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1. Introduction
A graph G is defined by a set V(G) of vertices, a set E(G) of edges, and a rela-
tion of incidence which associates with each edge two vertices, not neces-
sarily distinct, called its ends. If the two ends of an edge coincide the
edge is a loop; otherwise it is a link.

In this paper we consider only finite graphs, that is graphs for which
V{G) and E(Cf) are both finite. We denote the numbers of edges and vertices
by oc^G) and ocQ(G) respectively.

A graph is simple if it has no loop, and no pair of edges with the same two
ends.

Let G be a simple graph, and l e t /be a 1-1 mapping of V(G) onto a set
S of oc0(G) distinct points in the euclidean plane E2. If e is an edge of G
with ends v and w we write f(e) for the straight segment joining f(v) and
f{w). We can define a graph H by postulating that V(H) — 8, E(H) is
the set of all segments/(e), and the incident vertices of an edge/(e) of H
are its two ends in the geometric sense (ee E(G)). We call H a straight
representation of Gin E2 if it satisfies the following two conditions.

(i) If an edge/(e) of H contains a point/(v) of S, thenf(v) is an end of/(e).
(ii) If two distinct edges of H have a common point x, then x is an end

of each of them.
A straight representation H of G may separate the rest of the plane

into a finite number of regions, each of which is the interior or exterior of a
convex polygon. We then call H a convex representation of G in E2. Our
object in this paper is to establish necessary and sufficient conditions for
the existence of a convex representation of a given simple graph G. We
try to do this using only methods of elementary geometry and combinatorial
graph theory. Accordingly we base our treatment not on the usual theory
of 'planar graphs', but on the 'planar meshes' of graphs defined com-
binatorially below. In the remainder of this introductory section we give
some of the definitions to be used and then state the main result of the paper.

Let G be any graph. We define the degree d(G,v) of a vertex v as the
number of incident edges, loops being counted twice. It is clear that

(1.1) I d{G,v) = 2*X{G).
veV(G)

If d(G, v) = 0 we call v an isolated vertex of G.
Proc. London Math. Soc. (3) 10 (1960)
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A subgraph of 0 is a graph H such that V{H) c V(G), E(H) c E(G) and
each edge of H has the same ends in H as in (r. We then write H £ G.
If in addition f/ is not identical with 0 we call H a proper subgraph of G
and write H c G. If F(#) and #(#) are both null then H is the null sub-
graph of G, denoted in formulae by the symbol 0. If 8 c E(G) we write
$ • AS for the subgraph of G defined by the members of 8 and their incident
vertices.

A path in G is a finite sequence

P = K>ei>wi»«2.->efc,»fc),
having at least one term, which satisfies the following conditions.

(i) The terms of P are alternately vertices vi and edges ê  of G.
(ii) If 0 < i < k, then v ^ and ^ are the two ends of ei in G.
The path P is degenerate if it has only the term v0. I t is simple if all its

terms are distinct. It is circular if it is non-degenerate and all its terms are
distinct except that vQ = vk. I t is easily seen that P always has a sub-
sequence which is a simple path in G from v0 to vk.

The edges and vertices of a path P define a subgraph G(P) of G. We call
G(P) an arc-graph or circuit of G if P is a non-degenerate simple path or a
circular path respectively. In the first case we call vQ and vk the ends of
the arc-graph and the other vertices, if any, the internal vertices.

Let Uv U2,..., Uk be subsets of a given set U, not necessarily all distinct.
Their mod 2 sum is the set of all u e U such that the number of suffixes i
satisfying u e Vi is odd. It is easily seen that this addition of subsets is
commutative and associative. We use the ordinary additive notation to
represent it.

A cycle of a graph G is a subset K oiE(G) such that the number of links of
G in K incident with any vertex of G is even. Clearly any mod 2 sum of
cycles of G is itself a cycle of G. If C is any circuit of G then E(C) is clearly
a cycle. We call a cycle of this kind elementary.

A planar mesh of G is a set M = {8^ Sz,..., Sk} of elementary cycles of G,
not necessarily all distinct, which satisfies the following conditions.

(i) If an edge of G belongs to one of the sets ^ it belongs to just two
of them.

(ii) Each non-null cycle of G can be expressed as a mod 2 sum of members
of M.f

Condition (i) implies that no elementary cycle of G can appear more
than twice as a member of M. Further, the mod 2 sum of all the members
of M is null.

A graph G is separable if it has two proper subgraphs H and K, with no
f See S. MacLane, 'A combinatorial condition for planar graphs', Fundam. Math.

28 (1937) 22-32.
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common edge and at most one common vertex, which together include all
the edges and vertices of G. Section 3 of this paper is concerned mainly
with the planar meshes of non-separable graphs. A planar mesh M of such
a graph is shown to have the property of connexion, that is no non-null
proper subset of M has a null mod 2 sum.

Let C and C be disjoint elementary cycles of a graph G. We denote by
\(C, C) the least integer n such that there are complementary subsets
8 and S' of E{G) satisfying the following conditions.

(i) C^S and C c 8'.

(ii) The number of vertices incident with members of both sets 8 and 8'
is n.

We say G is 3-linked with respect to an elementary cycle C if there is no
elementary cycle C of G such that C n C is null and X(C, C) ^ 2.

