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Abstract In this work we introduce a hierarchical represen-
tation for object detection. We represent an object in terms
of parts composed of contours corresponding to object bound-
aries and symmetry axes; these are in turn related to edge
and ridge features that are extracted from the image.

We propose a coarse-to-fine algorithm for efficient de-
tection which exploits the hierarchical nature of the model.
This provides a tractable framework to combine bottom-up
and top-down computation. We learn our models from train-
ing images where only the bounding box of the object is pro-
vided. We automate the decomposition of an object category
into parts and contours, and discriminatively learn the cost
function that drives the matching of the object to the image
using Multiple Instance Learning.

Using shape-based information, we obtain state-of-the-
art localization results on the UIUC and ETHZ datasets.

Keywords Inference· learning· hierarchy· contours·
grouping· deformable models· shape· parsing.

1 Introduction

Object recognition has recently made major progresses us-
ing part-based models. These decompose the problem of de-
tection into the detection of simpler, individual parts which
are then combined to detect the whole object. This approach
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owes its success to its ability to cope with deformations,
occlusions and variations in scale, while exploiting sparse
image features for efficiency. However, it is still not clear
what a part is and what is the best way of composing an
object from its parts. During the last decade, parts (or ‘vi-
sual words’) have been defined in terms of image patches
[1][2][3], descriptors extracted around interest points [4] [5]
[6], edge contours [7–9] or regions [10] [11]. In our under-
standing, these structures are often not semantically mean-
ingful and should be considered as equivalent to ‘letters’,
instead of ‘words’; treating them as parts of objects is to
some extent unjustified. For example, modeling a horse in
terms of corners, blobs, or junctions deviates from what we
perceive as the parts of a horse, namely its torso, head, neck,
and feet. It is more natural to define object parts in terms of
-potentially recursive- compositions of such simpler struc-
tures. Hierarchical representations should thus link the ob-
jects with the image information extracted by front-end pro-
cessing via more abstract, intermediate structures. In our
modes we use shape-based parts, which can correspond to
semantically meaningful structures such as wheels, handles,
or necks. These parts are built by composing several con-
tours extracted from the image.

Hierarchical representations can be supported on at least
three different grounds. First, they can expand the repre-
sentational power of current object models by allowing for
structure variation using And-Or graphs [12] and by encod-
ing complex dependencies among object parts with context-
sensitive relations [13,12]. Second, the sharing of parts among
several categories is feasible in a hierarchical setting asdemon-
strated in [14] and can in theory allow vision algorithms to
deal with hundreds, or thousands of object categories, with
computation demands that scale-up sublinearly in the num-
ber of categories. Third, hierarchical models can deal with
the problem of combining bottom-up and top-down compu-
tation in a tractable manner. The last point is our main claim
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Fig. 1: Object Parsing Task: Our goal is to compose objects using simple tokens (straight edge and ridge segments) extracted
from the image. This amounts to building aparse tree, that indicates how image tokens are composed to form objects.

in this paper. In our earlier works [15,16] we have been us-
ing bottom-up ‘proposals’, such as the response of a bound-
ary or face detector, to drive the top-down fitting of more
complex probabilistic models. Here we use insteada single
model for both detection and validation; this model is ex-
pressive enough to account for the whole object, but thanks
to its hierarchical nature can be simplified to deliver effi-
ciently a small set of ‘proposals’. These proposals are now
part of a single, principled inference algorithm. In the end,
using a hierarchical representation allows us to deal with an
object having tens of parts in reasonable time.

Our contributions in this work are threefold: first, we
introduce a hierarchical object representation and a set of
grouping rules to recursively compose an object from sim-
pler image structures –a task we refer to as ‘parsing’. Sec-
ond, we present an efficient inference algorithm to perform
the parsing task. Third, we describe a method to learn a hi-
erarchical model from minimally annotated images.

Regarding our first contribution, in Sec. 3 we introduce
a hierarchical compositional representation for object cat-
egories. At the highest level of the hierarchy we have the
object and at lowest level the image, which is represented
by a sparse set of straight edge and ridge segments. We call
these structures ‘tokens’ to highlight their atomic nature.
Our model describes how an object can generate a set of to-
kens by recursively generating simpler structures. Each ob-
ject is seen as a small ‘grammar’, which can explain a part of
the image, while detecting an object can be phrased as ‘ob-
ject parsing’. During parsing we create increasingly com-
plex structures by composing simpler ones, starting from the
image tokens, as shown in Fig. 1. Apart from localizing an
object, we thereby also segment it, as we identify the image
structures that it consists of. In Sec. 4.1 we formally describe
parsing and present a simple bottom-up parsing algorithm
for composing an object with minimal cost.

Our second contribution addresses the problem of effi-
ciently finding good object parses. In Sec. 4.2 we describe
an inference algorithm that deals with the huge number of
candidate compositions. For this, we exploit the hierarchical

representation to devise a coarse-to-fine detection algorithm
that was inspired by the Generalized A∗algorithm of [17].
Our algorithm first uses a simplified version of the repre-
sentation for a quick initial detection, and then refines the
search at a few promising locations. This scheme integrates
the bottom-up information extracted from the image with
the top-down guidance of the object model. which results in
a substantial speedup in detection time.

Our third contribution, described in Sec. 5 consists in
learning an hierarchical model from training images where
only the bounding box of the object is known. We break this
task into three subproblems: initially we recover the object
contours by bringing the training images into registration,
using an automatically learned deformable model. Then, we
group contours into object parts by combining perceptual
grouping with Affinity Propagation. Finally, we learn the pa-
rameters of the cost function that drives parsing using Multi-
ple Instance Learning. As demonstrated in Sec. 6, this yields
state-of-the-art shape-based detection results.

2 Previous Work

We first give a brief overview of the current state-of-the-art
on part-based models for object detection, and then focus
on research that is most closely related to our work on: (a)
representation, learning and inference with hierarchicaland
compositional models, (b) efficient optimization for detec-
tion and (c) contour-based image and object representations.

2.1 Part-based models

Based on the image structures used to represent parts most
approaches can be classified as interest point & descriptor-
based [18][4][5][19][20][21],patch- or filter-based [1][22][23],
contour-based [7][8][9][24][25]or region-based [10] [11] [26] [27].
The constraints among the relative locations of parts are
commonly expressed using graphical models, e.g. star graphs
[7][9][23][28], trees [1], k-fans [29,22] or fully-connected
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graphs [5]. Other works, for example the Implicit Shape
Model [30] or boosting-based approaches [8][25] include
these constraints implicitly, while ‘bag-of-words’ models dis-
card location and form a histogram of parts [19][20][21] or
allow each model part to match several image parts [31].

The works above involve a diverse set of techniques for
image and object representation, training and inference; for
lack of space, we now present at some further extent only
works to which our research is more closely related. Some
technical differences will be clarified during the presentation
of our approach in the following sections.

2.2 Grouping and Hierarchical Models

The syntactical/compositional approach to recognition has
its roots in the works of Fu and coworkers [32], while hierar-
chies also underly the approach to recognition proposed by
Marr [33]. However, grouping-based approaches to recog-
nition were primarily applied to rigid objects [34] and were
hindered by the limited feature extraction and statisticalmod-
eling tools available at the time. Therefore, with the excep-
tion of research on recognition from binary shapes [35][36][37]
or articulated person detection [38], the ideas of composi-
tionality and grammars had long been ignored. However re-
cent influential works such as [15,12,13] and recognition
systems such as [39,40] which can simultaneously deal with
multiple categories have resulted in increased interest.

The work of S.C. Zhu and coworkers [12,41] aims at
accurately modeling complex object categories by relying
on And-Or graphs to account for structure variation and by
using context-sensitive relations among parts. Learning ex-
tends the FRAME model [42] to include relations among
parts and to deal with attributes such as position, scale and
orientation, while inference relies on the bottom-up/top-down
scheme developed in [15]. There, discriminative techniques
such as Adaboost [15] or RANSAC [43] provide proposals,
which are then refined by generative models in a top-down
manner. Instead, we use the same model to suggest object
locations during coarse-level search and for validation ata
finer level, in an integrated optimization algorithm.

Jin and Geman [13] use a perturbation of a context-free
model that incorporates context-sensitive relations among
parts through attribute functions. Their model involves dis-
crete variables that encode ‘part-of’ relationships at different
levels of the object hierarchy and they resort to greedy op-
timization to deal with the NP-hard problem emerging from
the context-sensitive relations. The authors argue that using
continuous attributes is hard in a Markov system; however
our inference scheme allows us to incorporate the continu-
ous variables of location and scale in our model.

Todorovic and Ahuja use segmentation for both learn-
ing and detection [26] and to exploit the shared structures

among similar categories [39,44]. During training, object
models are discovered by computing the maximal common
subtree from a set of hierarchical image segmentations. Dur-
ing testing, the hierarchical segmentation of a new image is
matched to the learned tree, which allows for the simulta-
neous detection and segmentation of objects. This method
deals with changes in scale, orientation and multiple cate-
gories, but heavily relies on hierarchical segmentation, while
it still lacks a clear probabilistic interpretation.

In the work of Fidler and Leonardis [40,14] a hierar-
chical representation of objects is learned using edge-based
information. For this a Gabor filterbank is used to capture
the image information at the lowest level, and the intermedi-
ate layers are obtained by hierarchical clustering. This leads
to increasingly complex structures until in the end forming
the whole object. Still, this work does not clearly optimizea
criterion either during training or detection.

Related work by L. Zhu et. al. [45] gives a probabilis-
tic formulation for leaning a hierarchical representationby
learning probability models of substructures which are com-
posed together to form larger structures. This gives good
performance on detection tasks.

Finally, in the same way that Conditional Random Fields
(CRFs) have replaced Markov Random Fields in low-level
image labelling, recently discriminative training of high-level
models has gained ground, as it allows to ‘tune’ the model
for the task at hand, e.g. parsing or classification. Initially
the work of [46] used CRF training to increase the likelihood
of the ground-truth body poses under a graphical model. In
[47] an algorithm was proposed to train CRFs with hidden
layers so as to maximize the likelihood of the class labels.
In the work of L. Zhu et. al. algorithms developed for lan-
guage parsing, namely Max-Margin parsing [48] and struc-
ture perceptron [49] were used for body parsing [50] and
deformable model training [51] respectively. Finally, in [28]
latent SVMs were proposed for training a star-graph model
for detection, which as we describe in Sec. 5.3 is closely
related to our Multiple Instance Learning approach.

2.3 Efficient Optimization for Object Detection

Even though efficient detection algorithms exist for detec-
tion using global object models, e.g. [52,53], the problem
becomes harder when part matching gets involved. The com-
binatorics of matching have been extensively studied for rigid
objects [34], while [54] used A∗for detecting object instances.
In [21] branch-and-bound is used for efficient detection with
a bag-of-words model, while [55] combine Graph-Cuts with
branch-and-bound for object segmentation.

