Problem 6 (4 points):
Consider the algorithm given in Figure 1 of Assignment 3. Show that for any flow problem with demands \(d_i = 1 \) for every \(i \) that has a feasible flow solution with paths of length at most \(L \) when using demands \(d_i' = (1 + \epsilon) \), it holds that the algorithm with sufficiently large queues never has to delete any flow.

Proof. Consider some fixed edge \(e \). The original Awerbuch-Leighton (AL) algorithm maximizes \(\sum_j f_j (\Delta_j(e) - f_j) \), which represents exactly the amount by which the potential at the queues at \(e \) drops when moving a normalized flow of \(f_j \) for each commodity \(j \). When using instead the rule in Figure ??, we have to distinguish between two cases for commodity \(i \) taken by the discrete AL-algorithm, where \(i \) is the value with maximum \(\Delta_i(e) \):

- \(\Delta_i(e) > 2 \): In this case, we can send a flow of 1, i.e. we can fully utilize the edge \(e \) with flow from commodity \(i \). So the potential drop is
 \[
 (\Delta_i(e) - 1) \geq (\sum_j f_j (\Delta_j(e) - f_j)) - 1
 \]
 where the \(f_j \) are chosen as in the original AL-Algorithm. The last inequality holds because \(i \) maximizes \(\Delta_i(e) \) and in whatever way the \(f_j \) are chosen,
 \[
 \sum_j f_j (\Delta_j(e) - f_j) \leq \Delta_i(e)
 \]
 because the \(f_j \) must fulfill \(\sum_j f_j \leq 1 \).

- \(\Delta_i(e)/d_i \leq 2 \): In this case, we can conclude from inequality (1) that also \(\sum_j f_j (\Delta_j(e) - f_j) \leq 2 \). Since the discrete AL-algorithm never increases the potential at an edge, this means that its potential drop is by at most 2 worse than the drop by the original AL-algorithm.

Combining the two cases, it follows that the discrete Awerbuch-Leighton Algorithm achieves a potential drop that is at most an additive 2 worse at any edge than the potential drop achieved by the original Awerbuch-Leighton Algorithm. Taking this into account, it follows from the proof in the lecture that the total potential drop due to the movement of flow in steps 2 and 3 of the AL-algorithm is at least

\[
\left(\sum_i (1 + \epsilon)q_i \right) - (1 + \epsilon)^2 L \cdot K - 2 \cdot 2m
\]
where m is the number of edges. On the other hand, the potential increase caused by injecting new flow at step 1 of the AL-algorithm is at most

$$\sum_i \bar{q}_i.$$

Step 4 of the AL-algorithm can only decrease the potential. Hence, the overall potential increase in one round of the AL-algorithm is at most

$$-\epsilon \sum_i \bar{q}_i + (1 + \epsilon)^2 L \cdot K + 4m.$$

This value is guaranteed to be negative (i.e., the potential decreases) if

$$\sum_i \bar{q}_i > ((1 + \epsilon)^2 L \cdot K + 4m)/\epsilon.$$

Since flow is only sent downwards, it must hold that \bar{q}_i is the maximum queue size for commodity i in any queue of the system. Because there are $2m$ queues of each commodity in the system and according to (2), Φ increases by at most $(1 + \epsilon)^2 L \cdot K + 4m$ in any step, the potential is limited to

$$\Phi \leq 2m \cdot ((1 + \epsilon)^2 L \cdot K + 4m)/\epsilon)^2/2 + (1 + \epsilon)^2 L \cdot K + 4m.$$

In the worst case, all of this potential may be concentrated in a single queue. Hence, the maximum value a $\bar{q}_i(\epsilon)$ can attain is bounded by $2\sqrt{m} \cdot ((1 + \epsilon)^2 L \cdot K + 4m)/\epsilon$.

Notice that the discrete AL-algorithm can also be used for arbitrary integral demands d_i, because we can simply pretend as if a commodity of demand d_i represents d_i commodities of demand 1, and then run (or better, simulate) the AL-algorithm as given in Figure 1 for this situation.