In § 4 the terms node and branch are denned, a node being a vertex whose
degree is not 2. We note here that a 'branch of G spanning the circuit H\
is an arc-graph having both ends, but no edge or internal vertex, in H,
and whose internal vertices are not incident with any edges of G other than
those of the arc-graph.

Consider a convex representation R of a simple graph G in a plane IT,
R being determined by a 1-1 mapping/of V(G) onto a set of points of IT.

R separates the remainder of II into a finite number of regions
Qi> QK>-', Qk> e a c f t of which is the ulterior or exterior of a convex polygon;
One of these regions, Q1 say, is of infinite area. It must be the exterior of a
convex polygon Px. The other regions Qi are all contained in the interior
of Pv So if 2 < i < & then Qi is the interior of a convex polygon PP Accord-
ingly Ii determines a dissection of the convex polygon Px into convex poly-
gons P2,..., Pk.

We call R singular if there is a node xoiG and a polygon Pi (1 ^ i ^ k)
such that f(x) is in the boundary of Pi but is not a vertex of P^ In other
words the region Qt occupies an angle of exactly two right angles at f(x).
We then call x a singular node of G with respect to R.

The boundary of i^ is a union of edges of R. These edges make up an
elementary cycle of R, the image under / of an elementary cycle Ct- of G
(1 < i < k). We call Cx, C2,..., Ck the outer cycles, and Cx the frame, of G
with respect to / or R.

The main theorems of the paper are as follows.

THEOREM I. Let a simple graph G have outer cycles Cx,..., Ck, and frame
C1} with respect to a convex representation R. Then {Cx,..., Ck} is a connected
planar mesh of G, G is non-separable and S-linked with respect to Cx, and no
branch of G spanning G • Cx has the same ends as some edge of Cx.
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THEOREM I I . Let M be a planar mesh {Cx,..., Ck} of a simple graph 0.
Let G be non-separable and 3-linked with respect to Cx, and let no branch of Q
spanning G • Cx have the same two ends as any edge of Cx.

Let Px be any cxo(G-Cx)-sided convex polygon in a plane II, and let h be a
1-1 mapping ofV(G- Cx) onto the set of vertices of Px which preserves the cyclic
order.

Then we can find a 1-1 mapping fof V{G) onto a set of points of II such that
the following conditions are satisfied:

(i) f{x) = h{x) if xeV(G-Cx),

(ii) / determines a non-singular convex representation R of G, with respect
to which G has the frame Cx and the outer cycles Cx,..., Ck.

2. If Hx, H2,..., Hk are subgraphs of G we define their union

HxuH2u ... uHk

(intersection Hx n H2 n ... D Hk) as the subgraph HoiG such that V(H) is the
union (intersection) of the sets F ^ ) and E(H) is the union (intersection)
of the sets E^H^. We say the subgraphs Hx, H2,..., Hk are disjoint if

whenever 0 ^ i < j ^ k.
We say that a path P avoids a subgraph H of G if no term of P other than

the first and the last is an edge or vertex of H.
Let Ax, A2, and Az be three arc-graphs of G which have a common end v,

and no two of which have any other vertex, or any edge, in common. Then
we call their union a Y-graph of G. The three arc-graphs are the arms of the
F-graph, their ends other than v are its ends, and v is its centre.

We find it convenient to say that an arc-graph or F-graph L spans a
subgraph H if E(H) n E(L) is null and V(H) n V(L) consists solely of the
ends of L.

A vertex of attachment of a subgraph H of G is a vertex of H which is
incident, as a vertex of G, with an edge of E(G)—E(H).

Let J be a fixed subgraph of G. We say a subgraph H of G is J-bounded
if all its vertices of attachment belong to J. Clearly any union or inter-
section of J-bounded subgraphs of G is itself /-bounded.

Let J be the class of all subgraphs H of G such that H is /-bounded
and not a subgraph of / . A bridge of / in G is any member of J which has
no other member of J as a subgraph.

(2.1) Let B be a bridge of J in G. Then no edge or isolated vertex of B
belongs to J.
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Proof. Write E- = E{B) n E(J) and let V denote the set of all isolated
vertices of B belonging to J. There is a subgraph B' of B such that

E(B') = E(B)-E and V(B') = V{B)-V.
Now B' is not a subgraph of J, for it includes all the edges and vertices of B
not belonging to J. Moreover it is /-bounded, for any vertex of attachment
of B' not belonging to J would be a vertex of attachment of B. Hence
B' 6 J. By the definition of a bridge it follows that B' = B, that is E
and V are null.

(2.2) Ifxis any edge or vertex of G not belonging to J then x belongs to just
one bridge of J in G.

Proof, x belongs to at least one H e J, for example G. Choose such an
H so that a^/yjH-a^i/) has the least possible value. Assume H is not a
bridge of J in G. Then H has a proper subgraph K e J. By the definition
of H, x is not an edge or vertex of K.

Now any end v of an edge of E{H)—E{K) belongs either to V(H)—V{K)
or to V(K). But if v e V(K) then v is a vertex of attachment of K and so
v e V(J). Hence there is a subgraph F of H such that

E(F) = E(H)-E(K),
V(F) = (V(H)-V(K)) u (V(J) n V(K)).

