarsening the object part level of
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Fine-level detection, without guidance

Fig. 7: The top-two rows demonstrate the Coarse-to-Fineatien scheme, which is contrasted to the plain, Fine-Level
detection scheme of the bottom row. At the coarse level alssetlof candidate object locations is quickly identified;
these locations guide search at the fine level, acting ligedtmvn guidance. Instead, when doing Fine-level Parsitigoui
guidance (bottom row) a detailed parse of the object’s psugerformed in several background locations, e.g. arorgesbt
This wastes computation resources on locations which erting useless.

the hierarchy. For example for the engine structure, we corbuild full-blown object parts with multiple contours, wihic
sider it is complete when we have found one of its contourdeads to a single object instantiation being above threshol

e.g. the hood; the same applies to the cabin and trunk parts. By contrast, as shown in the bottom row of Fig. 7 purely
In this way we first compute a coarse parse of the objechottom-up fine-level detection is ‘short sighted’. By trgin
where each part is composed from one contour. to form all object parts at full detail from the beginning,
At that point, we backtrack and find the mid- and low- it wastes computational resources. This is evident from the
level structure instantiations that were suppressed dtine  large number of individual object parts formed on the back-
coarse-level detection. These structures now have a ‘coground, avoided by the Coarse-to-Fine approach.
text’ at the coarse level, namely a lower bound of their cost- | Fig. 8 we show as a heat map the cost function at
to-go. These are then used for a more detailed parse at tiige coarse and fine levels. A single ‘goal’ structure resides
fine level, where all part contours are required to be presenfyithin each box-shaped neighborhood after location sup-
or else penalized. For example, as shown on the right gdression, and neighborhoods where the cost is lower are
Fig. 6, the context for the ‘back’ structure initiates a dleth  more red. At the coarse level instead of admissible hecsisti
composition of the structure at the fine level, blowing up awe use expected costs, estimated during training. As we use
single node of the coarse parse tree to a whole subtree. Vth structure and location coarsening, the domain of the
can thus build complete parse trees while avoiding elaboratcost function is very coarsely quantized initially; thitoals
search in background clutter. us to rapidly focus on the interesting locations, and then re
In Fig. 7 we demonstrate the computational gain due tdine our detection.
the Coarse-to-Fine scheme for an entire image. Atthe coarse For example, the car model, learned as described in Sec. 5
level we perform structure coarsening and spatial suppregontains 65 contours. Plain fine-level detection with thisiei
sion, so we find a few structures for each part - we show theifakes more than 50 seconds for an image with approximately
centers as dots. Contrary to the object-part level, we do n&g§oo image tokens. Instead, coarse-level detection canriee do
coarsen the object level; namely we require all object partg, |ess than 10 seconds; following this, fine-level detettio
to be present. As all three object parts can be accidentallyan take place in less than 15 seconds, so the sumis typically
detected only in few locations, this reduces the candidatRss than half the original computation time. These measure
objects as shown in the top left corner of Fig. 7. ments do not include the average cost of boundary detection
The object structures whose cost is above threshold aie=10 seconds), curve linking{3 seconds) and matching of
shown on the right column. Starting from these, we backecontours to object boundaries8 seconds) which are com-
track to the lower levels and focus on the image areas likelynon for both methods. The gain in efficiency varies per im-
to contain an object. We now penalize missing contours andge, and is most prominent for images with heavy clutter.
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(@) Input (b) Cost, coarsened problem (c) Cost, fine-level problem

Fig. 8: Cost function for the coarsened problem (left) areldhginal problem (right); low costs are red and high costs a
blue. We efficiently compute the cost on the left, which pded us with a lower bound for the cost on the right. We then
refine the computation at those locations where the coastdalls below a conservative thresholRlease seein color.

g —— Fine-level Search e S i
O9f Lo - - -Coarse-to-fine search P ) b
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Tos Fig. 10: Typical Images from our training set .
* 0.4
0.3
0z ] 5 Model Learning
0.1 4
o SR 15 We now turn to the problem of learning our object model.

We assume that we are provided with a small set of images
Fig. 9: Performance curves for a detector using fine-levefin the range of 20 to 50) that contain only the bounding box
parsing (orange-solid line) and a detector using our cearsef the object. We do not require any manually-segmented
to-fine algorithm. features, while the images we work with have heavy occlu-

sions, noise, illumination variations etc; examples ofges

in our training sets are shown in Fig. 10.

