This assignment is due by the start of lecture on November 23, 2009. Please clearly indicate your collaborators.

1. (30 points) $G = (V, E)$ is a directed graph with edges weighted between 0 and 1, i.e., $0 \leq w(i, j) \leq 1$, for all $(i, j) \in E$.

 (a) Design an $O(V^3)$ algorithm to find the minimum-cost cycle in G. (Assume G contains no self-loops. That is, all cycles contains at least 2 edges.)

 (b) We say that a directed cycle with c edges is *expensive*, if its sum of the weights of edges is more than $c - 1$. Give an $O(V^3)$ algorithm to decide whether or not G contains an expensive cycle. Argue your algorithm is correct and analyze the running time. (HINT: Apply part (a) on a modified input.)

2. (20 points) (CLRS 26.1-7) Let f be a flow in a network, and let α be a real number. The *scalar flow product*, denoted αf, is a function from $V \times V$ to \mathbb{R} defined by

 $$(\alpha f)(u, v) = \alpha \cdot f(u, v)$$

 Prove that the flows in a network form a convex set. That is, show that if f_1 and f_2 are flows, then so is $\alpha f_1 + (1 - \alpha) f_2$ for all α in the range $0 \leq \alpha \leq 1$.

3. (30 points) Use Ford-Fulkerson algorithm to find the maximum flow. Assume the first two augmenting paths are $S \rightarrow A \rightarrow C \rightarrow D \rightarrow T$, and then $S \rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow T$.

 (a) Draw its residual network so far.

 (b) List all possible choices for the next augmenting path.

 (c) What is the value of the maximum flow? Show the minimum cut by drawing a dotted line on the graph.

4. (20 points) Read over the description of the RSA Public-Key Cryptosystem in Section 31.7. Let’s consider a toy example with an RSA key set to $p = 13$, $q = 17$, $n = 221$ and $e = 5$. Show your work.
(a) What is the value of $\phi(n)$?

(b) For the above setting of n, we could not have chosen $e = 3$. Explain why.

(c) What value of d should be used in the secret key? We need $de \equiv 1 \mod \phi(n)$. Show the steps of the EXTENDED-EUCLID algorithm on page 937 of the textbook.

(d) What is the encryption of the message $M = 65$?

(e) What is the decryption of the ciphertext $C = 64$?

(f) This exact version of RSA encryption is not used in practice, because it has a security issue. In fact, any deterministic encryption algorithm has a security issue. Explain this.