F is J-bounded. For let w be any vertex of attachment of F not in F( J).
Since w is not a vertex of attachment of H it must be incident with an edge
of K. But then w e V(K). This is contrary to the definition of V(F). As x
belongs to F we deduce.that F e J. But

OCoW + OC^F) < OC^ID + OC^H),

since K has at least one edge or vertex not belonging to J. This contradicts
the definition of H.

We deduce that x belongs to some bridge H of J in G. Suppose it also
belongs to a bridge JET of J in G. Then H n H' is J-bounded and is not a
subgraph of J. Hence H = H n H' — H', by the definition of a bridge.

(2.3) Let P = (v0, ex, vv..., vk) be a non-degenerate path in G avoiding J.
Then P is a path in some bridge B of J in G.

Proof. Let B be the bridge of J which includes e1 (2.2). If possible let
ei be the first edge-term of P not belonging to E(B). Then i > 1 and v^x

is a vertex of attachment of B. Hence ^_x 6 V( J), contrary to the hypo-
thesis that P avoids J. We deduce that P is a path in B.

(2.4) Let v and w be vertices of the same bridge B of J in G. Then there is a
simple path P from vtowinB avoiding J.

Proof. Let X be the set of all x e V(B) such that there is a simple path
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Pvx from v to x in B avoiding J. Let C be the subgraph of B such that
V{C) = X and E(C) is the set of all edges of B having both ends in X.

Now v e X. If v e F(J) it is incident with an edge e of B not in !£(«/), by
(2.1). Either e is a loop or there is a simple path in B of the form (v, e, v').
In each case ee E(C). Hence C is not a subgraph of J.

Suppose u is a vertex of attachment of C not in V(J). Since it is not a
vertex of attachment of B it is incident with some edge e' of E(B)—E(C).
The other end, t say, of e' is not in V( C). It follows that t is not a term of the
simple path Pvu. Hence we can obtain a simple path Q from v to t in B,
avoiding J, by adjoining two extra terms, e' and t, to Pvu. But then t G V(C),
a contradiction.

We deduce that C is J-bounded. Accordingly C e J. Hence C = B,
by the definition of a bridge. Hence w e X, and the theorem is proved.

The bridges of the null subgraph of G are often called the components
of G. The graph G is said to be connected if it has just one component.

If P is any path in G then G(P) is a connected graph, by (2.3) with
G = G(P). In particular arc-graphs and circuits are connected. A con-
nected graph with no edge has just one vertex. We call it a vertex-graph.
A connected graph with just one edge either consists of a loop with its single
incident vertex, or of a link with its two ends. We call it a loop-graph or
link-graph respectively.

We call G separable if it has two proper subgraphs H and K such that
H U K = G and H n K is either null or a vertex-graph. Clearly every
non-separable graph which is non-null is connected. Vertex-graphs, link-
graphs, and loop-graphs are non-separable. Moreover any non-separable
graph having a loop is necessarily a loop-graph.

If G is a circuit it is non-separable. For suppose H and K are as above.
Since G is connected H and K have each at least one vertex of attachment.
It follows that H and K have a common vertex v, and v is incident with at
least one edge in both H and K. Since each vertex of G has degree 2 we have
d{K, v) = 1, and d(K, u) = 2 for each ue V(K)—{v}. This is contrary
to (1.1).

(2.5) Suppose G is non-separable, and not a link-graph. Then each edge of
G belongs to some circuit of G.

Proof. Let e be any edge of G. If e is a loop the theorem is evidently
satisfied. If e is a link there exists a bridge B of G-{e}. Since G is non-
separable B has at least two vertices of attachment, that is B includes
the two ends, x and y say, of e. There is a simple path P from x to y in B,
by (2.4). Adjoining to P the extra terms e and x we obtain a circular path
in G involving e.
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(2.6) Let Hbea non-separable subgraph of G, and let A be an arc-graph of
G spanning H. Then H U A is non-separable.

Proof. Suppose H U A is separable. Then it has proper subgraphs K
and L such that Kli L = H U A and K n L is either null or a vertex -
graph. Since H is non-separable we may suppose H <= K. Now the ends
of A are the ends of an arc-graph A' in the connected graph H, by (2.4),
and A U A' is a circuit. Since A U A' is non-separable and A' c H. c K
we must have A U A' c if. But then H li A ^ K, contrary to the definition
of K as a proper subgraph of H u A.

3. Planar meshes
(3.1) Let 8 be an elementary cycle of G. Then no proper subset of S is an

elementary cycle of G.

Proof. Suppose T is an elementary cycle of G such that T c= S. Each
vertex of GT has degree 2 in both G • S and G • T. Hence G • T, regarded
as a subgraph ofGS, has no vertex of attachment. This is impossible since
G • S is connected.

(3.2) Let K be any non-null cycle of G. Then we can write

K = I C{,
i=l

where the Ci are disjoint elementary cycles of G satisfying Ci £ K.

Proof. If possible choose K so that the theorem fails and K has the least
number of edges consistent with this.

Suppose GK is separable. Then G-K = (G-K')U (G-K"), where K'
and K" are proper subsets of K such, that (G • K') n (G • K") is either null or a
vertex-graph. But then K' and K" are cycles of G, by (1.1). It follows by
the definition of K that K' and K" are sums of disjoint elementary cycles
of G contained in K' U K". But then the theorem is true for K, contrary to
assumption.