We decompose the learning task into three stages: First
we recover theobject contours by registering the training
set using unsupervised Active Appearance Model training
(Sec. 5.1). We then find thabject parts by estimating the

We note that we have experimentally found expectedjeometric affinity of contours and clustering them with Affin
costs to be more effective at reducing the parsing time thajy Propagation (Sec. 5.2). Finally we learn thasing cost
admissible heuristics. As mentioned in Sec. 4.2.1 on th@iscriminatively via Multiple Instance Learning so as toe op
one hand this may result in suboptimal solutions, but theimize the detection performance (Sec. 5.3).
heuristic is substantially closer to the actual cost andltgs We demonstrate learning results for cars from the UIUC
in substantial reductions of the computation cost. Detailgjataset and the ETHZ shape classes (apples, bottlesegiraff
about the computation of the expected costs are provided ifgs and swans). The testing evaluation of the last 5 cate-
App. B. A quantitative demonstration of the gain in perfor-gories uses a protocol where the training images are chosen
mance as well as the associated loss in accuracy due to therandom from a larger set of images 5 times; we therefore

we plot the recall as a function of the false-positive-percommon parameters throughout.

image rate for the bottle category of the ETHZ dataset. The

orange-solid curve corresponds to fine-level search, while

the red-dashed curve corresponds to the performance of the

detector when optimization takes place in a coarse-to-fine.1 From Images to Contours

manner. The loss in performance observed is due to false

negatives (lower recall), which demonstrates that our nonthe contours used at the lowest level of the object repre-
admissible heuristics can reject some useful compositionsentation are obtained from the edge and ridge contours of
prematurely. On the other hand, parsing 231 images toolhe images in our training set. On individual images these
270 minutes using fine-level search and 160 minutes usingontours are noisy but when aggregated over the training set
coarse-to-fine, almost cutting by half the computation time they become substantially more robust.
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(a) No registration (b) Affine registration (c) AAM registration (d) Contours

Fig. 11: We obtain the contours at the lowest level of our abjepresentation via deformable model learning: The car
template in (a) is computed by averaging the edges (blackjidges (red) of the training set before registration;hirefore
has few clear structures. The template in (b) is computetusily affine registration and is still missing several stuves.
The template in (c), computed using AAMs, is sharper as ggoayespecific deformation model is learned and used. The
object contours, shown in (d) are extracted from (c) by n@xdmum suppression followed by hysteresis thresholding.

Input

A\

\x

Output

Fig. 12: Initial (top) and final (bottom) templates for thedfivategories of the ETHZ dataset, learned as described.id Eig

This idea underlies several other recent works that eitheictive Appearance Model (template and deformation basis)
explicitly [65,73] or implicitly [23] register a traininges.  and (b) a registration of the training images.
We rely on our work on unsupervised Active Appearance The improvement in registration can be seen by com-
Model (AAM) learning in [74], which we only briefly de- paring the images in Fig. 11(b) with Fig. 11(c). Each im-
scribe below for completeness, as we intend to present it inge shows the average ridge and edge maps of the whole
a different publication in the future. training set, obtained by taking the mean of the training im-

In [74] we learn a deformable template model for an ob-ages. The learned model ali_gns the trai_ning images and givgs
ject category from images that do not contain landmark (_:I_ean contours after av_eraglng_.The object_contours shnwm
The template is a dense model of edge and ridge maps, whifg- 11(d)_ row are obtained using nonmaximum Suppression
are largely invariant to changes in appearance. We theré_uppresspn.foll(.)wed by hysteresis t.hresholdlng. In Fay. 1
fore use the mean of these features as the model predictioW?_ShOW |nd|cat|vg results for one trial of.each cgtegory, to
and do not account for appearance variation. The deformélr-]dlcate that starting from a set of unreglsteredllmages .we
tion model accounts for shape variation using a linear basi§a" accurately extract boundary and symmetry information
to synthesize the deformation field applied to the template©" the whole category.

This basis is category-specific, and is combined with global

affine transformations to register the training images. 5.2 From Contours to Object Parts

We learn the mean template and the deformation basis
with EM. In the E-step we register the training set to theHaving obtained a set of long contours that capture the bound
template and in the M-step we update the deformation modelries and symmetry axes of the object, we want to find the
and the template’s appearance so as to better register the imtermediate level structures that will connect these @orgt
ages in the next step. The output of this process is (a) aimto coherent object parts. This is similar to learning the
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@ () Fig. 15: As pre-processing to estimate the statistical -affin

Fig. 13: Pairwise clustering is used to discover objectgart %Y Of two nodes, every image in the training set (left) is
first the object contours are broken into straight segmenta@ckward-wrapped to the template coordinate system (mid-

which are seen as nodes on a graph. Ridges are shown as@ip) using the deformation estimated during AAM training.

lipses whose width is proportional to the scale of the ridge ] Nére, we measure the extent to which each node (black