An efficient algorithm for detection of a single closed
contour is presented in [56]. In [17] the detection of geo-
metric structures, such as salient open and convex curves is
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formulated as a parsing problem. In our work we extend this
approach to deal with high-level structures, i.e. objects with
many parts and of potentially different types.

In the work of [57] a pruned version of dynamic pro-
gramming is used to efficiently detect deformable objects.
This involves a rough initial detection which is then refined
in a top-down manner. At a high-level this is similar to our
method, but our work has been based on the A∗algorithm
which has guaranteed optimality properties. In the more re-
cent work of [58] a Steiner tree formulation is introduced for
learning and performing inference on an hierarchical model.
The authors use approximate optimization to identify the
optimal manner of putting together low- and intermediate-
level structures within images of an object category. In our
work we focus on the more limited problem of performing
inference with a predetermined hierarchical model, which
allows us to perform exact optimization of a cost function
defined on a fixed tree-structured graph.

2.4 Contour-Based Representations

Edges are largely invariant to intra-class appearance vari-
ations and were therefore used early on for object recog-
nition [59,60,34]. However, boundary detection is still an
open problem, due to occlusions, noise, etc., while describ-
ing and matching contours is challenging. Therefore starting
from [6,61] most recent works use point-based image repre-
sentations, which are easier to extract, model, and match.

A revival of interest in contour-based representations has
been observed lately however, due to the increasingly bet-
ter performance of boundary detection methods on ground
truth datasets [62], and the understanding that contours are
better suited to capture shape information than points. The
technique that is currently most commonly used for object
detection using contours is that of forming codebooks [8,9,
63,24]; there ‘contour templates’ are formed during train-
ing by clustering, and during testing the observed contours
are matched to these templates. However, as observed in
[9],[64],[65] this lets the contour segmentation problem creep
in the model representation: this results in several differ-
ent codebook entries encoding essentially the same struc-
ture. Therefore, in this work we cater for the fragmentation
problem by developing a simple and efficient algorithm for
matching broken curves, detailed in Sec. 3.2 and App. A.

Another approach that relies on contours for detection is
that of [66]. There long, smooth contours are put together by
phrasing their grouping into objects as an optimization prob-
lem that involves the context of each contour within the ob-
ject. This context-sensitive approach avoids the problemsof
forming a codebook and is shown to give results of high pre-
cision, but involves solving a computationally demanding
optimization problem. Our approach is context-free, which
facilitates our efficient detection algorithm.

3 Hierarchical Object Representation

In this section we introduce our hierarchical representation
for objects. At the highest level of our object hierarchy lies
the whole object. One level below are the object parts; these
should intuitively correspond to semantically meaningfulparts,
such as fingers, wheels, or legs. We use the term ‘object part’
for structures at this level in the hierarchy, while ‘part’ on its
own will have the broader meaning used in vision. The ob-
ject parts are decomposed into (potentially) long and curved
contours. At the lowest level we have simple image struc-
tures, namely straight edge and ridge segments (‘tokens’).

We phrase object detection as the interpretation of some
of the image tokens in terms of an object; in quantifying the
quality of this interpretation we start in this section froma
probabilistic point, and describe what the interpretationcost
would be under a suitable generative model. In Sec. 5.3 how-
ever we will see how to ‘tune’ this cost in a discriminative
setting, so as to optimize detection performance.

3.1 Object Model

Our object representation consists of a graph structure with
nodesi ∈ V and edges(i, j) ∈ E; the nodes correspond
to the structures in the hierarchy and the edges to the part-
subpart relations. Each nodei lies at a certain level of the
hierarchy, and is connected to a single parent nodepa(i) at
the level above, and several children nodesch(i) at the level
below. Bych∗(i) we denote all descendants of nodei. The
graph has three levels – root nodeVr, object partsVp, and
object contoursVc. The parent of the root node is empty,
while the children of the contour nodes are the edge and
ridge tokens; these are our observationsI.

Each nodei is associated with apose, namely a contin-
uous, vector-valued state variablesi = (xi, log σi) describ-
ing its positionx = (x1, x2) and scaleσ. By position we
mean the coordinates of the part’s center, while scale is un-
derstood as the difference in size between the observed and
the corresponding, ‘nominal’ structure. The probability of
an object configurationS = (s1, . . . , sN ) can be expressed
by a Bayes netP (S) =

∏

i∈V P (si|spa(i)), or by a more
general exponential form:

P (S) =
1

Z[λ]
exp

(

−
∑

i∈V

φi(si, spa(i))

)

, (1)

φi(s1, s2) = −λi logP (s1|s2)

where for a Bayes netλi = 1, ∀i andZ = 1.
TheP (si|spa(i)) terms describe the distribution of a child’s

pose given the pose of its parent. The relative pose of the
child is estimated assi|pa(i) = si − spa(i). We use a Nor-
mal distributionN(µi,pa(i), Σi,pa(i)) for the relative loca-



5

tion and another normal distributionN(0, .1) for the scale
coordinates, allowing for moderate relative scale changes. 1

At the lowest level of the hierarchy the pose of an object
contoursi is related to a group of image tokenshi using an
observation potentialψi(Ihi

, si), detailed in Sec. 3.2, that
compares the object contours to the image contours. This
provides us with the data-fidelity term for our model, in-
volving the poses of the contour nodesVc, the image tokens
I, and the assignment variablesH = (hi):

P (I|S,H) =
1

Z
exp(

∑

i∈Vc

−ψi(Ihi
, si)). (2)

We allow for missing parts at any level of the hierar-
chy, using a binary variableyi that indicates if nodei is
observed. When a node is missing, i.e.yi = 0 we replace
every summand in Eq.s 1,2 that involves either nodei or a
descendantj ∈ ch∗(i) with a ‘missing’ potential function
φ0

j = − logP (yj = 0) that ‘penalizes’ the missing nodej.
So conditioned on the parent being missing, all descendants
are forced to be missing; if the parent is present the proba-
bilities of missing its children are considered independent.

Combining all terms we write:

P (I,S,H,y) = P (I|S,H,y)P (S,H,y) ∝ exp(−C(I,S,H,y))

C(I,S,H,y) =
∑

i∈{Vp,Vc}

(

yiφi(si, spa(i)) + (1 − yi)φ
0
i

)

+
∑

i∈Vc

yiψi(Ihi
, si) (3)

=
∑

i∈Vp

yiφi(si, sVr
) + (1 − yi)

∑

j∈{i,ch∗(i)}

φ0
j

+
∑

i∈Vp

yi

∑

j∈ch(i)

yj

[

φj(sj , si) + ψj(Ihj
, sj)

]

+ (1 − yj)φ
0
j

(4)

We note that the first term in Eq. 3 would be identical
to Eq. 1, if we setyi = 1, ∀i, i.e. if we consider all parts as
being present. Now if parti is missing,yi will equal zero, so
instead we pay the costφ0

i of missing parti. Using the latent
variable vectory thus allows us to compactly incorporate
missing parts inside our cost function. The second term in
Eq. 3 corresponds to the data-fidelity term in Eq. 2.

The expression in Eq. 4 is a rewrite of Eq. 3 which un-
derlines that the cost can be computed recursively on the
tree-structured graph. In specific, it breaks up the parent-
child relationships into root-part and part-contour groups. If

1 Note that by ‘scale’ of a part we mean the ratio of the part’s size
(e.g. the radius of a disk) to the part’s nominal size in the object tem-
plate. The scale coordinate in the relative pose equalslog(σi/σpa(i));
in words, we first measure separately how larger the parent and the
child are from their nominal scales (σi andσpa(i), respectively), and
constrain the ratio of these scales to be close to one. The prior of the
pose tolerates moderate changes in relative scale; large scale changes
can be accommodated for by modifying the root node’s scale.

an object parti is missing the1−yi factor enforces penalties
for missingi as well as all of its descendants; if a contourj

is missing the1 − yj factor penalizes it byφ0
j .

In the rest of the paper we will be dealing with this cost
function. In specific, during inference (Sec. 4) our unknowns
are the pose−S, assignment−H and missing part−y vari-
ables and our objective is to minimize Eq. 3 with respect
to them. Note that due to the independence assumptions we
made when formulating our model the cost function is de-
composed into simpler terms that can be optimized sepa-
rately. This underlies our inference algorithm.

During training (Sec. 5), we use data that contain only
the bounding box of the object to learn our hierarchical rep-
resentation. This includes, first, the structure of the model,
namely its contours and their grouping into object parts.
Second, theµi,pa(i), Σi,pa(i) parameters involved in the parent-
child relationships; these are estimated using maximum like-
lihood from registration information (Sec. 5.1). Third, the
λi parameters related to theφ potentials in Eq. 3. In spe-
cific, note that the binary potentials in Eq. 1 are obtained as
the product ofP (si|spa(i)) with a parameterλi which can
vary acrossi, namely across different parent-child relation-
ships. Therefore, the distributions used here constrain only
the form of our energy function (for instance, it is quadratic
in log si− log spai

) while its exact expression is obtained af-
ter learning theλi parameters (Sec. 5.3). Moreover, we also
learn the missing cost potentialsφ0

i used in Eq. 3, and the
parameters of the observation potentialsψi described in the
following subsection. All of these quantities are estimated
discriminatively as described in Sec. 5.3.

We introduce our representation as a graphical model,
but we can also think of it as a simple probabilistic gram-
mar: the production rules start at the root node and gener-
ate the object parts, then the object contours, and finally the
edge and ridge tokens. All production rules are probabilistic
and involve continuous attributes. The missing part variables
allow us to choose among observing or not a part, thereby
implementing a simple version of the ‘OR-ing’ advocated
in [12]. This could be extended to a mixture distribution on
parts, (e.g. a chair having 4 feet versus a chair with wheels),
but we leave this for future research. Structures at a certain
layer of the hierarchy can only be built from structures at
the layer below, so there can be e.g. no infinite recursion
as is the case for language grammars. Finally, the grammar
is context-free, as we assume independence among the sub-
parts given the part at the layer above. The last three points
indicate that we are exploiting only part of the grammat-
ical formalism’s potential; still, we present state-of-the-art
results on the image categories we experiment with.
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(a) (b) (c)

Fig. 2: Contour fragmentation problem: the model arc in (a)
has to match the fragmented observations in (b) and (c).

3.2 Image-to-Object Contour Matching

We now describe how we relate the nodes at the lowest level
of the hierarchy (object contours) to the image tokens via
the observation potential term in Eq. 2. A design choice in
our model is that we allow object contours to be long and
correspond to large groups of edge or ridge points (edgels).
Apart from higher discriminative power, this also deals with
thecontour fragmentation problem.

In specific, the grouping of edgels into edge tokens is
difficult and ambiguous. Suppose that we want an object
contour to represent the wheel of a car, shown on Fig. 2(a).
As shown in Fig. 2(b),(c), the low-level grouping of edgels
can give different edge tokens on relatively similar images.