We deduce that G • K is non-separable. Choose e e K. By (2.5) there is an
elementary cycle Cx of G such that e eC jC K. It follows that the theorem
is true for K, for if the cycle K-\-Cx is non-null it has fewer edges than K
and is therefore a sum of disjoint elementary cycles C^ of G (i = 2,..., k)
satisfying Ci £ K-\-Cx c K. This contradiction establishes the theorem.

We go on to study the planar meshes of a graph G. To begin with we note
that any vertex-graph or link-graph has a null planar mesh, and that any
circuit C has a planar mesh {E(C), E(C)}.

For each v e V(G) we denote the set of incident edges of G by S(G, v).

(3.3) Suppose G is non-separable. Let M be a planar mesh and v a vertex
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of G. Let X and Y be complementary non-null subsets of S(G, v). Then there
exists IS^GM such that ^ n l and ^ n 7 have each just one edge.

Proof. Since X and Y are non-null we have oc^G) ^ 2. Hence G has no
loop. Choose x e X and y EY. Let the ends of x and y other than v be a
and b respectively.

The vertex-graph defined by v has only one bridge in G, for otherwise G
would be separable. By (2.4) there is a simple path P from a to 6 in G avoid-
ing this vertex-graph. Adjoining the extra terms y, v, x, a to P we obtain a
circular path from a to a in G. Hence there exists an elementary cycle C
of G such that C n l has just one edge.

Now C is a mod 2 sum of members of M. Hence there exists S.L e M such
that the number of members of St n X is odd. But d(G-Sit v) = 2. Hence
/S.j n X and St n Y have each just one edge.

Let M be a planar mesh of G, and let U be any subset of M. We define a
decomposition of U as a pair {X, Y} of complementary non-null subsets of
U such that no edge of G belongs both to a member of X and a member of Y.
If U has no decomposition we call it connected.

If M = {Sv S2,..., Sk} is connected and k ^ 3 then all the sets SL are
distinct. If for example S1 = S2, then the pair {{Sv &>}, {$3,..., Sk}} is a
decomposition of M.

If W is any class of subsets of E(G), not necessarily all distinct, we denote
the union and mod 2 sum of the members of W by | J W and ][ W respec-
tively.

(3.4) / / G is non-separable then every planar mesh of G is connected.

Proof. Suppose a planar mesh M of G has a decomposition {X, Y}.
Since G is connected there is a vertex v of attachment of G • [J X. The sets
S(G, v) n U X and S(G, v) n \J Y are non-null and no member of M meets
both of them. This is contrary to (3.3).

(3.5) Let C be an elementary cycle of a non-separable graph G having a
planar mesh M. Then there are just two subsets U and Vo/M the mod 2 sum
of whose members is C. Moreover U and V are connected complementary
non-null subsets of M.

Proof. By Condition (ii) of the definition of a planar mesh there exists
U c M such that J U = C. Let V be the complement of U in M. Then
2 V = C, by Condition (i). Clearly U and V are non-null.

Let W be any subset of M such that J W = C . Then 2 (W+U) is null.
Hence W+TJ is either M or its null subset, for otherwise

{W+U, M-(W+U)}
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would be a decomposition of M, contrary to (3.4). Hence W can be only
U or V.

Suppose U has a decomposition {X, Y}. Then ^ X s C . But £ X is a
cycle of G. Hence 2 X = 0 or G, by (3.1) and (3.2). Hence either 2 X or
2 Y is G, which contradicts the preceding result. Accordingly U, and
similarly V, is connected.

We call the pair {U, V} the partition of M determined by G. We also
refer to G[J U and G[J V as the residual graphs of the circuit GG,
with respect to M.

(3.6) Let Gbea non-separable graph having a planar mesh M. Let Hb'ea
circuit of G having residual graphs R and R' with respect to M. Then

R\J R' = G and RnR' = H.

Proof. By (2.5) we have E(R U R') = E(G). Hence J? U R' = G since
G can have no isolated vertex.

By the definition of R and R' we have E(H) = E(R n R')} and therefore
V(H) £ V(R n R'). But suppose RnR' has a vertex v not belonging to
V{H). Then no member of M meets both

S{G, v) n E(R) and S(G, v) n E(R'),

which contradicts (3.3). We deduce that V(H) = V(R n R'). Hence

H = RnR'.

Let v and w be distinct vertices of a circuit K. It follows from the defini-
tions of arc-graphs and circuits that K is the union of two arc-graphs Ax

and A 2 which have the same ends v and w, but which have no edge or internal
vertex in common. They are uniquely determined as the bridges in K of
the edgeless subgraph J defined by V(J) = {v, w). We call them the
residual arc-graphs of v and w in. K.

(3.7) Let Gbea non-separable graph having a planar mesh M. Let C be an
elementary cycle of G determining the partition {U, V} of M. Let A be an arc-
graph of G- (J U spanning G-C. Let Ax and A2 be the residual arc-graphs
of the ends of A in G- C. Then there exist complementary non-null subsets
Xx and X2 of U such that J,X1= E(A U Ax) andJiX2 = E(A U A2).