Nodes are connected with edges based on continuity arftf!) 1S covered by an image contour (red curve) to deter-
parallelism. The affinity among nodes is estimated using std"in€ if the node is present in the training image.
tistical and geometric information. The object parts shown

on the left are obtained using Affinity Propagation. o _
The affinity among two nodes on the graph is computed

based on both statistical and geometric cues. First, we com-
pute the geometric affinity among every paiy of edges
or ridges, based on contour continuity. For this we quan-
tify their grouping cost using the analytic approximation t
the Elastica functional [78] provided by [79]. In specific,
. consider two edge segmentgi, with ¢ ending atp; with
anglev; and j beginning atp; with angle; as shown
Yi Vi f'\_\ in Fig. 14. It has been demonstrated in [79] that the quan-
/b pj tity E;; = 4(¢797 — 1:1;) provides an accurate approx-
imate to the scale-normalized integral of the Elastica en-
Fig. 14: The geometrical affinity among pairs of nodes isergy [78] of the illusory contour grouping these edge seg-
expressed using the Elastica completion cost. ments. We sewfy’;“”e = e~ Fii. For adjacent contours we
setw;"*"* = max (1/2, e~ F7) to allow for corners, which
) . are otherwise severely penalized by;.
structure of a graphical model [75,76]; but our problem is

harder as we want to ‘invent’ hidden nodes with continuous Second, to eXPIO't symmetry during grouping we also
. . connect edges to ridges. Based on the scale of each ridge we
variables for the object parts.

We therefore use a data-driven approach that exploits theestlmate the set of I(.)cat|ons n Its. perlphery_wherg it would
expectto find edges; we then set its connection weight to the

geometric nature of our problem. We turn the contours ex- . .

. : . . dges nodes to be equal to the proportion of the edge that is
tracted in the previous step into a set of straight edge an . . .
contained in the bounding box.

ridge segments as shown in Fig. 13. Each of these segments i o )
is treated as a node in a weighted undirected graph, whose Third, we incorporate statistical information by measur-

weights quantify the affinity among nodes. We then use paif"d Now often two tokens appear together in the training

wise clustering, specifically Affinity Propagation, [77]aar- images. This strengthens the bonds among parts that have
tition this graph into coherent components.

common appearance patterns and isolates parts that appear
Affinity Propagation is a non-parametric clustering al-"a7€ly in the dataset. We compute the functipp that indi-
cates whether linéwas (partially) observed in imageand

gorithm, that allows clusters to be formed based on the pai S par . nac
set the affinity among linesand;j equal towy " ***" =

wise affinities of observations. Central to this algorithsn i
the identification of ‘examplars’, i.e. observations thavé % Zszl Li i L -

high affinity to a subset of the data; these are identified ina To computel; ,, we use the deformations estimated dur-
distributed manner, similar to inference on a graphicalehod ing AAM training, as illustrated in Fig. 15. For this, we first
Apart from the affinities themselves, which will be discubse backward warp the edges found on training imagéeft)
below, the only crucial parameter of this algorithm is theto the template coordinate system (middle), using the de-
‘preference’p for each point, which determines how likely formation estimated during AAM learning. On the template

it is going to be picked as an exemplar. This quantity detereoordinate system we measure the length of the edge con-
mines the number of clusters and is septe- .1 in all of  tour passing through the ‘cell’ associated to nédgight).

our experiments. If less than three object parts emerge, wehese cells are obtained by dilating the support of each tem-
perform bisection search ovemuntil we get at least three.  plate edge, in order to tolerate small misalignments by the
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Fig. 16: Object parts delivered by our method for five différeials for the categories of apples, bottles, giraffesgs) and
swans: boundaries and symmetry axes belonging to the sgew phrt are shown with the same colBlease seein color.

-———'—‘

C

AAM. If the length of the intersection of the image curvestuitively we would like these two edges to be easy to group
with the cell is above half the length of the template edgdogether. We therefore consider the product of the pairwise
we consider that the corresponding cell is present, i.e. waffinities among all possible paths connecting two nodes and
setl; j, = 1. use as affinity the maximum of this product among all paths;
Finally, the affinity is expressed as ; = wffj%apewfsclusion_the product can easily be computed using matrix multiplica-
This affinity only partially captures the coherence of twotions.
nodes. Two edges lying on opposite sides of a ridge may In order to obtain a clustering from these affinities we
both be strongly connected to the ridge, but weakly conhave found Affinity Propagation to be particularly effeetiv

nected with each other according to the continuity cue. InWe had initially experimented with several alternatives of



17

Normalized Cuts, but finding automatically the number ofwhile the corresponding missing-node featureare set to
object parts turned out to be problematic. Affinity Propaga-one.

tion instead gave visually appealing results after littke e Each instantiation thus gives gV | — 1) + 3|V,| fea-
perimentation. Most of the object parts are visually plausitures. Our goal is to learn how to weigh these features for
ble and correspond to clear structures, e.g. handles, headlse purpose of classification. Our training problem is non-
wheels, etc. standard, as we do not know the correct object configura-

Once groups of tokens are identified by the process aboviens; so we do not know the features that our classifier
we form all possible groupings of these tokens into largeshould be using. We only know that for a positive image
convexarcs. For instance the green contour corresporming &t least one configuration will be positive; and all config-
the apple on the top-left figure can be decomposed in severatations composed from a negative image should be nega-
different ways into smaller contours. These are included inive. Essentially we want to train a classifier with a high-
whatis shown as the green part, but during learning (detailedimensional hidden variable, namely the correct object con
below) most of them are eventually ignored automatically. figuration.