For this we propose a two-step approach: first we form
groups of edge and ridge contours, starting from Lindeberg’s
primal sketch [67] (details can be found in App. B). We then
match these groups efficiently to the (long) object contours.
The first step bypasses contour fragmentation by regroup-
ing the image tokens into longer contours. This allows us to
have long contours in our object representation, instead of
forming codebooks of contours as e.g. in [8,9,63,24].

A crucial problem is to match these groupings with the
model curves. We want to compare contours efficiently and
in a way that can deal with missing parts, small deformations
and changes in orientation. For this we now build a sim-
ilarity criterion that accommodates these kinds of variation
and can also be optimized efficiently. We describe object and
image contours using their tangent functionθ(s), parameter-
ized in terms of the contour’s arc-length,s. A model contour
θM and an observed contourθO can then be registered using
three parameters: rotation byc degrees amounts to adding a
constantc to the tangent function, scaling amounts to divid-
ing the arc-length byα, while adding/subtractingτ to the
arc-length of one curve registers the two curves to reduce
the length of missing parts/protrusions.

The scaling and offsetting is applied to the observed curve
θO; the support of the transformed function depends on these
parameters, and will be henceforth calledSO, temporarily
assuming fixed values forα, τ ; the support of the model
curve is denoted bySM . The intersection of the supports
of the two curves is denoted bySc = SO ∩ SM , while their

set-difference is denoted bySd = (SO ∪ SM ) \ Sc. Our
matching cost for two curves writes:

EθO,θM
(α, τ, c) =

∫

s∈Sc

(γ1

[

θO(
s

α
+ τ) − θM (s) + c

]2

+γ2c
2)ds+ γ3|Sd|. (5)

The first term is the square norm between the observed and
model angles, and penalizes differences in the tangent angle
of the registered curves on their common domain; the term
γ2c

2 acts as a penalty on wide rotations; and|S| denotes
the length ofS, soγ3|Sd| equally penalizes protrusions and
missing curve parts. We emphasize that in Sec. 5.3 we dis-
criminatively estimate the degrees of flexibilityγ1, γ2, γ3

separately for each contour.
We evaluate the similarity of two contoursθO, θM as:

E∗
θO,θM

= min
α,τ,c

EθO,θM
(α, τ, c). (6)

As detailed in App. A, since our image contours are formed
by grouping piecewise straight edge segments we can evalu-
ate the quantity in Eq. 5 in constant time, instead of linear in
the length of the contours. This allows us to perform the op-
timization in Eq. 6 overα, τ using brute force search, while
the minimum overc is obtained analytically.

Putting things together, consider that we want to find
matches for the model contouri. Matching a group of image
edges to the model contouri amounts to determining that
contour’s assignment variableshi. Each grouphi yields a
different angle functionθO, denoted asθhi

. As an example,
if hi groups tokensk andm, of lengthslk and lm, angles
θk, θm and with in-between gapg, we would have

θhi
(s) =







θk 0 ≤ s ≤ lk
θm lk + g ≤ s ≤ lk + lm + g

undefined elsewhere
(7)

Once we form theθhi
function we can efficiently find

theα, τ, c variables that minimizeEθO,θM
(α, τ, c), using the

technique described in App. A. From the optimal value of
α, τ, c in Eq. 5 we obtain the observation potential for the
model contouri in Eq. 3:

ψi(Ihi
, s∗i ) = Eθhi

,θi
= min

α,τ,c
E(α, τ, c). (8)

For a certain assignmenthi the poses∗i is obtained by setting
the scale of the node equal to the estimatedα and its location
equal to the center of the model arc, estimated numerically
based on theα, τ parameters.

A caveat of this is that we choose a singleα per im-
age group-object contour combination, namely the one that
minimizes the matching cost. It may be better to have a high
matching cost if it gets balanced with an agreement with the
overall pose of the object. We therefore perform separate
searches in different ranges ofα, and perform separate de-
tections for each such range. In specific for an object lying at
scale 1 we use as search rangeα ∈ {.7, 1, 1.3}. For different
object scales we scale appropriately the range ofα’s.
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The main advantage of this contour-based approach is
that on the one hand we have continuous models for con-
tours, represented as 1D functions of arc-length, and at the
same time we can work with a sparse image representation.
Our model can thus capture a large part of the object bound-
aries, while working with a small set of image structures.

4 Inference: Efficient Object Parsing

During detection we find the set of tokens and part poses that
minimize the cost function in Eq. 3. Our object representa-
tion is a tree-structured graphical model, so we could use
a message-passing algorithm such as Max-Product for this.
However, the data likelihood terms are multi-modal and can-
not be approximated with Gaussians. Performing message-
passing would require either discretization, whose complex-
ity scales in the best case linearly with the size of the image
[1] or particle filtering [68] which would however require a
huge number of particles if no initialization is provided.

We propose to exploit two aspects of our representation
to perform inference more efficiently. First, in Sec. 4.1, we
describe how to exploit its compositional nature to build up
the whole object from a small set of sparse image tokens. We
thus ignore the vast portion of the image where no tokens are
present. Second, in Sec. 4.2 we exploit the hierarchy in our
model to perform detection in a coarse-to-fine manner: we
use our model to quickly identify a few promising areas, to
which more computational resources are then devoted in a
top-down/bottom-up computation setting inspired from the
Generalized A∗parsing of [28].

4.1 Bottom-Up Object Parsing

4.1.1 Recursive Structure Instantiation

Our approach to inference exploits the sparse, edge- and
ridge- based representation of the image. Starting from these
elementary tokens we aim at building the whole object by
recursively composing its intermediate structures.

To formalize this, we describe a structurej at a certain
level in terms of its pose and its constituent parts:

Sj = (sj , P 1, . . . PN ). (9)

Sj is the description of the structure,sj is its pose, described
in Sec. 3.1 andP 1 . . . PN are the descriptions of the chil-
dren; if a child is missing, its description is empty,P = ().
Otherwise it contains in turn the subpart’s own pose, sub-
parts, and so on. At the lowest level, a contour is described
by its pose and the indexes of the tokens assigned to it. For
example the description of an object with two parts, with the
first having two and the second having one contour would
have this LISP-like form:

SVr = (sVr , (sVp,1 , (sVc,1 ,h1), (s
Vc,2 ,h2)), (s

Vp,2 , (sVc,3 ,h3))),

wheresν is the pose of a structure,r, p, c stand for root,
object part, and contour respectively, andhi is the set of
image tokens assigned to contouri. We call a set of values of
the pose/assignment/missing part variables an ‘instantiation’
of the structure. An instantiationSj of a structurej comes
at a certain cost: for an object structure this will be the cost
in Eq. 3, while for intermediate-level structures this willbe
their contribution to the overall cost.

Note that the cost is additive and defined on a tree struc-
ture, as can be seen from Eq. 4. We can therefore define it
using the following recursion:

C(Sj) =























∑

i∈{j,ch∗(j)}

ψ0
i , if Sj = ()

ψj(Ihj
, sj), if j ∈ Vc

∑

i∈ch(j):P i 6=()

φi(si, sj) +
∑

i∈ch(j)

C(P i), else.

In words, if a structure is missing,Sj = (), its cost is equal
to the cost of missing the structure and all of its descendants.
Otherwise, if it is a contour, its cost is equal to its matching
cost with the tokens assigned to it. And if it is a higher level
structure, its cost is the sum of the spatial consistency cost
SC(Sj) =

∑

i∈ch(j),P i 6=() φi(si, sj) between the structure
and its children and the recursively defined costs of its parts.
Missing parts do not have a spatial consistency cost, and are
therefore excluded from the summation forSC.

The goal of inference is to find low-cost instantiations
for the whole object (‘goal’ structure). We refer to an in-
stantiation of the goal structure as aparse for the object,
namely a relation between structures extracted from the im-
age and the object parts and subparts. There is a huge num-
ber of instantiations, corresponding to different assignments
of image tokens to contours, poses of object parts, or missing
parts, while our goal is to efficiently explore the small subset
of these that has low cost. In this subsection we phrase the
computation of instantiations as a ‘bottom-up’ algorithm;in
the next subsection we describe how this algorithm can be
sped up using ‘top-down’ guidance.

At iteration 1, we estimate the matching cost of each
group of image tokens to each object contour. If the cost is
below the penalty paid for missing the contour, we instanti-
ate the contour with its pose estimate and the edge tokens.
Otherwise it is cheaper to consider the contour as missing.

At iterationk + 1 we instantiate structures lying at level
k+1 of the hierarchy. The previous iteration provides possi-
ble instantiationsSk,i = {(), s1, . . . , sNk,i

, }, i = 1 . . . |Vk|,

for each parti at levelk. Including the empty element al-
lows for missing parts. A structurej can instantiate itsN
parts fromSk,1 . . .Sk,N :

Sj = (sj , P 1, . . . , PN ), P 1 ∈ Sk,1, . . . P
N ∈ Sk,N (10)

and its cost is estimated recursively in terms of the part
costs. The location is set to the value that minimizes the spa-
tial consistency cost,SC(Sj) given the observed children
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1 0 10 1 1
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0 0 0

1 0 00 1 0

1 1 0

Fig. 3: Hasse diagram for a 3-part structure: structure with
more constituents are closer to the top. The binary vector
inside the box indicates which parts have been found.

poses:

xj =





∑

i:P i 6=()

Σ−1
i,j





−1
∑

i:P i 6=()

Σ−1
i,j (xi − µi,j), (11)

and the log-scale coordinate is set equal to the mean of the
part coordinates.

4.1.2 Ordering of Compositions

We now propose an algorithm to deal with the large number
of candidate compositions. It is also useful in formulatinga
‘coarsening’ of the parsing problem in Sec. 4.2.

The main idea is to put parts together ‘one at a time’:
Consider a structureS with N partsS = (s, P1, . . . , PN ).
Initially we setPi = ∗, ∀i, where∗ is a special ‘dummy’,
non-yet instantiated part. This means that there are initially
no state variables assigned to the nodes, and is not the same
as having a missing part. We gradually build structures by
applying composition rules of the form:(S, C)

ri→ S′, where
C ∈ Sk,i is the new constituent, attached to parti of S; ri
is the rule used to instantiate parti, and is applicable toS
only if its i-th part is not-yet instantiated. E.g. fori = 2 we
would haveS = (s, S1, ∗, S3) andS′ = (s′, S1, C, S3).

These rules are similar to the Greibach Normal Form
[69] where production rules decompose a nonterminal into
a terminal and a nonterminal. Here we compose a structure
of layerk+1 using a structure of layerk+1 and a structure
of layerk.

The cost of the structure is updated based on the cost of
C and the change in the spatial-consistency cost:

C(S′) = C(S) + C(C) + SC(S′) − SC(S). (12)

Initially, when S = (∗, . . . , ∗), C(S) = 0. Note thatC ∈

Sk,i meansC can also be empty as() ∈ Sk,i. This amounts
to missing thei-th part; in that caseSC(S′) = SC(S) and
the cost ofS′ is increased by the cost of missing its part.