Proof. E(A U Ax) is an elementary cycle of G. Let it determine the
partition {U1} Yx} of M. No edge of G belongs both to (J (Ux n V) and to
U (Vi n V). For suppose1 e is such an edge. We have

e e U U 1 n [ J V 1 n l | V = [E{A) u E{AX)) n (J V c C.
But each edge of C belongs to just one member of V and therefore cannot
belong to both (J (XJX n V) and (J (Vx n V). Since V is connected we deduce
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that one of the sets \J1 n V and Vx n V is null. Without loss of generality
we may suppose L^ n V is null, that is \J1 c U.

We have seen that there is a non-null subset Xt = l ^ of U such that
2 Xx = E(A U Ax). Similarly there is a non-null subset X2 of U such that
2 X2 = E{A U A2). But then J (Xt+X2) = C. Hence Xx+X2 = U,
by (3.5). Accordingly the subsets Xx and X2 of U are complementary.

4. 3-linkage
(4.1) Let M = {#!,..., Sk] be a planar mesh of a non-separable graph 0

which is 3 -linked with respect to Sv Then if 2 ^ i < j ^ k the intersection
(G-Sjn (G-Sj) is null, a vertex-graph, or an arc-graph GL. In the last
case G-iSt+Sj) is a circuit spanned by GL, and G- (<%—L) and G-(Sj—L)
are the residual arc-graphs of the ends of G- L in G- ($*+$,).

Proof. M is connected, by (3.4). Hence, since k ^ 3, the members of M
are all distinct. Write H = {Q-Sjn (Q-Sj).

G-Stis not a subgraph of G-Sp by (3.1). Hence there is a bridge B of
G-Sj in G-(Si U $,-). If B has fewer than 2 vertices of attachment then
B = G-St, since otherwise G • 1% would be separable. In this case H is either
null or a vertex-graph.

In the remaining case G-8j is spanned by an arc-graph A of G-St, by
(2.4). Let A' be one of the residual arc-graphs in G-Sj of the ends of A.
Then E(A U A') is an elementary cycle of G meeting both #̂  and Sj. More-
over we can choose A' so that E(A U A') is not S^

By the foregoing argument G has an elementary cycle C, distinct from
St and Sp such that C ^ Si U #,- and C meets both St and #,-. Any such C
determines a partition {U, V} of M, where we may suppose that either St

or Sj belongs to U. We choose C and U so that U has as few members as
possible. If possible we arrange also that bothiS^ and Sj belong to U. Having
chosen C and U we adjust the notation, by interchanging the suffixes of
Si and Sj if necessary, so that AŜ  e U.

By (3.1) there is a bridge B' of GC in G-(C U 8t). This has at least
two vertices of attachment, for the non-separable graph G-Si has an edge
in common with G • C. By (2.4) there is an arc-graph GLoiGSi spanning
G-C. Let the ends of G- L be x and y, and let their residual arc-graphs in
GCbe G -27 and GL".

By (3.5) and (3.7) the elementary cycles Lu L' and L U L" of G deter-
mine partitions (U', V) and (U", V") of M respectively, where U' and U"
are complementary non-null subsets of U. Without loss of generality we
may suppose St e U'.

We have U' = {#J and St = L U L', since otherwise the choice of C and
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U is contradicted. Similarly if $,• e U" we have Sj = L U L". But then the
theorem holds, with £• (£;+&,•) = G-{L'+L") = GC. We may there-
fore assume Sj $ U".

Let R be the residual graph G • (J U" of the circuit G-(Li) L"). Let v
be any vertex of R other than x and y. We recall that L <^Si and 2 / c #,..
Now each edge of S(R, v) belongs to two members of the set U" U {Si} Sj}.
Moreover each member of this set contains either none or just two of the
edges of S(R, v). It follows from (3.3) and the definition of a planar mesh
that S(R, v) = 8(0, v).

We deduce that x and y are the only vertices of attachment of R in G.
H e n c e <xo((G- U V")n(G-(E(G)- \J U"))) = 2.
Since G is 3-linked with respect to 81 this implies that

£x e U"
and E(G)— (J U" contains no elementary cycle of G. But then V" = {Si}Sj}.
This is contrary to the choice of C and U, for U has at least two members
and Sj $ U. The theorem follows.

The nodes of a graph G are those vertices v of G for which d(G, v) ^ 2.
They constitute a subset N(G) of V(G). The branches of G are the bridges
in G of the edgeless subgraph J satisfying V(J) — N(G). A branch B
including two distinct vertices x and y is an arc-graph spanning J and with
ends x and y. For B has such an arc-graph as a subgraph, by (2.4), and this
arc-graph is J-bounded. A branch not including two distinct nodes of G
is a circuit. For it has no vertex of odd degree, by (1.1), and so has a circuit,
by (3.2). This circuit is /-bounded. If G is non-separable and is not a
circuit, then all its branches are arc-graphs spanning J.

(4.2) Let C be an elementary cycle of a graph G. Let H be a non-separable
subgraph of G such that C c E(H) and H is 3-linked with respect to C. Let
K be an arc-graph or Y-graph of G spanning H. Then either K spans a
branch Bof H which is not a subgraph ofGC,orHl)Kis non-separable and
3-linked with respect to C.

Proof. By one or two applications of (2.6) we find that H U K is non-
separable.

Assume H U K is not 3-linked with respect to C. Then there exist
complementary non-null subsets 8 and 8' of E(H U K) with the following
properties.