This is a problem that can be addressed using Multiple
Instance Learning (MIL) [80]. Before describing in detail
MIL and how we apply it to our case, we note that MIL has
peen used in computer vision in [81-83], but not for hier-

5.3 Multiple Instance Learning for Discriminative Parsing

In Sec. 3 we have expressed our cost function as the likel hical model : In 1281 & | SVM
hood of the image under a probabilistic model. To derive jarenical models as in our case. in [28] a latent was

we have assumed that the child nodes are independent Cor?{_oposed to train a deformable part. mpdel di§criminativgly
ditioned on their parent, that the reconstruction errothef with the poses of parts treated as missing variables. Their a

tangent function are independent in Eq. 5, while other termgorithm alternates between extracting features by minimiz

were derived from some prior, €.g. on the probability of hav-"9 the cost function w.r.t to the hidden variables, and-esti

ing missing contour parts or non-overlapping image and Ob!:natmg the feature weighting that optimally separates pos-

ject contours. In practice the independence assumptions dye from negative images. At each round this algorithm

not hold, and we do not have annotated data to construct tHEes @ single hidden variable per positive image, which can
.cause instabilities, as the authors mention. In more recent

priors. Moreover, using generative models is not necdgsari ;
optimal for object detection, since our task is to discriata work [84] that was developed independently from ours [85],
the authors acknowledge that their algorithm is an instance

among objects and background images. f the MIL f K b " inale i f
We therefore turn to a discriminative method to estimate®’ "€ . rqmewor ’ _Ut st qse a singie 'r?SF"’,‘”‘Fe .Or
each positive image, which requires a careful initializati

the parameters in our cost function. We view our cost func , i ) S
of their algorithm. Instead, we entertain multiple instant

tion as the output of a linear classifier that uses the patisnti ; h e d let the alqorithm decid
computed from an instantiation as features. The decision ions for each positive image and let the algorithm decide

formed by taking a weighted sum of these features and ré’yh'Ch |s_most appropriate. _ o

jecting instantiations whose cost is above a threshold. ~ MIL is a general framework to deal with missing data
In specific, the featurel used by our classifier are formed classification, accommodating for instance Large-Margi

by concatenating: (i) The location features, equal to theusyi raining [86] and Boosting [81]. Typical learning assumes

log probability of the relative poses involved in the part_tralnmg samples come in feature-label pairs. Instead, MIL

child relationships, takes as a_training sample a ‘bag’ of featurg; apd its I_abel.
Each bag is a set of features, and the classifier is applied to
Fy ={—log P(sy[spa(v)),v € V\ V; }. (13)  each feature separately. A bag should be labeled positive if

The \; parameters in Eq. 1 are the weights of these feaat least one of its features is classified as positive, and-neg
tures. (i) The contour match featurés, namely the mis- tive otherwise. The hidden information is the identity oé th
match COStfseSC [00(2 +7) — Oar(s) + 0]2 ds, the turn-  Ppositive feature(s) in the _positive bags. This is exactly ou
ing penaltyc?| S.|, and the missing lengtl$,;| of each object problem, too: from each image we can fqrm a b_ag of fea-
contoury € V... Thei, v, s parameters in Eq. 5 are the tures, corrgspondmg 'Fo all posslble object instantiatidide _
weights for these features; each contour has its own weight¥/@nt to train a classifier that will label at least one as posi-
(iif) The missing node features;, computed from the indi- juve for a positive image, and all as negative for a negative
cator functior as: Image. I A I ol 87
We rely on the Deterministic Annealing approach of [87
Fy={M(v)=1-h(v),r e VA V;}. (14) o MIL, which resolves some problems in the original work
The missing part potentiatg? in Eq. 3 are the weights of of [86] on Large-Margin MIL. In specific for thé-th train-
these features. For a missing part we set to zero the locatiang image we form a bag-label pals;, Y;, whereB; is a
and contour match features of both it and its descendantset of features computed fromy candidate instantiations,



18

Fig. 17: Positive and negative bags for the car class: fon &.@ining image we compute a set of instantiations, vigedli
as a part-level labelling of the image tokens. The goal afiing is to learn a cost function such that for each positwage
at least one instantiation has low cost, while all instdiuties from a negative training image have high cost. Thiiges

using Multiple-Instance Learning.

ie.B; ={Fi1,...F; 5, }.Y; = 1if i is a positive bag and The entropy term is necessary to avoid the local minima
Y; = —1 for a negative bag. Consider now a hidden variableof the optimization problem: the optimized function is con-
vector h; for each bag, such thath; ; = 1 if F;; corre-  vex in (W,b) for fixed p and convex irp for fixed (W, b).
sponds to the correct instantiation for a positive image, anHowever it is not convex i, b, p, due to the misclassifi-
the most object-like instantiation of a negative image. cation term, which contains negative products of jphend