This way of composing structures introduces apartial
ordering � among them, withP i � P j if P j has all the
parts ofP i; the ordering is partial as two structures are in-
comparable if e.g. each has a part that the other does not.
This ordering can be visualized with a Hasse diagram [70],

as shown in Fig. 3 for a 3-part structure. In this diagram
boxes correspond to structures, and when two structures are
connected the one lying higher has more elements than the
one below it. Gradually building up structures amounts to
following a path that starts from the minimum element and
gradually goes to its maximum.

The number of paths that can be followed equals
∏N

i=1 |Sk,i|,
whereN is the number of the structure parts, and|Sk,i| the
cardinality of the candidate subparts. We deal with this po-
tentially huge number with an algorithm described by the
following Matlab pseudocode:
function cmp = Compose(parts,CostMaxPart,CostStructure)
cmp = []; % compositions
for i = 1:length(parts),

% compose old structures with i-th part
cmp_new = Compose(cmp,parts(i));
% upgrade i-th part (parts 1:i-1 are missing)
upgraded_part = Upgrade(parts(i));
cost_up = sum(CostPart(1:i-1));
upgraded_part.cost = upgraded_part.cost + cost_up;
% penalize missing i-th part in old structures
cmp.cost = cmp.cost + CostPart(i);
cmp = [cmp,cmp_new,upgraded_part];
below = find(cmp.cost < CostStructure);
cmp = cmp(below);
cmp = nonminimum_suppress(cmp);

end

Before each iterationi the structures formed so far (‘cmp’)
have only parts1 . . . i − 1 instantiated, while partsi . . .N
are in the ‘dummy’, non-instantiated state. At thei-th itera-
tion, we combine these with structures that can correspond
to theiri-th part (‘parts(i)’). Then we allow each part to di-
rectly form a structure at the higher level (Upgrade func-
tion); but this implies that all of the parts1 . . . i− 1 will be
missing, so we penalize missing them. We also keep the old
structures in our pool of structures, but augment their costto
account for missing parti.

We finally merge the upgraded parts with the compo-
sitions and then compare the composition costs to the cost
of missing the whole structure. Those that have higher cost
are rejected: their cost can only increase by the further ap-
plication of rules, so it will be cheaper to treat the whole
structure as missing instead. We order parts so that the ones
with higher missing cost come first. This quickly rules out
weak compositions that do not include them.

Finally we keep only the cheapest composition within
a small neighborhood (nonminimum suppression), to avoid
dealing with multiple candidates with higher costs. These
two steps can drastically reduce the number of utilized com-
positions. In the next subsection we show how to further
limit their number using top-down information.

4.1.3 Caveats

We mention two caveats of our method. First, we assume
that for a given set of subparts, the pose of the part can
only take one value, the one for which the probability of its
subparts is maximized. This ignores all other possible part
poses, which could potentially lead to an overall lower cost.
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This would be the case if a different pose estimate turns
out to be in better accord with the parent’s pose. We take
this shortcut as it avoids exploring all possible locationsfor
the pose of a part. In practice, the provided poses estimates
look reasonable. Further, we expect that during training we
can account for the systematically larger spatial consistency
costs that are potentially introduced by this process.

Second, when performing suppression we ignore some
of the alternative structures which have high cost, but could
potentially lead to cheaper overall compositions based on
their better spatial configuration. This becomes prominent
if a large suppression neighborhood is used, but is negligi-
ble for a small neighborhood. In specific, the difference in
the location cost is a quadratic function in the difference be-
tween the original coordinates and the ones resulting from
suppression - therefore for smaller neighborhoods this cost
becomes negligible. As we describe in Sec. 4.2.4, we keep
track of the suppressed nodes so that we initially perform
suppression at a large scale, but then reexamine at a smaller
suppression scale the interesting image regions.

4.2 Hierarchical Object Parsing

The inference scheme we have described so far is entirely
bottom-up, i.e. forming first all low-level structures and then
using them to assemble higher-level ones. This however can
be ‘myopic’, as it forms numerous compositions of a single
object part, before checking if they can be used to build the
whole object. For example if we cannot form the trunk and
the cabin of a car somewhere in the image, we should quit
forming compositions of the engine part there.

Our strategy for dealing with this consists in first per-
forming a quick detection of the object by composing only
roughly certain layers of the hierarchy. We then use these re-
sults to guide detection at a finer level. The first step quickly
rules out a big portion of the image, and helps devote re-
sources to promising areas. This augments the ‘bottom-up’
computation with ‘top-down’ guidance. Recent advances in
A∗Lightest Derivation (Parsing) [17] provide us with the
tools to formalize this scheme.

After briefly introducing A∗in Sec. 4.2.1 and its adapta-
tion to parsing in Sec. 4.2.2, we describe how we apply A∗to
object parsing in Sec.s 4.2.3,4.2.4. Our detection method
was initially based on a priority queue implementation of
A∗parsing that we describe in Sec. 4.2.2, but we have switched
to the simpler coarse-to-fine scheme described in Sec. 4.2.4.

4.2.1 Search: Dijkstra’s Algorithm vs. A∗

Consider an agent who wants to move from the start of the
maze of Fig. 4 to the exit using the path of shortest length,
sayL. We can use Dijkstra’s algorithm until the distance
from the start to the exit is found and then get the optimal

Fig. 4: A∗combines the cost-so-far (dark line) with a heuris-
tic estimate (dashed line) of the cost-to-go (green line).

path by backtracking. This algorithm explores all statesν
with costC(ν) ≤ L.

The priority by which states are explored in Dijkstra’s al-
gorihm is equal to their distance from the start, or the ‘cost-
so-far’ traveled by the agent. A∗[71,72] is a search algo-
rithm that instead combines the ‘cost so far’ with an easily
computableestimate of the ‘cost to go’, called aheuristic.
The priority by which stateν is explored is now equal to
C(ν) + h(ν), whereC is the distance from the start and
h is the heuristic. When this estimate is a lower bound of
the cost to go, it is called anadmissible heuristic. A lower
bound can be obtained by relaxing some of the problem con-
straints, which is calledproblem abstraction. This could be
for example the Manhattan distance, as it ignores the walls
of the maze, or the Euclidean distance which also allows the
agent to move diagonally.

A∗is guaranteed to lead to the optimal solution if it uses
admissible heuristics; further it finds it by exploring only
those statesν for which C(ν) + h(ν) ≤ L. If h(ν) is a
tight lower bound these can be substantially fewer than those
explored by Dijkstra’s method. This reduction in the number
of explored nodes comes at the cost of computingh.

As the lower bounds computed by problem abstractions
can be loose, another option is to use insteadexpected costs.
This can speed up A∗but results in non-admissible heuris-
tics, which can lead to suboptimal solutions [71].

In summary A∗keeps search focused towards the goal,
by favoring partial solutions that seem to be getting closer
to the goal. This is intuitively similar to the saying ‘keep
your feet on the ground and your eyes on the stars’. We do
not only want to have a good partial solution; we also want
it to lead us to the full solution with low cost.

4.2.2 Parsing: KLD vs. Generalized A∗

To describe A∗parsing we use an analogy between search
and parsing. In parsing our ‘exit state’ is a ‘goal’ structure,
i.e. a structure at the highest level of the hierarchy; and the
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‘path length’ we are minimizing is the cost of the structure’s
instantiation. To get to our goal structure we need to first in-
stantiate structures lying in intermediate levels of the hierar-
chy; similar to passing through intermediate states in search.
The ‘cost-so-far’ for an instantiation is its cost, computed re-
cursively as described in Sec. 4.1. And the ‘cost-to-go’ is the
additional cost that will be paid until we form an instantia-
tion of a whole object, while starting from this structure.

In the same way that Dijkstra’s algorithm prioritizes in-
termediate states based on their distance from the start (‘cost-
so-far’), Knuth’s Lightest Derivation (KLD) [17] prioritizes
intermediate structures based on their instantiation cost. KLD
maintains a list of minimal-cost structures (similar to visited
nodes in Dijkstra) and a priority queue of structures that can
be composed from structures in this list (similar to the paths
in Dijkstra’s queue). At each step KLD removes the cheap-
est structure from the queue, and if it is not already in the
list it forms compositions that use this structure. KLD stops
when it generates the goal statement, and is guaranteed to
find the one of minimal cost,L. However, it first needs to
consider all structures with cost less thanL.

As in A∗search, it is therefore beneficial to have an es-
timate of the ‘cost-to-go’ and use it prioritize the composi-
tions. To articulate this, Felzenszwalb and McAllester pro-
pose in [17] the concept of ‘context’. Loosely stated, the
contextCon(S) of structureS is whatS needs to get to the
goal; for a example, for a car the context of a wheel structure
would be the engine and trunk structures.

Formally,Con(S) is an instantiation of other structures
which, combined withS, lead to a goal statement. So if
structureS can be combined with structureP and lead to
a goal structureS′, S is P ’s context and vice versa. Further,
the cost of these contexts will beC(Con(P )) = C(S′) −

C(P ) andC(Con(S)) = C(S′) − C(S), so thatC(S) +

C(Con(S)) = C(S′). Contexts can be defined recursively;
if S andP lead to a non-goal structureS′, the context ofS
is what it needs to get toS′ (P ) plus whatS′ needs to get to
the goal. The context ofS will thus have costC(Con(S)) =

C(Con(S′)) + C(S′) − C(P ). Obviously, we are only in-
terested in the context with minimal cost.

Contexts are however hard to compute; implicit in their
recursive definition is that we knew how to compute the
goal statement, which means that we have already solved the
parsing problem. However, A∗requires only a lower bound
of the cost-to-go. So to prioritize a structureS we only need
to lower bound the cost ofCon(S). This can be performed
quickly by computingCon(S) in a simplified setting (prob-
lem abstraction), and then using its cost as an estimate of
the ‘cost-to-go’. Formally, ifabs(S) is the mapping ofS to
the abstracted problem domain, the cost ofCon(abs(S)) is
used as a heuristic to determine the priority ofS at the fine
level. This is in brief the algorithm proposed in [17].

1 1 0

0 1 0 1 0 0

0 0 0

0 0 1

0 1 1 1 0 1

1 1 1

Coarsen 1 1 1

0 0 0

Fig. 5: Structure coarsening: a structure is considered com-
pleted if it contains a single part.

4.2.3 Heuristics for Objects

Having shown how A∗can use heuristics to speed up compu-
tation without sacrificing optimality, we describe the heuris-
tics for our problem, namely object parsing. The General-
ized A∗algorithm was applied by [17] to finding the most
salient curve in an image and was demonstrated to deal with
the large number of groupings formed by aggregating lo-
cal image features into longer structures. Here we consider
detecting objects by composing multiple parts; we demon-
strate that A∗applies to our problem based on the composi-
tion mechanism described in Sec. 4.1.

