This assignment is due by the start of lecture on September 16, 2009. CLRS refers to the third edition of the textbook.

1. **Collaborators? (5 points)** Clearly indicate your collaborators. If none, state that.

2. **Perspective (15 points)** Suppose that one operation takes one microsecond (= 10^{-6} seconds). With one processor, what is the largest value of \(n \) such that:
 (a) \(\log n \) operations finish in 1 hour
 (b) \(n^3 \) operations finish in 1 day
 (c) \(2^n \) operations finish in 1 week.

3. **Adding binary integers (20 points)** CLRS 2.1-4. Consider the problem of adding two \(n \)-bit binary integers, stored in two \(n \)-element arrays \(A \) and \(B \). The sum of the two integers should be stored in binary form in an \((n + 1)\)-element array \(C \).
 (a) State the problem formally.
 (b) Write pseudocode for adding the two integers.

4. **Faster insertion sort? (20 points)** CLRS 2.3-6. Observe that the while loop of lines 5-7 of the INSERTION-SORT procedure in Section 2.1 uses a linear search to scan (backward) through the sorted subarray \(A[1 \ldots j - 1] \). Can we use a binary search (see Exercise 2.3-5) instead to improve the overall worst-case running time of insertion sort to \(\Theta(n \log n) \)? Explain why or why not.

5. **Sum to \(x \)? (20 points)** CLRS 2.3-7.* Describe a \(\Theta(n \log n) \)-time algorithm that, given a set \(S \) of \(n \) integers and another integer \(x \), determines whether or not there exist two elements in \(S \) whose sum is exactly \(x \). Briefly justify the running time of your algorithm. If you get stuck, give the best algorithm that you can and analyze its running time.

6. **Order of Growth (20 points)** Answer each of the following with TRUE or FALSE. You do not need to justify your answers. (Note: when dealing with sets like \(O(f(n)) \), \(\Omega(f(n)) \), etc., we use the symbols = and \(\in \) interchangeably.)

 1. \(200 = O(n) \)
 2. \(3^n = 2^{O(n)} \)
 3. \(n^n = O(n!) \)
 4. \(\frac{1}{n} = o(1) \)
 5. \(2n = o(n^2) \)
 6. \(\log(n^2) = \Theta(\log^2(n)) \)
 7. \(n - \log(n) = \Theta(n) \)
 8. \(2n^5 = \omega(n^5) \)
 9. \(n^2 - 100 = \Omega(n^2) \)
 10. \(2^n \cdot 2^{2n} = \Omega(2^{3n}) \)