(i) cco((G.8)n(G.S')) = 2,

(ii) Cg:S,
(iii) G-S' has at least one circuit.

We denote the common vertices of G • S and G-S'hyx and y.
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An arc-graph A can have no circuit as a subgraph. (The circuit would
be a bridge distinct from A of the null subgraph of the connected graph A.)
Moreover a F-graph can have no circuit. For such a circuit, being non-
separable, would be a subgraph of one of the arms of the F-graph. Hence
we can find s e E(H) n 8 and s' e E(H) n Sr.

There is a bridge D oiH n(G-S) in H such that s' e E{D), by (2.2). Since
H is non-separable, D has both x and y as vertices. Hence, by (2.4), there is
an arc-graph L' of H n (G-S'), with ends x and y, spanning H D (G-S).
Similarly there is an arc-graph L of H n (G - S), with ends x and y, spanning
Hn(G-S').

Let Dx be a bridge of the circuit L U U in either H or H U K. Then
E(DX) does not meet both 8 and 8'. For otherwise D1n(G-S) and
Dx n (G-S') are not (L U Z/)-bounded and they therefore have a common
vertex other than x and y. This is contrary to (i). Hence eitherDx <= G-S
or D^ G-S'.

Suppose D1 is a bridge in # . It has two distinct vertices u and v of
attachment, since H is non-separable. If 2>x c (?. # ' these are both vertices
of U. They are the ends of an arc-graph Lx ofD1 spanning L u L ' , and the
ends of an arc-graph L2 of the connected graph L'. But then Lx u L2 is
a circuit of H n (G • 8'). This is impossible since H is 3-linked with respect
to C. We deduce that H = L'U (H n (G-S)). This implies that each
internal vertex of U is of degree 2 in // . Hence U is a subgraph of a branch
B of H. Clearly B is not a subgraph ofG-C.

By (iii) there is at least one bridge of L U L' in H U K which is a sub-
graph of G-S'. By the above considerations this must be a subgraph
of K. Hence it is identical with K, by (2.2) and (2.3). Accordingly K
spans B.

(4.3) Let B be a bridge of a subgraph J in a graph G. Let x, y, and z be
distinct commpn vertices of B and J. Then there is a Y -graph Y of B, with ends
x, y, and z, which spans J.

Proof. By (2.4) there is a simple path P from x to y in B avoiding J.
If P includes only one edge e, then the proper subgraph G • {e} of B is J-
bounded, contrary to the definition of a bridge. Hence P includes a vertex
u distinct from x and y. By (2.4) there is a simple path Q from z to u in B
avoiding J. Let u' be the first vertex of P occurring in Q, and let Qx be the
part of Q extending from zto u'. Let Q2 be the part of P extending from
x to u', and Q3 the part of P extending from u' to y. Then G{QX), G(Q2), and
G{Q3) are the arms of a 7-graph Y of B, with centre u' and ends x, y, and z,
which spans J.

(4 A) LetG be a non-separable graph, 3-linked with respect to an elementary
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cycle C. Then either G = GC or G — H U A, where C c E(H), H is non-
separable and 3-linked with respect to C, and A is an arc-graph spanning H.

Proof. Assume G ^ G-C. Then we can find a proper subgraph K of G
such that C <= E{K), K is non-separable, and K is 3-linked with respect to C.
For example we can take K = GC. We choose K so that <xx{K) has the
greatest possible value.

We note that all the vertices of attachment oi GC in K are nodes of K.
Hence G • C is a union of branches of K. Accordingly any branch of K
which is not a subgraph oi G-C has no edge or internal vertex in common
with GC.

Since G is non-separable each bridge of K in G has at least two vertices
of attachment.

We suppose first that to each bridge B of K in G there corresponds a
branch Z(B) of K, not a subgraph of G- C, such that V(Z(B)) includes all
the vertices of attachment of B. In this case we select a bridge B' of K in
G and write U for the union of Z(B') and all bridges B of K in G such that
Z(B) = Z{B'). Then G-E{U) and G-{E(G)-E(U)) have only two com-
mon vertices, the ends of Z{B'). But C c E(O) — E(U)a,ndO-E(U)ha,sa,t
least one circuit, by (2.4). This contradicts the hypothesis that G is 3-
linked with respect to C.

We deduce that there is a bridge B oiK in G with the following property:
no branch Z of K which is not a subgraph oi GC includes all the vertices
of attachment of B.

Suppose x and y are distinct vertices of attachment of B. By (2.4)
there is an arc-graph L of B with ends x and y which spans K. Assume
that no branch of K which is not a subgraph oi GC has both x and y as
vertices. Then, by (4.2), K U L is non-separable and 3-linked with respect
to C. But then G = K U L, bj' the definition of K. Accordingly the
theorem is true with H = K and A — L.

We may now suppose that to each pair {x, y] of distinct vertices of
attachment of B there corresponds a branch Z(x, y) of K, not a subgraph
oi GC, such that {x, y) £ V(Z(x,y)). It follows from the definition of B
that B has at least three vertices of attachment.

We cannot choose x, y and Z(x, y) so that x is an internal vertex of the
arc-graph Z(x,y). For if this were so Z(x, y') would have to be identical
with Z(x, y) for each vertex of attachment y' of B other than x. This would
contradict the definition of B. We deduce that Z(x, y) is an arc-graph with
ends x and y.