We note that in our implementation we use a Coarse-to-
Fine scheme which we found to be better suited to the prob-
lem of detection, as described in detail in Sec. 4.2.4. This
uses the ideas described in this subsection, which are appli-
cable to both the A∗parsing and coarse-to-fine methods.

To compose a structure using for example three parts we
need to climb to the top of a Hasse diagram, as shown ear-
lier in Fig. 3. For each move we pay the cost of the new part,
plus the change in the composition cost. Adding up these
costs along the path to the top gives the cost of synthesizing
the whole structure. The main computational burden comes
from the large number of possible compositions: in the di-
agram we show only one path from one substructure to the
one above it; in practice there are as many different paths
as structure instantiations, while the number of possible top
nodes equals the product of the candidate part instantiations.

However, if we can construct a lower bound for all parts
lying above the first level, we can find only the first part (the
one at the lowest level), and then ‘fill in’ the other parts with
dummy structures having costs equal to the lower bounds of
the part costs. This gives us a lower bound for the cost of
composing the whole structure that is rapidly computable.

This amounts to what we call astructure coarsening. It
consists in collapsing several of the nodes of a Hasse dia-
gram into a single one as shown e.g. in Fig. 5, and consid-
ering as identical structures that have one, two or three parts
instantiated, as long as they have one part in common.

The cost of acquiring partP i is φi(s
i, spa(i)) + C(P i),

i.e. the location cost plus the part cost; a readily computable



11

Fig. 6: A∗Parsing of a car: Initially (left) the car is coarsely parsedusing Knuth’s Lightest Derivation. The coarsening
consists in considering that each car part needs only a single contour. Once a car is thus parsed its parsing is ‘rolled back’,
and generates contexts for parsing at the finer level. This blows-up a single coarse-level node into a full-blown subtreeat the
fine level. The parse trees indicate the number of low-, mid-,and high- level structures (orange,blue/green/red,black) that are
involved in the coarse- and fine-level composition procedure.

lower bound is thusminsi φi(s
i, spa(i)) + 0 = λi

1
2 log |Σi|,

asφi = −λi logPi(s
i − spa(i)) andPi ∼ N(µi, Σi).

Our composition algorithm should thus be modified for
coarsened parsing as follows:

..
nparts = length(parts);
for added_part = 1:nparts,

upgraded_part = Upgrade(parts(added_part));
other_parts = setdiff([1:nparts],added_part);
bound_others = sum(CostBound(other_parts));
cost_bound = upgraded_part.cost + bound_others;
upgraded_part.cost = cost_bound;
cmp = [cmp,upgraded_part];

...
end

So we no longer form compositions containing multiple
parts; we only upgrade parts from the previous level and add
to their cost the lower bound of the other part costs. This
drastically reduces the number of explored compositions.

Apart from structure coarsening we can also perform
location coarsening, by considering as identical structures
whose parts are in a common image neighborhood. This also
reduces the number of explored parts, while we are able to
go back and mend the inaccuracies of the first coarse-level
parsing by the simple book-keeping described in Sec. 4.2.4.

4.2.4 Coarse-to-Fine parsing

The original description of A∗implies that we form a compo-
sition, compute its heuristic cost, and then insert it in thepri-
ority queue. However, computing the heuristic cost ‘on de-
mand’ is computationally impractical. Instead, as in [17] we
consider the opposite strategy of first computing the heuris-
tic and then using it to trigger the formation of a structures.

In specific, we first solve the parsing problem at the ab-
stract level, by coarsening the object-part layer of the hierar-
chy. At the end of this stage a set of object instantiations is

computed whose cost is a lower bound of the actual object’s
cost. We reject object structures whose cost is higher than a
conservative threshold and use the rest for fine-level search.

For this, we identify the low-level structures that can
lead to the retained object instantiations. This requires some
book-keeping during the coarse detection, where for each
structure we keep track of the structures it suppresses. We
can then backtrack from each object to all low-level struc-
tures that can be used to build it at the fine level.

We thus use a simplified version of A∗that does not re-
quire a priority queue, and is substantially easier to imple-
ment: the process of ‘identifying’ the low level structures
described above amounts to providing them with a heuristic
cost equal to zero. The rest of the structures which were not
identified obtain a large heuristic cost which removes them
from consideration. This quantized heuristic cost thus acts as
a ‘top-down’ signal, indicating if it is worth trying to com-
pose structures towards building an object. This is exactly
what we were asking for initially, namely some indication
about where it is useful to search for complex compositions.

This method seems to us more natural for detection, as
we generate all instantiations that have a cost below a thresh-
old instead of focusing on the cheapest one; further it is sub-
stantially faster in Matlab as it is vectorizable, and we have
found it to be significantly easier to implement.

4.2.5 Object Parsing Demonstrations

We demonstrate how the algorithm works for an individual
object in Fig. 6: Consider detecting a car structure com-
posed of an engine, cabin and trunk structures, which are
in turn composed of multiple contours. Initially we simplify
the parsing problem by coarsening the object part level of
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Engine Cabin Trunk Car Object

Coarse-level detection

Fine-level detection, using coarse-level guidance

Fine-level detection, without guidance

Fig. 7: The top-two rows demonstrate the Coarse-to-Fine detection scheme, which is contrasted to the plain, Fine-Level
detection scheme of the bottom row. At the coarse level a small set of candidate object locations is quickly identified;
these locations guide search at the fine level, acting like top-down guidance. Instead, when doing Fine-level Parsing without
guidance (bottom row) a detailed parse of the object’s partsis performed in several background locations, e.g. around trees.
This wastes computation resources on locations which end upbeing useless.

the hierarchy. For example for the engine structure, we con-
sider it is complete when we have found one of its contours,
e.g. the hood; the same applies to the cabin and trunk parts.
In this way we first compute a coarse parse of the object,
where each part is composed from one contour.

At that point, we backtrack and find the mid- and low-
level structure instantiations that were suppressed during the
coarse-level detection. These structures now have a ‘con-
text’ at the coarse level, namely a lower bound of their cost-
to-go. These are then used for a more detailed parse at the
fine level, where all part contours are required to be present,
or else penalized. For example, as shown on the right of
Fig. 6, the context for the ‘back’ structure initiates a detailed
composition of the structure at the fine level, blowing up a
single node of the coarse parse tree to a whole subtree. We
can thus build complete parse trees while avoiding elaborate
search in background clutter.

In Fig. 7 we demonstrate the computational gain due to
the Coarse-to-Fine scheme for an entire image. At the coarse
level we perform structure coarsening and spatial suppres-
sion, so we find a few structures for each part - we show their
centers as dots. Contrary to the object-part level, we do not
coarsen the object level; namely we require all object parts
to be present. As all three object parts can be accidentally
detected only in few locations, this reduces the candidate
objects as shown in the top left corner of Fig. 7.

The object structures whose cost is above threshold are
shown on the right column. Starting from these, we back-
track to the lower levels and focus on the image areas likely
to contain an object. We now penalize missing contours and

build full-blown object parts with multiple contours, which
leads to a single object instantiation being above threshold.

By contrast, as shown in the bottom row of Fig. 7 purely
bottom-up fine-level detection is ‘short sighted’. By trying
to form all object parts at full detail from the beginning,
it wastes computational resources. This is evident from the
large number of individual object parts formed on the back-
ground, avoided by the Coarse-to-Fine approach.

In Fig. 8 we show as a heat map the cost function at
the coarse and fine levels. A single ‘goal’ structure resides
within each box-shaped neighborhood after location sup-
pression, and neighborhoods where the cost is lower are
more red. At the coarse level instead of admissible heuristics
we use expected costs, estimated during training. As we use
both structure and location coarsening, the domain of the
cost function is very coarsely quantized initially; this allows
us to rapidly focus on the interesting locations, and then re-
fine our detection.

For example, the car model, learned as described in Sec. 5,
contains 65 contours. Plain fine-level detection with this model
takes more than 50 seconds for an image with approximately
300 image tokens. Instead, coarse-level detection can be done
in less than 10 seconds; following this, fine-level detection
can take place in less than 15 seconds, so the sum is typically
less than half the original computation time. These measure-
ments do not include the average cost of boundary detection
(≃10 seconds), curve linking (≃3 seconds) and matching of
contours to object boundaries (≃3 seconds) which are com-
mon for both methods. The gain in efficiency varies per im-
age, and is most prominent for images with heavy clutter.
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(a) Input (b) Cost, coarsened problem (c) Cost, fine-level problem

Fig. 8: Cost function for the coarsened problem (left) and the original problem (right); low costs are red and high costs are
blue. We efficiently compute the cost on the left, which provides us with a lower bound for the cost on the right. We then
refine the computation at those locations where the coarse cost falls below a conservative threshold.Please see in color.
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Fig. 9: Performance curves for a detector using fine-level
parsing (orange-solid line) and a detector using our coarse-
to-fine algorithm.

We note that we have experimentally found expected
costs to be more effective at reducing the parsing time than
admissible heuristics. As mentioned in Sec. 4.2.1 on the
one hand this may result in suboptimal solutions, but the
heuristic is substantially closer to the actual cost and results
in substantial reductions of the computation cost. Details
about the computation of the expected costs are provided in
App. B. A quantitative demonstration of the gain in perfor-
mance as well as the associated loss in accuracy due to the
non-admissible heuristics is demonstrated in Fig. 9. There
we plot the recall as a function of the false-positive-per-
image rate for the bottle category of the ETHZ dataset. The
orange-solid curve corresponds to fine-level search, while
the red-dashed curve corresponds to the performance of the
detector when optimization takes place in a coarse-to-fine
manner. The loss in performance observed is due to false
negatives (lower recall), which demonstrates that our non-
admissible heuristics can reject some useful compositions
prematurely. On the other hand, parsing 231 images took
270 minutes using fine-level search and 160 minutes using
coarse-to-fine, almost cutting by half the computation time.

Fig. 10: Typical Images from our training set .

5 Model Learning

We now turn to the problem of learning our object model.
We assume that we are provided with a small set of images
(in the range of 20 to 50) that contain only the bounding box
of the object. We do not require any manually-segmented
features, while the images we work with have heavy occlu-
sions, noise, illumination variations etc; examples of images
in our training sets are shown in Fig. 10.

We decompose the learning task into three stages: First
we recover theobject contours by registering the training
set using unsupervised Active Appearance Model training
(Sec. 5.1). We then find theobject parts by estimating the
geometric affinity of contours and clustering them with Affin-
ity Propagation (Sec. 5.2). Finally we learn theparsing cost
discriminatively via Multiple Instance Learning so as to op-
timize the detection performance (Sec. 5.3).

We demonstrate learning results for cars from the UIUC
dataset and the ETHZ shape classes (apples, bottles, giraffes,
mugs and swans). The testing evaluation of the last 5 cate-
gories uses a protocol where the training images are chosen
at random from a larger set of images 5 times; we therefore
demonstrate 5 different learning results per category. We use
common parameters throughout.