If we know the hidden variable vector, training the largeW variables. Deterministic annealing is therefore used to
margin classifier could be accomplished by minimizing theavoid local minimaw is set initially to a high value, ‘con-
following cost: vexifying’ the optimization problem. For that alternating
optimization w.r.t to(T¥,b) andp is used to optimize the
cost function. At the next iteration is decreased and the
optimization w.r.t. to(1W, b) andp is initialized using the
solution computed at the previous step. This process is re-
peated for decreasing valuesgfwhich amounts to mak-
ing the distributionp on each instance increasingly peaked
whereW is the weight vectorgIV - W penalizes the classi- around the instance that has the lowest cost. We have used
fier's complexityp is the classifier’s offset anftr] penalizes  the code provided by [87] and have found this scheme to

examples on the wrong side of the margin. Note that a smafirovide systematically better solutions that those olethin
value of the cost; - W + b impliesi is positive, so we need without annealing.

to flip the labelsY; to turn our problem into the standard
SVM training setup.

N J;
CW,b) =cW-W+> > hi jl[-Yi(F;; - W + b)(15)
i=1 j=1

l—z,z<1
= {15550 (16)

Adapting this approach to our case requires addressing
In practice we do not know the binary hidden variablesthree t(-e.chnlcal points. _F'rSt’ .the weight vec,kb? ShO_UId )
_be positive: for a negative weight a structure’s contrituiti

hi ;. However, we could compute them if we knew the clas h d ) hil d
sifier parameterg§\W, b); this suggests an iterative strategy, to the _COSt would turn n(_agat_we, while: worse parts wou
result in lower costs, which is counterintuitive. Moreover

similar to EM. Following [87] we consider a distribution . d : b ible 1o | bound th ¢ of
on the instances of each bag, and replace the binary hiddétnwou no longer be possible to lower bound the cost 0

variables with probabilities; ;. We now consider a new op- 2 p‘;ri' ':'(herefore, _?urlnAgt ';he O?t'mlzat'(.); Wﬂfﬂt/’ b) \r/]ve
timization problem that involves bo{W, b) andp: need to keepl” post |vte. A Imestep consider that we have
found the solutionW?, b*); we want to find the increment

N J to W, b* that maximally decreases the cost, while keeping
C(W,b,p) = cW - W + Z mel[_Yi(FiJ W +0)] W positive. For this, we first form a second order approxi-
i=1j=1 mation to the cost arounid’®, b, i.e.
+v > pijlogpi; (17)
i.j
Ji C'(h, f) = C(W' +h,b" + f)
S ps =LV - ~ L A Hb ]+ 70+ OOV B, (20)

The last two constraints guarantee thatill be a distribu-
tion on the instances of each bag; 3nd ; p; ; log p;,; is the
sum of the negative entropies of these distributions.

whereH and.J are the Hessian and Jacobian(dfespec-
tively at the current estimate ¥, p, b. At eacht we then
recover the optimal update ®'¢, b* by solving the follow-
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Fig. 18: Improvement of the parsing cost function for cangially (middle) our model mistakes parallel structures ¢ars,
giving low cost to the street to the left of the car. After sirations (right) of MIL training, the cost function indies more
sharply the location of the car.

ing quadratic program with inequality constraints: described above, and compute the new cost function. This
1 . procedure helps drastically reduce the number of rounds re-
min S ST H R f]+ R, f17 (21)  quired by the parsing/training algorithm: in practice afie