Choose three vertices of attachment x, y, and z of B. By (4.3) there is a
F-graph Y of B, with ends x, y, and z, spanning K. Let its centre be u. Let
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its arms be Ax, Ay, and Az, with ends x, y, and z respectively. By the fore-
going results Y spans no branch of K which is not a subgraph of 0 - C.
Hence, by (4.2), K U Y is non-separable and 3-linked with respect to C.
Hence 0 = K U Y, and B = Y, by the definition of K.

Write T = Y U Z(s,y) U Z(s,z) U Z(y,«). We note that T includes no
edge of G - C. Hence there exists a bridge B' of T in G. Since G is non-
separable we may suppose that x and y are vertices of B'. By (2.4) there is
an arc-graph M of B', with ends x and y, which spans T. We note that no
two of the arc-graphs M, Ax U ^Ly, and Z(x, z) U Z(?/,z) have any edge or
internal vertex in common. We write K' for the subgraph of G obtained
by removing the edges and internal vertices of Z(x, y).

Suppose K' is separable. Then there are proper subgraphs P and Q oiK'
such that K' = P U Q, and P n Q is either null or a vertex-graph. Since
G is not separable we may suppose that £ is a vertex of P but not of Q, and
that y is a vertex of Q but not of P. But then each of the arc-graphs M,
Ax U Av, and Z(x, z) U Z(y, z) must have an internal vertex which is com-
mon to P and Q, contrary to the condition on P n Q. We deduce that K'
is non-separable.

Suppose K' is not 3-linked with respect to C. Then we can write

Z ' = (G-S)U(G-S'),

where C ^ S, G-S' has at least one circuit, and G-S and GS' h&ve just
two common vertices and no common edge. Since G is 3-linked with respect
to C we may suppose a; is a vertex of G • S but not of G • S', and y is a vertex
of G - S' but not of G • S. But then each of the arc-graphs M, Ax U Ay, and
Z(x,z) U Z(y,z) must have an internal vertex common to G-S and G-S',
contrary to the definition of G-S and G-S'. We deduce that K' is
3-linked with respect to C.

We observe that the theorem is true with H = K' and A = Z(x, y).

5. Convex representations
In this section we prove the two Theorems I and II stated in the Intro-

duction.

Proof of Theorem I. Write M = {C^..., Ck).

Each edge of R belongs to the boundaries of just two polygons P^ Hence
M satisfies Condition (i) for a planar mesh. Now let C be any elementary
cycle of G. The corresponding set of edges of R determines a polygon P
in II. Let U be the set of all C{eM such that Qi lies inside P. Then
C = ^ U . Hence, by (3.2), M satisfies Condition (ii) for a planar mesh.

The planar mesh M is connected and G is non-separable. For otherwise
G is separable, by (3.4). Then G is the union of proper subgraphs H and K
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having at most one vertex in common. Since circuits are non-separable we
may suppose Cx £ H. Choose x E V{H), taking x e V(K) if this is possible.
Choose y e V(K) so that the segment f{x)f(y) is as long as possible. Then one
of the regions Qt (2 ^ i ^ k) occupies a reflex angle at f(y), contrary to
the definition of R.

Let S and T be complementary non-null subsets of E(G) such that
Cx^ S and the graphs G-S and G- T have only two vertices x and y in
common. Choose z e V(G-T) so that the distance d of f(z) from the seg-
ment f{x)f{y) is as great as possible. Then if d > 0 one of the regions Qi

(2 ^ i ^ k) occupies a reflex angle at f(z), contrary to the definition of R.
Hence each vertex of GT corresponds to a point of the segment f(x)f(y)
under the mapping / .

We deduce from the above result that G • T can have no circuit. Hence G
is 3-linked with respect to Cv We deduce also that x and y cannot be the
two ends of an edge of Cx. Applying this result to the case in which G • T
is a branch of G spanning G • Cx we complete the proof of the theorem.

Proof of Theorem II. Let q(Cx) be the number of edges of Cx whose ends
are both nodes of G. We discuss first the case q(Cx) = 0.

M is non-null, for Cx e M. Hence k > 2. If k = 2 then M = {Clt C2}
and G is the circuit GCV by (2.6). In this case the theorem holds, with

Assume as an inductive hypothesis that the theorem is true whenever
q{Cx) = 0 and k is less than some integer n > 2. Consider the case in which
q(Cx) = 0 and k = n.

By (4.4) we may now write G = H U A, where Cx S E{H), H is non-
separable and 3-linked with respect to Clt and A is an arc-graph spanning H.
Since q{Cx) = 0 no branch of H spanning HCX can have the same ends as
any edge of Gx.

Choose e e E(A). By (2.5) we may suppose e e Cn_x n Cn. Since each
internal vertex of A has degree 2 in G we have A c (G-Cn_x) n (G-Cn).
But by (4.1) and (3.6) this intersection is a branch of G spanning the circuit
G• (Cn_x-\-Cn). Since H is non-separable it follows that

Write M' = {Cx,..., Cn_2, Cn_x-\-Cn}. Then the members of M' are elemen-
tary cycles of H, and M' satisfies Condition (i) for a planar mesh. But any
cycle of H is a mod 2 sum of members of M\ For it is a mod 2 sum of
members of M and does not have e as a member. Hence M' is a planar
mesh of H.