5.1 From Images to Contours

The contours used at the lowest level of the object repre-
sentation are obtained from the edge and ridge contours of
the images in our training set. On individual images these
contours are noisy but when aggregated over the training set
they become substantially more robust.
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(a) No registration (b) Affine registration (c) AAM registration (d) Contours

Fig. 11: We obtain the contours at the lowest level of our object representation via deformable model learning: The car
template in (a) is computed by averaging the edges (black) and ridges (red) of the training set before registration; it istherefore
has few clear structures. The template in (b) is computed using only affine registration and is still missing several structures.
The template in (c), computed using AAMs, is sharper as a category-specific deformation model is learned and used. The
object contours, shown in (d) are extracted from (c) by non-maximum suppression followed by hysteresis thresholding.
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Fig. 12: Initial (top) and final (bottom) templates for the five categories of the ETHZ dataset, learned as described in Fig. 11.

This idea underlies several other recent works that either
explicitly [65,73] or implicitly [23] register a training set.
We rely on our work on unsupervised Active Appearance
Model (AAM) learning in [74], which we only briefly de-
scribe below for completeness, as we intend to present it in
a different publication in the future.

In [74] we learn a deformable template model for an ob-
ject category from images that do not contain landmarks.
The template is a dense model of edge and ridge maps, which
are largely invariant to changes in appearance. We there-
fore use the mean of these features as the model prediction,
and do not account for appearance variation. The deforma-
tion model accounts for shape variation using a linear basis
to synthesize the deformation field applied to the template.
This basis is category-specific, and is combined with global
affine transformations to register the training images.

We learn the mean template and the deformation basis
with EM. In the E-step we register the training set to the
template and in the M-step we update the deformation model
and the template’s appearance so as to better register the im-
ages in the next step. The output of this process is (a) an

Active Appearance Model (template and deformation basis)
and (b) a registration of the training images.

The improvement in registration can be seen by com-
paring the images in Fig. 11(b) with Fig. 11(c). Each im-
age shows the average ridge and edge maps of the whole
training set, obtained by taking the mean of the training im-
ages. The learned model aligns the training images and gives
clean contours after averaging. The object contours shown in
Fig. 11(d) row are obtained using nonmaximum suppression
suppression followed by hysteresis thresholding. In Fig. 12
we show indicative results for one trial of each category, to
indicate that starting from a set of unregistered images we
can accurately extract boundary and symmetry information
for the whole category.

5.2 From Contours to Object Parts

Having obtained a set of long contours that capture the bound-
aries and symmetry axes of the object, we want to find the
intermediate level structures that will connect these contours
into coherent object parts. This is similar to learning the
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(a) (b)

Fig. 13: Pairwise clustering is used to discover object parts:
first the object contours are broken into straight segments,
which are seen as nodes on a graph. Ridges are shown as el-
lipses whose width is proportional to the scale of the ridge.
Nodes are connected with edges based on continuity and
parallelism. The affinity among nodes is estimated using sta-
tistical and geometric information. The object parts shown
on the left are obtained using Affinity Propagation.

Fig. 14: The geometrical affinity among pairs of nodes is
expressed using the Elastica completion cost.

structure of a graphical model [75,76]; but our problem is
harder as we want to ‘invent’ hidden nodes with continuous
variables for the object parts.

We therefore use a data-driven approach that exploits the
geometric nature of our problem. We turn the contours ex-
tracted in the previous step into a set of straight edge and
ridge segments as shown in Fig. 13. Each of these segments
is treated as a node in a weighted undirected graph, whose
weights quantify the affinity among nodes. We then use pair-
wise clustering, specifically Affinity Propagation, [77] topar-
tition this graph into coherent components.

Affinity Propagation is a non-parametric clustering al-
gorithm, that allows clusters to be formed based on the pair-
wise affinities of observations. Central to this algorithm is
the identification of ‘examplars’, i.e. observations that have
high affinity to a subset of the data; these are identified in a
distributed manner, similar to inference on a graphical model.
Apart from the affinities themselves, which will be discussed
below, the only crucial parameter of this algorithm is the
‘preference’,p for each point, which determines how likely
it is going to be picked as an exemplar. This quantity deter-
mines the number of clusters and is set top = .1 in all of
our experiments. If less than three object parts emerge, we
perform bisection search overp until we get at least three.

Fig. 15: As pre-processing to estimate the statistical affin-
ity of two nodes, every image in the training set (left) is
backward-wrapped to the template coordinate system (mid-
dle) using the deformation estimated during AAM training.
There, we measure the extent to which each node (black
cell) is covered by an image contour (red curve) to deter-
mine if the node is present in the training image.

The affinity among two nodes on the graph is computed
based on both statistical and geometric cues. First, we com-
pute the geometric affinity among every pairi, j of edges
or ridges, based on contour continuity. For this we quan-
tify their grouping cost using the analytic approximation to
the Elastica functional [78] provided by [79]. In specific,
consider two edge segmentsi, j, with i ending atpi with
angleψi and j beginning atpj with angleψj as shown
in Fig. 14. It has been demonstrated in [79] that the quan-
tity Ei,j = 4(ψ2

i ψ
2
j − ψiψj) provides an accurate approx-

imate to the scale-normalized integral of the Elastica en-
ergy [78] of the illusory contour grouping these edge seg-
ments. We setwshape

i,j = e−Ei,j . For adjacent contours we

setwshape
i,j = max

(

1/2, e−Ei,j
)

to allow for corners, which
are otherwise severely penalized byEi,j .

Second, to exploit symmetry during grouping we also
connect edges to ridges. Based on the scale of each ridge we
estimate the set of locations in its periphery where it would
expect to find edges; we then set its connection weight to the
edges nodes to be equal to the proportion of the edge that is
contained in the bounding box.

Third, we incorporate statistical information by measur-
ing how often two tokens appear together in the training
images. This strengthens the bonds among parts that have
common appearance patterns and isolates parts that appear
rarely in the dataset. We compute the functionIi,k that indi-
cates whether linei was (partially) observed in imagek and
set the affinity among linesi andj equal towocclusion

i,j =
1
K

∑K

k=1 Ii,kIj,k.

To computeIi,k we use the deformations estimated dur-
ing AAM training, as illustrated in Fig. 15. For this, we first
backward warp the edges found on training imagei (left)
to the template coordinate system (middle), using the de-
formation estimated during AAM learning. On the template
coordinate system we measure the length of the edge con-
tour passing through the ‘cell’ associated to nodek (right).
These cells are obtained by dilating the support of each tem-
plate edge, in order to tolerate small misalignments by the
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Fig. 16: Object parts delivered by our method for five different trials for the categories of apples, bottles, giraffes, mugs, and
swans: boundaries and symmetry axes belonging to the same object part are shown with the same color.Please see in color.

AAM. If the length of the intersection of the image curves
with the cell is above half the length of the template edge
we consider that the corresponding cell is present, i.e. we
setIi,k = 1.

Finally, the affinity is expressed aswi,j = wshape
i,j wocclusion

i,j .
This affinity only partially captures the coherence of two
nodes. Two edges lying on opposite sides of a ridge may
both be strongly connected to the ridge, but weakly con-
nected with each other according to the continuity cue. In-

tuitively we would like these two edges to be easy to group
together. We therefore consider the product of the pairwise
affinities among all possible paths connecting two nodes and
use as affinity the maximum of this product among all paths;
the product can easily be computed using matrix multiplica-
tions.

In order to obtain a clustering from these affinities we
have found Affinity Propagation to be particularly effective.
We had initially experimented with several alternatives of
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Normalized Cuts, but finding automatically the number of
object parts turned out to be problematic. Affinity Propaga-
tion instead gave visually appealing results after little ex-
perimentation. Most of the object parts are visually plausi-
ble and correspond to clear structures, e.g. handles, heads,
wheels, etc.

Once groups of tokens are identified by the process above
we form all possible groupings of these tokens into larger
convex arcs. For instance the green contour corresponding to
the apple on the top-left figure can be decomposed in several
different ways into smaller contours. These are included in
what is shown as the green part, but during learning (detailed
below) most of them are eventually ignored automatically.

5.3 Multiple Instance Learning for Discriminative Parsing

In Sec. 3 we have expressed our cost function as the likeli-
hood of the image under a probabilistic model. To derive it
we have assumed that the child nodes are independent con-
ditioned on their parent, that the reconstruction errors ofthe
tangent function are independent in Eq. 5, while other terms
were derived from some prior, e.g. on the probability of hav-
ing missing contour parts or non-overlapping image and ob-
ject contours. In practice the independence assumptions do
not hold, and we do not have annotated data to construct the
priors. Moreover, using generative models is not necessarily
optimal for object detection, since our task is to discriminate
among objects and background images.

We therefore turn to a discriminative method to estimate
the parameters in our cost function. We view our cost func-
tion as the output of a linear classifier that uses the potentials
computed from an instantiation as features. The decision is
formed by taking a weighted sum of these features and re-
jecting instantiations whose cost is above a threshold.

In specific, the featuresF used by our classifier are formed
by concatenating: (i) The location features, equal to the minus-
log probability of the relative poses involved in the part-
child relationships,

F1 = {− logP (sν |spa(ν)), ν ∈ V \ Vr}. (13)

The λi parameters in Eq. 1 are the weights of these fea-
tures. (ii) The contour match featuresF2, namely the mis-
match cost

∫

s∈Sc

[

θO( s
α

+ τ) − θM (s) + c
]2
ds, the turn-

ing penaltyc2|Sc|, and the missing length|Sd| of each object
contourν ∈ Vc. Theγ1, γ2, γ3 parameters in Eq. 5 are the
weights for these features; each contour has its own weights.
(iii) The missing node featuresF3, computed from the indi-
cator functionh as:

F3 = {h′(ν) = 1 − h(ν), ν ∈ V \ Vr}. (14)

The missing part potentialsφ0
ν in Eq. 3 are the weights of

these features. For a missing part we set to zero the location
and contour match features of both it and its descendants,

while the corresponding missing-node features,y are set to
one.

Each instantiation thus gives us2(|V | − 1) + 3|Vc| fea-
tures. Our goal is to learn how to weigh these features for
the purpose of classification. Our training problem is non-
standard, as we do not know the correct object configura-
tions; so we do not know the features that our classifier
should be using. We only know that for a positive image
at least one configuration will be positive; and all config-
urations composed from a negative image should be nega-
tive. Essentially we want to train a classifier with a high-
dimensional hidden variable, namely the correct object con-
figuration.