iterations the training algorithm converges.
In Fig. 18 we show how the training process gives a cost
Second, it is impractical to consider all instantiationsfunction that is better suited for detection, by learningit
for each image, as the optimization problem becomes ineriminate among car and car-like structures from the back-
tractable. Instead we alternate between estimdiiid) us-  ground. We note that after several iterations the cost fonct
ing the annealing algorithm, and parsing our training setis more sharply peaked around the actual location of the car;
For each positive and negative image we keep the five bettis indicates that we learn a cost function that is betteedi
scoring instantiations at each round, and add them to bdgr the detection task.
computed for that image from the previous rounds. We have
found this to be more robust than keeping only the instan-
tiations from the current round, as it allows the algorithmé Application to Object Detection
to ‘backtrack’ on occasion and give lower cost to instan-
tiations computed earlier. The initial instances are ol#di We validate our method using the UIUC car [4] and the
by optimizing the cost function that would correspond to theETHZ shape classes [24]. The car dataset is the most chal-
generative model formulation, i.e. by setting thevariables  lenging in terms of image quality; the images there are of
equal to 1 in Eq. 1 and the missing cost potentials equal tow resolution, while in many cases the image contrast is so
minus the log probability of missing a part. low that whole parts of the object are missed by the contour-
Third, changing the weight vector potentially has an ef-detection front-end. The ETHZ shape classes have been in-
fect on the features. To see this, consider that the cost @¢foduced more recently and are used to benchmark detec-
a part’s instantiation is higher than the cost of missing thation algorithms that deal with deformations, occlusiorts,et
part. As it will be cheaper for a higher- level structure to€o while relying on the shape cue that is dominant for these
sider that part as missing, such instantiations are rejdnte classes.
our composition algorithm. As during trainifg is chang- Our models have been automatically learned using the
ing, some of the instantiations become impossible: if theorocedure described in Sec. 5, while for all classes we use
cost of missing one part decreases, all structures having@mmon settings during both training and detection. Fos car
more expensive instantiation of that part could no longer bave use 50 images to learn the contours and object parts, and
generated. Instead, they should be replaced with strigctur@00 positive and negative images for discriminative tragni
having that part missing. This means setting to zero their loFor the ETHZ datasets we use the common evaluation proto-
cation and contour match features and to one their missingol: for each category we use half of its images for training,
part features. and the remaining images from the category, and all images
Therefore, a changé( f) in (W, b) proposed from the of other categories, for validation; we present results-ave
minimization above can potentially result in an increase iraged over 5 different trials. As negatives we use 300 images
the optimized function as the features will chang¢l&t+  from the Caltech background images.
h,b+ f). We deal with this by taking the incremefit, f) In Fig. 19 we demonstrate parsing results on these datasets.
computed at each iteration as a direction in which the weighVe show parsing at the object part-level, where the color
vector should be changed. Then we estimate the length iencodes the object part to which a token is assigned; our
which this direction should be followed using line search:algorithm actually works at a finer level, as each token is as-
for each value of the length we modify the feature set asigned to a specific contour of the object. We observe that

st. hi +WE>0 Vie{l,...,|h|} (22)
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Fig. 19: Parsing results: For each image we show objectritiations that are classified as positive by our inferenge-al
rithm. We show the parse results at the object part-leveéigusolor to indicate the object part to which a token is assdy
but our algorithm establishes a finer, contour-level retati

our algorithm can deal with real images containing substanbest reported so far by Fidler et. al. in [40] with a sparse
tial clutter; for example, in the car images only a small frac representation.
tion of the image tokens is used to build the object. Fig. 19

demonstrates that our algorithm is able to perform simulta- N the following plots we report results on the ETHZ
neously the localization and parsing tasks. dataset, and compare to the boundary-based works of Ferrari

et. al. [88,89] and the region-based works Gu et. al. [27].

In Fig. 20 we report results on these benchmarks. On  We plot the recall of our detection algorithm (ratio of
the top-left plot we compare on the UIUC dataset our redetected objects) versus the number of false-positives-pe
sults to those of other works using sparse image representaage (FPPI), averaged over the whole dataset and averaged
tions. Our system outperforms these works despite not usver the 5 trials. We use the strict PASCAL evaluation cri-
ing appearance information. Our Recall at Equal-ErroreRatterion that considers as correct a bounding box for an object
(when precision equals recall) is 98% percent, equal to th# its intersection with a ground truth bounding box is large
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Fig. 20: First plot: benchmark results on the UIUC dataset;oompare to the sparse, part-based approaches of Fergus
[7] et. al. and Leibe et. al. [30]. Next five plots: Benchmaekults on the ETHZ classes: comparisons with Ferrari et. al.
(shape-based), and Gu et. al. (region-based).

than 50% of the union of their areas. All other detections ar@bject boundaries and symmetry axes are missing, due to the
counted as false-positives. poor image contrast; almost the whole upper part of the car

Our method systematically outperforms both shape-basiSgconsidered to be missing, Wh",e there are very few edge
methods developed by Ferrari et. al.; the first [88] uses S69ments aligned with the giraffe’s neck. Itis therefoneiha
discriminatively trained codebook-based detector, wiige O form a long contour during grouping. On the bottom row,
second [89] uses voting for bottom-up detection and grapht_he coincidental bottle-like configuration of tokens froif: d
matching for validation. Apart from delivering better réisy ferent objects leads to afal;e positive. Thefalllure cagbon .
our method is unified: we use a single model for bottom-ug®P "oW can be addressed in at least three different ways (i)
and top-down detection, and discriminatively learn thet cos'®arning better boundary and symmetry detectors (ii) incor
function that is used for detection. porating different sparse features, e.g. blobs, cornens:

_ ) tions that can more easily be detected than contours apd (iii
Comparing to the region-based method of Gu et. al. [27]using regional cues. There is substantial work on all oféhes

we observe that our method performs better on mugs angl ee research directions that we intend to explore in &utur
swans, equally well on bottles, slightly worse on apples ang, o The failure cases on the bottom can be addressed in

systematically worse only on giraffes. The re;ults are Nofree different ways: (i) incorporating appearance infarm
directly comparable, as the authors use an entirely diftere i, 1 refine the set of contours that are used to detect an

approach, involving hierarchical image segmentationpioeu object [64] (ii) using more elaborate grouping to form more

ary descriptors and exemplar-based detection, while a sulyj,rate Jow-level structures than tokens [66] and (&) u
stantially better boundary detection system is used. Hows,

J ) ) 7ing context-sensitive relations [13,12], potentially isec-
_e_ver., this difference in performance is to some e_xtent 'ntubnd, re-ranking stage, to capture ‘horizontal’ spatiahrel
!tlve. our_met_hod_ C_an f';\ccurately model the outline pf Ob'tions among the object contours.
jects, which is distinctive for the categories where it per-
forms well, while the regional cues used in [27] can more
natur.ally capture the tex.ture of glraffes._ Further, t.heeedg7 Conclusions and Future Work
and ridge maps for these images are particularly noisy,lwhic

further challenges our approach for the giraffe category. |, this paper we have introduced, first, a hierarchical dbjec

This brings us to the limitations of our approach, whichrepresentation, second, a principled and efficient infegen
can be exemplified by the failure cases in Fig. 21. On the toplgorithm, and third, a learning method that only uses the
row we show the tokens computed by our front-end: severddounding box of the object to learn the model. Our results
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Fig. 22: Matching image tokens to model structures: Using
an angle-based representation of contours, the fragmented
lines of the image become piecewise constant signals.
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In this appendix we describe an efficient method to match eveayl

object contours, generalizing the method of [90] which wasduto

compare polygonal curves. We use an idea inspired from rialtén-
demonstrate the practical applicability of our approach irges [52]to Compafehé_lp arlbitrzry ?Ontin_uﬁus_cu_fve (the huoaeour)

P . : to an image curve, while also dealing with missing parts.

challenging images C_0nta|n|ng Sub_stantlal l?ackgr_o_untal cl_u The cost function we use in Sec. 3.2 to quantify the match of tw
ter. There a two-fold improvement in detection efficiency iScontours is:
achieved, while the detection performance compares favor-

ably to the current state-of-the-art. Booor (27, ¢) = /sesc
+72¢?)ds + 7354l (23)

s 2
(1 [00( +7) = 0a1(s) + ]

One of the main results of this paper is that with a hier-
archical model one can perform efficient detection. This jd-or fixede, 7 the optimal value ot can be obtained in closed form as:
performed based on a tightly coupled bottom-up/top-down, _ Jees, Om(s) —0o(5 + 7)ds (24)
inference scheme, with a small loss in detection accuracy. Se] (1 + 22) '

This makes more elaborate, multi-part models affordableyowever, £ is nonlinear and nonconvex i and . This leaves ex-

thereby allowing us to both detect and approximately seghaustive evaluation as the only choice, so we need to spedtieup
ment an object. computation of the integral in Eq. 5. For this we exploit wiagkwith
piecewise straight contours: If a contour is formed by IgkiV line
There are several directions in which we intend to exten(%Pk_er‘ST n each having length, and orientatior,,, the matching cri-
this research. The first is to incorporate regional inforamat enonwr es};{ L
from segmentation, which has recentl;_/ been shown to yield,, ) — ) / a (’n O = Onr (s + ) + ]2 +72(c*)2> ds + 3] Sal,
excellent results [26,27]. The second is to complement our n=17s=0
shape-based features with appearance information, thereb o = Tog 4 ln—1+gn-1 S @5)
capturing the context around each contour; this is somgthin _ a _ _
that we have started working on in [64]. The third is to al-APOvegn is the gap between toke$ —1, 7y, andry, is the coordinate
. where the the:-th line segment begins (see Fig. 22).Asis constant,
low our models to choose among different parts, thereb)ﬂqeintegral above writes:
implementing an OR-ing mechanism as in [12,84,50]. This L L
is straightforward during inference (we already use an OR,, +c*)2li —20n+c] [ T O(s+m)+ | T 03 (s 4 mn)ds

for missing parts), but the challenge lies in automatically * s=0 =0

; i : P : The only integrals that remain involve the model angle fiomct,,
learning the part-mixture components during training. Fi and its square. Using the precomputed ‘integral angle’'tfans @, (s) =

nally, in the long run, we would like to automatically learn Ji2 6, we can reduce the complexity of computing these fo(t.) to
the parts that are shared among multiple categories and atg1) as follows:

reusable for modeling and detection. This would allow us to Lo ’

simultaneously detect multiple categories in time sulaline - Or(s+7n) = On(s+mn + E") — On(s+Tn).

in the number of categories, thereby allowing our algorithm

] A Finally | S| can be computed fag, 7 as follows:0,, is defined in
to scale up to the detection of tens, or hundreds of objects.ihe domainD,,, = [0, L], while 65 is defined inD, = [r1, 7 + 2]

il
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Considering the case were the two sets are not disjoint, we|fa. U
Dp| = max(mn + 2 L) — min(r1,0), [De N Dyp| = min(r, +
l(—’;,o) — max(0, 7). Denoting byG the length of the gaps that fall
within D. N Dy,, we then havéS,| = |D. U Dp,| — |De N D | + G.

