1. (20 points) Show that the language HALT is \(\text{NP} \)-hard. Is it \(\text{NP} \)-complete?

2. (20 points) Show that, if \(P = \text{NP} \), then every language \(A \in P \), except \(A = \emptyset \) and \(A = \Sigma^* \), is \(\text{NP} \)-complete. Here \(\Sigma \) is the alphabet, and you may assume that it is \{0, 1\}.

3. (20 points) Let \(\phi \) be a 3CNF. An \(\neq \)-assignment to the variables of \(\phi \) is one where each clause contains two literals with unequal truth values.
 (a) Show that any \(\neq \)-assignment automatically satisfies \(\phi \), and the negation of any \(\neq \)-assignment to \(\phi \) is also an \(\neq \)-assignment.
 (b) Let \(\neq \text{SAT} \) be the collection of 3CNFs that have an \(\neq \)-assignment. Show that we obtain a polynomial time reduction from 3SAT to \(\neq \text{SAT} \) by replacing each clause

 \[c_i = (y_1 \lor y_2 \lor y_3) \]

 with the two clauses

 \[(y_1 \lor y_2 \lor z_i) \text{ and } (\overline{z}_i \lor y_3 \lor b), \]

 where \(z_i \) is a new variable for each clause \(c_i \) and \(b \) is a single additional new variable.
 (c) Conclude that \(\neq \text{SAT} \) is \(\text{NP} \)-complete.

4. (20 points) Let \(G \) be an undirected graph and let

 \(\text{LPATH} = \{ \langle G, a, b, k \rangle | G \text{ contains a simple path of length at least } k \text{ from } a \text{ to } b. \} \)

 Show that \(\text{LPATH} \) is \(\text{NP} \)-complete. You may use the \(\text{NP} \)-completeness of the undirected graph Hamiltonian path problem.

5. (20 points) A subset of the nodes of a graph \(G \) is a dominating set if every other node of \(G \) is adjacent to some node in the subset. Let

 \(\text{DOMINATING-SET} = \{ \langle G, k \rangle | G \text{ has a dominating set with } k \text{ nodes} \}. \)

 Show that it is \(\text{NP} \)-complete by giving a reduction from VERTEX-COVER.