Theory of Network Communication
Fall 2002
Solution to Assignment 5, problem 14

As for problem 13, the proof is still not entirely certain, so I omit any explanations.

Problem 14:

The problem is to prove that NTG is not universally stable. The same counterexample graph and sequence of injections can be used as presented in the proof of FIFO; the inductive hypothesis is the same, and the initial step is the same as well. Stage 1 can proceed as in the FIFO proof, so that at the end of stage 1 we have all $\lambda m M_1$ packets blocked by the packets in M_0 and λm packets with remaining path (f_0) in the buffer of f_0.

The central difference between NTG and FIFO is that FIFO is far more arbitrary. In FIFO, the $\lambda^2 m$ new packets injected with path (f_0') in Stage 2 mix with packets in M_1, in the sense that the new packets may take turns since some of the new packets will have to be injected after some packets of M_1 arrive, and thus more packets from M_1 will be transmitted than is optimal (in the sense that we want to delay as many packets from M_1 as possible since they’re terminal). But in NTG all the new packets will be preferred over the packets in M_1, and therefore we can alternate the arrivals so that even the early M_1 packets don’t get through since later arriving packets with less distance to travel are pushed through ahead of the packets in M_1.

More thoroughly, after stage 2, consider the number of packets left in the buffer of f_0: there are $\lambda^2 m$, all of which have remaining path $(f_0 e_1 f_1)$ (the set M_2 in its entirety). Now consider the number of packets left in the buffer of f_0': there are now $\lambda^2 m$ packets remaining from set M_1 with remaining path $(f_0' e_1 f_1)$, since those packets were unable to cross due to the $\lambda^2 m$ new packets which got in the way (since all new packets were routed ahead of the M_1 packets). So in the next part of the stage the packets in these two sets (M_2 and what’s left of M_1 that was delayed) are routed through the edges f_0 and f_0', and mix in the buffer of e_1. Then there are $2\lambda^2 m$ packets in the buffer of e_1 which have remaining path $(e_1 f_1)$. If this is greater than m then we are done, since we have established an increasing sequence (since we began with m packets in the buffer of e_0 which were to be sent along the path $(e_0 f_0)$). This is accomplished whenever $2\lambda^2 > 1$, which is true for $\lambda > \frac{1}{2\sqrt{2}}$ or approximately 0.71.

(The 0.76 comes I think from using $\lambda^3 m$ new packets in stage 3 rather than the $\lambda^2 m$ packets which we used in stage 2 (set M_2). The final outcome is that you have $\lambda^2 m + \lambda^3 m$ packets in the buffer of e_1 waiting to cross instead of $2\lambda^2 m$; this new equation which is weaker is bad whenever $\lambda > 0.76.$)