The ‘integral angle’ technique described above allowsebfoice
search within a range of values far+ with a small computation cost,
while using densely sampled contour models - we use 50 ppats
contour.

B Implementation Details

Below we provide implementation details for several pafthe paper
that have been presented at a high level. As AAM learning f&tithe
subject of a future publication, we focus on the rest of thgepa

Section 3.1: Contour grouping We first extract a set of straight edge/rida

segments, using the contour fragmentation method of [6d}leacode
of [9]. Edges are obtained from the Berkeley boundary detdé2]
and ridges from Lindeberg’s primal sketch [67].

We subsequently form all possible combinations of such sedgsn
into convex arcs by combining the method of Jacobs [91] wiginter-
vening contour idea of [92]. The technique of Jacobs guaearhat all
groupings returned will be convex arcs. On top of that, weatcatiow
arcs linking two tokens if there is a roughly perpendiculdge inter-
secting the line connecting their endpoints. To determihetter these
are perpendicular we use the conditiams(6; — 62)| < cos(27/3),
wheref; is the angle of the line connecting the two tokens énis$ the
angle of the intervening contour. The intervening contaie s used
if the response of the boundary detector is above .1.

We form all groupings composed of up to four tokens. We then re

ject all groupings for which the sum of the gap lengths is ntloaa half
the length of the grouped edgels. This discards groupindarafvay
edges, which simply happen to lie on a convex arc.

Section 3.2: Contour Matching We do a preliminary screening
before matching a contour group with a model curve to redoe@tim-
ber of matchings. We denote the length of the contour grouiy lbyd

its orientation byd,; orientation is defined as the angle of the line con-

necting its two endpoints. We denote the corresponding tidiemnfor

the model curve ak,, andd,,,; note that as we consider separate ranges 8,
of «, I, is obtained by the ratio of the nominal length of the curve
over the median scale considered at a time (so that we caarperf

a scale-invariant match). Our screening consists in liegcehatches
when| cos(0mm — 04)| < cos(w/4) and when|log(ly/lm)| < .6. We
thereby avoid checking for very large rotations and for oanmatches
which would imply large missing parts.

Section 4.2.4 a) Inadmissible HeuristicsFor structure coarsen-
ing instead of composing all parts of a multi-partite stanetwe com-
pose only one, and replace the costs of the remaining onbgpveitlic-
tions of their costs. Forming an admissible heuristic waelglire us-
ing a lower bound of the cost of each part. Unfortunatelysé¢hgounds
can often be loose. Instead we use inadmissible heuristlish may
no longer be lower bounds, but are more efficient at ruling wut
promising search directions.

For this, we keep track of each part’s cost over the wholetipesi
set during training; in specific, we work with the instancesritified
as witnesses for the positive bags: for each image identify j* =

argmax;pj, j, wherep; ; is the distribution over instances entertained 15.

by the MIL-SVM algorithm of [87] in Eq. 18. Denoting by; ;. the
cost for partk in instancej* of imagei, our prediction for the cost of
parti is the 20-th percentile of the sgt 1, ..., cn x} WhereN is the
number of training images. Even though this is obviouslyatwer
bound of the cost, itis a relatively conservative estiméte®cost that
can guide the heuristic search. Note that if the part is rexqot in any
of the ‘witness’ instances, the cost estimate will be eqoighé cost of
missing the part.

Section 4.2.4 b) Location CoarseningApart from structure coars-
ening we can also use location coarsening. This amountsaiatiqing
the location coordinates with a fixed grid. In specific, we tge lev-
els of coarsening; at the coarse level we quantize the ttaitocco-
ordinates into boxes of 60x60 pixels, and at the fine level wantjze
into boxes of 10x10 pixels. For efficiency, we use kd-treequizkly
identify the box into which every candidate compositioniddocon-
tribute to. For each box we keep only the composition fallimt it
that has minimal cost. If no composition enters a box, its mset
to infinity. This coarsening is performed separately forhepart. We
can form compositions of more complex structures by putibggther
these fewer representatives. This reduces the number giagitions.

Section 4.2.4 c) Structure and Location CoarseningWe solve
the parsing problem at three levels of abstraction. At tgédst (most
abstract) level, we perform structure coarsening at thel leff mid-
level parts together with location coarsening with a grithokes sized
@x60. At the second level we perform only location coansgmniith
a grid of boxes sized 60x60. At the finest level we use a gridoaeb
sized 10x10; this last level provides us with our detectsuits.
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