This is a problem that can be addressed using Multiple
Instance Learning (MIL) [80]. Before describing in detail
MIL and how we apply it to our case, we note that MIL has
been used in computer vision in [81–83], but not for hier-
archical models as in our case. In [28] a latent SVM was
proposed to train a deformable part model discriminatively,
with the poses of parts treated as missing variables. Their al-
gorithm alternates between extracting features by minimiz-
ing the cost function w.r.t to the hidden variables, and esti-
mating the feature weighting that optimally separates pos-
itive from negative images. At each round this algorithm
uses a single hidden variable per positive image, which can
cause instabilities, as the authors mention. In more recent
work [84] that was developed independently from ours [85],
the authors acknowledge that their algorithm is an instance
of the MIL framework, but still use a single instance for
each positive image, which requires a careful initialization
of their algorithm. Instead, we entertain multiple instantia-
tions for each positive image and let the algorithm decide
which is most appropriate.

MIL is a general framework to deal with missing data
in classification, accommodating for instance Large-Margin
training [86] and Boosting [81]. Typical learning assumes
training samples come in feature-label pairs. Instead, MIL
takes as a training sample a ‘bag’ of features and its label.
Each bag is a set of features, and the classifier is applied to
each feature separately. A bag should be labeled positive if
at least one of its features is classified as positive, and nega-
tive otherwise. The hidden information is the identity of the
positive feature(s) in the positive bags. This is exactly our
problem, too: from each image we can form a bag of fea-
tures, corresponding to all possible object instantiations. We
want to train a classifier that will label at least one as posi-
tive for a positive image, and all as negative for a negative
image.

We rely on the Deterministic Annealing approach of [87]
to MIL, which resolves some problems in the original work
of [86] on Large-Margin MIL. In specific for thei-th train-
ing image we form a bag-label pairBi, Yi, whereBi is a
set of features computed fromJi candidate instantiations,
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Fig. 17: Positive and negative bags for the car class: for each training image we compute a set of instantiations, visualized
as a part-level labelling of the image tokens. The goal of training is to learn a cost function such that for each positive image
at least one instantiation has low cost, while all instantiations from a negative training image have high cost. This is solved
using Multiple-Instance Learning.

i.e.Bi = {Fi,1, . . . Fi,Ji
}. Yi = 1 if i is a positive bag and

Yi = −1 for a negative bag. Consider now a hidden variable
vectorhi for each bagi, such thathi,j = 1 if Fi,j corre-
sponds to the correct instantiation for a positive image, and
the most object-like instantiation of a negative image.

If we know the hidden variable vector, training the large
margin classifier could be accomplished by minimizing the
following cost:

C(W, b) = c W ·W +

N
∑

i=1

Ji
∑

j=1

hi,j l[−Yi(Fi,j ·W + b)](15)

l[x] =

{

1 − x, x < 1

0, x ≥ 0
, (16)

whereW is the weight vector,cW ·W penalizes the classi-
fier’s complexity,b is the classifier’s offset andl[x] penalizes
examples on the wrong side of the margin. Note that a small
value of the costFi ·W + b impliesi is positive, so we need
to flip the labelsYi to turn our problem into the standard
SVM training setup.

In practice we do not know the binary hidden variables
hi,j . However, we could compute them if we knew the clas-
sifier parameters(W, b); this suggests an iterative strategy,
similar to EM. Following [87] we consider a distribution
on the instances of each bag, and replace the binary hidden
variables with probabilitiespi,j . We now consider a new op-
timization problem that involves both(W, b) andp:

C(W, b, p) = cW ·W +

N
∑

i=1

Ji
∑

j=1

pi,j l[−Yi(Fi,j ·W + b)]

+ν
∑

i,j

pi,j log pi,j (17)

s.t.

Ji
∑

j=1

pi,j = 1, ∀i (18)

0 ≤ pi,j ≤ 1, ∀i, j (19)

The last two constraints guarantee thatp will be a distribu-
tion on the instances of each bag; and

∑

i,j pi,j log pi,j is the
sum of the negative entropies of these distributions.

The entropy term is necessary to avoid the local minima
of the optimization problem: the optimized function is con-
vex in (W, b) for fixed p and convex inp for fixed (W, b).
However it is not convex inW, b, p, due to the misclassifi-
cation term, which contains negative products of thep and
W variables. Deterministic annealing is therefore used to
avoid local minima:ν is set initially to a high value, ‘con-
vexifying’ the optimization problem. For thatν, alternating
optimization w.r.t to(W, b) andp is used to optimize the
cost function. At the next iteration,ν is decreased and the
optimization w.r.t. to(W, b) and p is initialized using the
solution computed at the previous step. This process is re-
peated for decreasing values ofν, which amounts to mak-
ing the distributionp on each instance increasingly peaked
around the instance that has the lowest cost. We have used
the code provided by [87] and have found this scheme to
provide systematically better solutions that those obtained
without annealing.

Adapting this approach to our case requires addressing
three technical points. First, the weight vectorW should
be positive: for a negative weight a structure’s contribution
to the cost would turn negative, while worse parts would
result in lower costs, which is counterintuitive. Moreover
it would no longer be possible to lower bound the cost of
a part. Therefore, during the optimization w.r.t.(W, b) we
need to keepW positive. At timestept consider that we have
found the solution(W t, bt); we want to find the increment
to W t, bt that maximally decreases the cost, while keeping
W positive. For this, we first form a second order approxi-
mation to the cost aroundW t, bt, i.e.

C′(h, f) = C(W t + h, bt + f)

≃
1

2
[h, f ]TH [h, f ] + [h, f ]TJ + C(W t, bt), (20)

whereH andJ are the Hessian and Jacobian ofC respec-
tively at the current estimate ofW, p, b. At eacht we then
recover the optimal update toW t, bt by solving the follow-
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Fig. 18: Improvement of the parsing cost function for cars: initially (middle) our model mistakes parallel structures for cars,
giving low cost to the street to the left of the car. After six iterations (right) of MIL training, the cost function indicates more
sharply the location of the car.

ing quadratic program with inequality constraints:

min
h,f

1

2
[h, f ]TH [h, f ] + [h, f ]J (21)

s.t. hi +W t
i > 0 ∀i ∈ {1, . . . , |h|} (22)

Second, it is impractical to consider all instantiations
for each image, as the optimization problem becomes in-
tractable. Instead we alternate between estimating(W, b) us-
ing the annealing algorithm, and parsing our training set.
For each positive and negative image we keep the five best
scoring instantiations at each round, and add them to bag
computed for that image from the previous rounds. We have
found this to be more robust than keeping only the instan-
tiations from the current round, as it allows the algorithm
to ‘backtrack’ on occasion and give lower cost to instan-
tiations computed earlier. The initial instances are obtained
by optimizing the cost function that would correspond to the
generative model formulation, i.e. by setting theλi variables
equal to 1 in Eq. 1 and the missing cost potentials equal to
minus the log probability of missing a part.

Third, changing the weight vector potentially has an ef-
fect on the features. To see this, consider that the cost of
a part’s instantiation is higher than the cost of missing that
part. As it will be cheaper for a higher- level structure to con-
sider that part as missing, such instantiations are rejected by
our composition algorithm. As during trainingW is chang-
ing, some of the instantiations become impossible: if the
cost of missing one part decreases, all structures having a
more expensive instantiation of that part could no longer be
generated. Instead, they should be replaced with structures
having that part missing. This means setting to zero their lo-
cation and contour match features and to one their missing
part features.

Therefore, a change (h, f ) in (W, b) proposed from the
minimization above can potentially result in an increase in
the optimized function as the features will change at(W +

h, b + f). We deal with this by taking the increment(h, f)

computed at each iteration as a direction in which the weight
vector should be changed. Then we estimate the length in
which this direction should be followed using line search:
for each value of the length we modify the feature set as

described above, and compute the new cost function. This
procedure helps drastically reduce the number of rounds re-
quired by the parsing/training algorithm: in practice after 5
iterations the training algorithm converges.

In Fig. 18 we show how the training process gives a cost
function that is better suited for detection, by learning todis-
criminate among car and car-like structures from the back-
ground. We note that after several iterations the cost function
is more sharply peaked around the actual location of the car;
this indicates that we learn a cost function that is better tuned
for the detection task.

6 Application to Object Detection

We validate our method using the UIUC car [4] and the
ETHZ shape classes [24]. The car dataset is the most chal-
lenging in terms of image quality; the images there are of
low resolution, while in many cases the image contrast is so
low that whole parts of the object are missed by the contour-
detection front-end. The ETHZ shape classes have been in-
troduced more recently and are used to benchmark detec-
tion algorithms that deal with deformations, occlusions etc.,
while relying on the shape cue that is dominant for these
classes.

Our models have been automatically learned using the
procedure described in Sec. 5, while for all classes we use
common settings during both training and detection. For cars
we use 50 images to learn the contours and object parts, and
300 positive and negative images for discriminative training.
For the ETHZ datasets we use the common evaluation proto-
col: for each category we use half of its images for training,
and the remaining images from the category, and all images
of other categories, for validation; we present results aver-
aged over 5 different trials. As negatives we use 300 images
from the Caltech background images.

In Fig. 19 we demonstrate parsing results on these datasets.
We show parsing at the object part-level, where the color
encodes the object part to which a token is assigned; our
algorithm actually works at a finer level, as each token is as-
signed to a specific contour of the object. We observe that
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Fig. 19: Parsing results: For each image we show object instantiations that are classified as positive by our inference algo-
rithm. We show the parse results at the object part-level, using color to indicate the object part to which a token is assigned;
but our algorithm establishes a finer, contour-level relation.

our algorithm can deal with real images containing substan-
tial clutter; for example, in the car images only a small frac-
tion of the image tokens is used to build the object. Fig. 19
demonstrates that our algorithm is able to perform simulta-
neously the localization and parsing tasks.

In Fig. 20 we report results on these benchmarks. On
the top-left plot we compare on the UIUC dataset our re-
sults to those of other works using sparse image representa-
tions. Our system outperforms these works despite not us-
ing appearance information. Our Recall at Equal-Error-Rate
(when precision equals recall) is 98% percent, equal to the

best reported so far by Fidler et. al. in [40] with a sparse
representation.

In the following plots we report results on the ETHZ
dataset, and compare to the boundary-based works of Ferrari
et. al. [88,89] and the region-based works Gu et. al. [27].

We plot the recall of our detection algorithm (ratio of
detected objects) versus the number of false-positives-per-
image (FPPI), averaged over the whole dataset and averaged
over the 5 trials. We use the strict PASCAL evaluation cri-
terion that considers as correct a bounding box for an object
if its intersection with a ground truth bounding box is larger
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Fig. 20: First plot: benchmark results on the UIUC dataset; we compare to the sparse, part-based approaches of Fergus
[7] et. al. and Leibe et. al. [30]. Next five plots: Benchmark results on the ETHZ classes: comparisons with Ferrari et. al.
(shape-based), and Gu et. al. (region-based).

than 50% of the union of their areas. All other detections are
counted as false-positives.