It now follows, by the inductive hypothesis, that there is a 1-1 mapping
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/ ' of V(H) onto a set of points of II such that the following conditions are
satisfied:

(i) / '(*) = h(x) if x
(ii) / ' determines a non-singular convex representation R' of H, with

respect to which H has the frame Cx and the outer cycles

Cx,..., Cn_2, Cn_x-\-Cn.

We denote the convex polygons corresponding to these outer cycles by
Pi,-, Pn-z> P respectively.

Let u and v be the ends of A. Let An_x and An be the residual arc-graphs
of u and v other than A in G • Cn_x and G • Cn respectively. By (4.1) these are
also the residual arc-graphs of u and v in the circuit 0- (Cn_x-{-Cn).

It follows that /'(«*) and/'(v) belong to the boundary of P. Let s be the
segment joining them. If s lies in an edge of P then, since R' is non-singular,
A spans a branch B of H whose vertices correspond to points of s. If B
is not a subgraph of G • Cx this contradicts the hypothesis that G is 3-linked
with respect to Cx. If B is a subgraph of G • C1} then s must be an edge of Pv

But then both ends of the corresponding edge of G-Cx are nodes of G,
contrary to the assumption that q(Cx) = 0. We deduce that s crosses the
interior of P, thus separating P into two convex polygons Pn_x and Pn.
We may suppose that the boundaries of Pn_x and Pn include the edges of
the arc-graphs of R' corresponding to An_x and An respectively.

Let the vertices of A, taken in order from u to v, be xx = u,z2)...,xr = v.
Let Xx= f'(u), Xit..., Xr=f'(v) be distinct points, occurring in that
order, on s. We define a mapping / of V(G) onto a set of points of II as
follows. If XE V{H), then/(z) = / ' ( * ) ; if x = xi e V{A), then /(*) = X{.

We observe that /has the following properties.

(iii) f(x) = h(x) if x e V{G-CX).

(iv) /determines a convex representation R of G, with respect to which
G has the frame Cx and the outer cycles Cx, <72,..., Cn.

(v) G has no singular node distinct from u and v with respect to R.

The convex polygons corresponding to CXt C2,.;., Cn are Px, P2>---> -̂ n
respectively.

Suppose u is a singular node. Then/(u) is an interior point of some side
of a polygon Pj} where 1 < j < n— 1. Let the ends of this side be f(w)
and f(t). Choose a point Z on s between f(u) = Xx and X2., We modify
the mapping/as follows. We replace f(u) by Z, and we replace any/(p) on
the segment f{u)f(w) or f(u)f(t) by the point of intersection of the line
through f(p) parallel to Zf{u) with the segment Zf(w) or Zf(t) respectively.
Provided Z is sufficiently near to the original point f(u) the mapping/ will
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retain properties (iii), (iv), and (v). Pj will be augmented by the triangles
Zf(u)f(w) and Zf(u)f(t), and Pn_x and Pn will be correspondingly reduced.
We note also that u is non-singular with respect to the new representation.
If necessary we perform a similar operation to make v non-singular.

We thus find that the theorem is true when q{Cx) = 0 and k = n. It
follows by induction that the theorem is true whenever q(Cx) = 0.

Assume as a new inductive hypothesis that the theorem is true whenever
q(Cx) is less than some positive integer q. Consider the case q{Cx) = q. We
can find e e Cx so that both ends of e, u and v say, are nodes of G. We con-
struct a graph G' from G in the following way. We replace e by a new
vertex w and two new edges e' and e". The ends of e' are iv and u, and the
ends of e" are w and v. Clearly the cycles of G' can be derived from those
of G by replacing e, whenever it occurs, by the two edges e' and e". If K is
any cycle of G we denote the cycle of G' obtained from it by this operation
by K'. We deduce from this correspondence that the class

M' = {c;,..., ck)
is a planar mesh of G'.

Construct a convex polygon P'x in II having all the vertices of Px and
just one other, W say, occurring between h(u) and h(v). Extend the map-
ping h by writing h(w) = W.

Now the value of q{C'x) for G' is less than q. So by the inductive hypo-
thesis we can find a 1-1 mapping/ of V(G') onto a set of points of II such
that the following conditions are satisfied.

(vi) f(x) = h(x) if xeV(G'-C[).
(vii) / determines a non-singular convex representation R of G', with

respect to which G' has the frame C'x and the outer cycles C'x,..., C'k.
Let 5 denote the segment f{u)f(v). Assume s is an edge of one of the con-

vex polygons of R. Then there is an arc-graph A of G' whose vertices all
correspond to points of s, and whose ends are u and v. Since R is non-
singular, A must be a branch of G'. But then A is a branch of G spanning
G • Cx and having the same ends as e, which is contrary to hypothesis. We
deduce that s is a diagonal of that convex polygon P of R which has h(w)
as a vertex and is distinct from P'x. But in this case/, when restricted to
the vertices of G, determines a non-singular convex representation of G
with the required properties. In this representation s corresponds to the
edge e. The polygons are the same as those of R, except that P'x is aug-
mented by the triangle h(u)h(v)h(w) and P is correspondingly reduced.

We deduce that the theorem is true when q{C\) = q. Hence it is true
in general by induction.
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