Our method systematically outperforms both shape-based
methods developed by Ferrari et. al.; the first [88] uses a
discriminatively trained codebook-based detector, whilethe
second [89] uses voting for bottom-up detection and graph-
matching for validation. Apart from delivering better results,
our method is unified: we use a single model for bottom-up
and top-down detection, and discriminatively learn the cost
function that is used for detection.

Comparing to the region-based method of Gu et. al. [27],
we observe that our method performs better on mugs and
swans, equally well on bottles, slightly worse on apples and
systematically worse only on giraffes. The results are not
directly comparable, as the authors use an entirely different
approach, involving hierarchical image segmentation, bound-
ary descriptors and exemplar-based detection, while a sub-
stantially better boundary detection system is used. How-
ever, this difference in performance is to some extent intu-
itive: our method can accurately model the outline of ob-
jects, which is distinctive for the categories where it per-
forms well, while the regional cues used in [27] can more
naturally capture the texture of giraffes. Further, the edge
and ridge maps for these images are particularly noisy, which
further challenges our approach for the giraffe category.

This brings us to the limitations of our approach, which
can be exemplified by the failure cases in Fig. 21. On the top
row we show the tokens computed by our front-end: several

object boundaries and symmetry axes are missing, due to the
poor image contrast; almost the whole upper part of the car
is considered to be missing, while there are very few edge
segments aligned with the giraffe’s neck. It is therefore hard
to form a long contour during grouping. On the bottom row,
the coincidental bottle-like configuration of tokens from dif-
ferent objects leads to a false positive. The failure case onthe
top row can be addressed in at least three different ways (i)
learning better boundary and symmetry detectors (ii) incor-
porating different sparse features, e.g. blobs, corners, junc-
tions that can more easily be detected than contours and (iii)
using regional cues. There is substantial work on all of these
three research directions that we intend to explore in future
work. The failure cases on the bottom can be addressed in
three different ways: (i) incorporating appearance informa-
tion to refine the set of contours that are used to detect an
object [64] (ii) using more elaborate grouping to form more
elaborate low-level structures than tokens [66] and (iii) us-
ing context-sensitive relations [13,12], potentially in asec-
ond, re-ranking stage, to capture ‘horizontal’ spatial rela-
tions among the object contours.

7 Conclusions and Future Work

In this paper we have introduced, first, a hierarchical object
representation, second, a principled and efficient inference
algorithm, and third, a learning method that only uses the
bounding box of the object to learn the model. Our results
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Fig. 21: Modes of failure of our approach: on the top row,
the poor image representation delivered by the front-end re-
sults in a false negative. On the bottom-row, the object-like
configuration of some background edges results in a false
positive. Please see text for details.

demonstrate the practical applicability of our approach in
challenging images containing substantial background clut-
ter. There a two-fold improvement in detection efficiency is
achieved, while the detection performance compares favor-
ably to the current state-of-the-art.

One of the main results of this paper is that with a hier-
archical model one can perform efficient detection. This is
performed based on a tightly coupled bottom-up/top-down
inference scheme, with a small loss in detection accuracy.
This makes more elaborate, multi-part models affordable,
thereby allowing us to both detect and approximately seg-
ment an object.

There are several directions in which we intend to extend
this research. The first is to incorporate regional information
from segmentation, which has recently been shown to yield
excellent results [26,27]. The second is to complement our
shape-based features with appearance information, thereby
capturing the context around each contour; this is something
that we have started working on in [64]. The third is to al-
low our models to choose among different parts, thereby
implementing an OR-ing mechanism as in [12,84,50]. This
is straightforward during inference (we already use an OR
for missing parts), but the challenge lies in automatically
learning the part-mixture components during training. Fi-
nally, in the long run, we would like to automatically learn
the parts that are shared among multiple categories and are
reusable for modeling and detection. This would allow us to
simultaneously detect multiple categories in time sublinear
in the number of categories, thereby allowing our algorithm
to scale up to the detection of tens, or hundreds of objects.

(a)

Fig. 22: Matching image tokens to model structures: Using
an angle-based representation of contours, the fragmented
lines of the image become piecewise constant signals.
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A Integral Angles

In this appendix we describe an efficient method to match image and
object contours, generalizing the method of [90] which was used to
compare polygonal curves. We use an idea inspired from integral im-
ages [52] to compare an arbitrary continuous curve (the model contour)
to an image curve, while also dealing with missing parts.

The cost function we use in Sec. 3.2 to quantify the match of two
contours is:

EθO,θM
(α, τ, c) =

∫

s∈Sc

(γ1

[

θO(
s

α
+ τ) − θM (s) + c

]2

+γ2c2)ds + γ3|Sd| (23)

For fixedα, τ the optimal value ofc can be obtained in closed form as:

c∗ =

∫

s∈Sc
θM (s) − θO( s

α
+ τ)ds

|Sc|(1 + γ2

γ1

)
. (24)

However,E is nonlinear and nonconvex inα andτ . This leaves ex-
haustive evaluation as the only choice, so we need to speed upthe
computation of the integral in Eq. 5. For this we exploit working with
piecewise straight contours: If a contour is formed by linking N line
tokensTn, each having lengthln and orientationθn, the matching cri-
terion writes:

E(α, τ) =
N
∑

n=1

∫
ln
α

s=0

(

γ1 [θn − θM (s + τn) + c∗]2 + γ2(c∗)2
)

ds + γ3|Sd|,

τn = τn−1 +
ln−1 + gn−1

α
, τ1 = τ. (25)

Abovegn is the gap between tokensTn−1, Tn, andτn is the coordinate
where the then-th line segment begins (see Fig. 22). Asθn is constant,
the integral above writes:

(θn + c∗)2
ln

α
− 2[θn + c∗]

∫
ln
α

s=0
θM (s + τn) +

∫
ln
α

s=0
θ2
M (s + τn)ds

The only integrals that remain involve the model angle function θM

and its square. Using the precomputed ‘integral angle’ functionsΘM (s) =
∫ s
0 θs we can reduce the complexity of computing these fromO(L) to

O(1) as follows:
∫

ln
α

s=0
θM (s + τn) = ΘM (s + τn +

ln

α
) − ΘM (s + τn).

Finally |Sd| can be computed forα, τ as follows:θM is defined in
the domainDm = [0, L], while θO is defined inDc = [τ1, τn + ln

α
].
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Considering the case were the two sets are not disjoint, we have |Dc ∪
Dm| = max(τn + ln

α
, L) − min(τ1, 0), |Dc ∩ Dm| = min(τn +

ln
α

, 0) − max(0, τ1). Denoting byG the length of the gaps that fall
within Dc ∩ Dm, we then have|Sd| = |Dc ∪Dm| − |Dc ∩ Dm|+ G.

The ‘integral angle’ technique described above allows brute force
search within a range of values forα, τ with a small computation cost,
while using densely sampled contour models - we use 50 pointsper
contour.

B Implementation Details

Below we provide implementation details for several parts of the paper
that have been presented at a high level. As AAM learning withbe the
subject of a future publication, we focus on the rest of the paper.
Section 3.1: Contour grouping: We first extract a set of straight edge/ridge
segments, using the contour fragmentation method of [60] and the code
of [9]. Edges are obtained from the Berkeley boundary detector [62]
and ridges from Lindeberg’s primal sketch [67].

We subsequently form all possible combinations of such segments
into convex arcs by combining the method of Jacobs [91] with the inter-
vening contour idea of [92]. The technique of Jacobs guarantees that all
groupings returned will be convex arcs. On top of that, we do not allow
arcs linking two tokens if there is a roughly perpendicular edge inter-
secting the line connecting their endpoints. To determine whether these
are perpendicular we use the condition| cos(θ1 − θ2)| < cos(2π/3),
whereθ1 is the angle of the line connecting the two tokens andθ2 is the
angle of the intervening contour. The intervening contour cue is used
if the response of the boundary detector is above .1.

We form all groupings composed of up to four tokens. We then re-
ject all groupings for which the sum of the gap lengths is morethan half
the length of the grouped edgels. This discards groupings offaraway
edges, which simply happen to lie on a convex arc.

Section 3.2: Contour Matching: We do a preliminary screening
before matching a contour group with a model curve to reduce the num-
ber of matchings. We denote the length of the contour group bylg and
its orientation byθg; orientation is defined as the angle of the line con-
necting its two endpoints. We denote the corresponding quantities for
the model curve aslm andθm; note that as we consider separate ranges
of α, lm is obtained by the ratio of the nominal length of the curve
over the median scale considered at a time (so that we can perform
a scale-invariant match). Our screening consists in rejecting matches
when| cos(θm − θg)| < cos(π/4) and when| log(lg/lm)| < .6. We
thereby avoid checking for very large rotations and for contour matches
which would imply large missing parts.

Section 4.2.4 a) Inadmissible Heuristics: For structure coarsen-
ing instead of composing all parts of a multi-partite structure we com-
pose only one, and replace the costs of the remaining ones with predic-
tions of their costs. Forming an admissible heuristic wouldrequire us-
ing a lower bound of the cost of each part. Unfortunately, these bounds
can often be loose. Instead we use inadmissible heuristics,which may
no longer be lower bounds, but are more efficient at ruling outun-
promising search directions.

For this, we keep track of each part’s cost over the whole positive
set during training; in specific, we work with the instances identified
as witnesses for the positive bags: for each imagei we identify j∗ =
argmaxjpi,j , wherepi,j is the distribution over instances entertained
by the MIL-SVM algorithm of [87] in Eq. 18. Denoting byci,k the
cost for partk in instancej∗ of imagei, our prediction for the cost of
parti is the 20-th percentile of the set{c1,k, . . . , cN,k} whereN is the
number of training images. Even though this is obviously nota lower
bound of the cost, it is a relatively conservative estimate of the cost that
can guide the heuristic search. Note that if the part is not present in any
of the ‘witness’ instances, the cost estimate will be equal to the cost of
missing the part.

Section 4.2.4 b) Location Coarsening: Apart from structure coars-
ening we can also use location coarsening. This amounts to quantizing
the location coordinates with a fixed grid. In specific, we usetwo lev-
els of coarsening; at the coarse level we quantize the the location co-
ordinates into boxes of 60x60 pixels, and at the fine level we quantize
into boxes of 10x10 pixels. For efficiency, we use kd-trees toquickly
identify the box into which every candidate composition should con-
tribute to. For each box we keep only the composition fallinginto it
that has minimal cost. If no composition enters a box, its cost is set
to infinity. This coarsening is performed separately for each part. We
can form compositions of more complex structures by puttingtogether
these fewer representatives. This reduces the number of compositions.

Section 4.2.4 c) Structure and Location Coarsening: We solve
the parsing problem at three levels of abstraction. At the highest (most
abstract) level, we perform structure coarsening at the level of mid-
level parts together with location coarsening with a grid ofboxes sized
60x60. At the second level we perform only location coarsening with
a grid of boxes sized 60x60. At the finest level we use a grid of boxes
sized 10x10; this last level provides us with our detector results.
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