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Abstract

General SFM methods give poor results for images captured by constrained motions such as planar motion. In this paper, we propose new

SFM algorithms for images captured under a common but constrained planar motion: the image plane is perpendicular to the motion plane.

We show that a 2D image captured under such constrained planar motion can be decoupled into two 1D images: one 1D projective and one

1D affine. We then introduce the 1D affine camera model for completing 1D camera models. Next, we describe new subspace reconstruction

methods, and apply these methods to the images captured by concentric mosaics, which undergo a special case of constrained planar motion.

Finally, we demonstrate both in theory and experiments the advantage of the decomposition method over the general SFM methods by

incorporating the constrained motion into the earliest stage of motion analysis.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we investigate the relationship between

planar motion and 1D cameras, and study its application for

concentric mosaics (CM). A new SFM algorithm is

proposed for images captured under constrained planar

motion. A planar motion is called constrained, if the

orientation of the camera is known, in particular, the image

plane is perpendicular to the motion plane. We first show

that the geometry under such constrained planar motion

becomes greatly simplified by decomposing the 2D image

into two 1D images in a simple way: one 1D projective

image and one 1D affine. The 3D reconstruction is,

therefore, decomposed into the reconstruction in two

subspaces: a 2D metric reconstruction and a 1D affine

reconstruction. To complete the 1D camera model descrip-

tion, we also introduce 1D affine camera and study its

geometric properties. Finally, we describe subspace recon-

struction methods and demonstrate both in theory and

experiments the advantage of the decomposition method

over general SFM methods by incorporating the constrained

motion into the earliest state of motion analysis.

A preliminary short version of this paper has been published

for the ICCV conference [17].

Planar motion. A planar motion consists of a translation

in a plane and a rotation about an axis perpendicular to that

plane. This is the typical motion a vehicle moving on the

ground undergoes. The study of planar motion has found its

applications in such a system, e.g. autonomous guided

vehicles, which are important components for factory

automation [4]. It has been shown in Refs. [5,25] that an

affine reconstruction is possible, provided that the internal

parameters of the camera is constant. A more complete self-

calibration method with constant internal parameters for

planar motion has been proposed in Refs. [1,2]. It is shown

that affine calibration is recovered uniquely, and metric

calibration up to a two fold ambiguity.

The orientation of the camera moving under planar

motion is constant with respect to the motion plane but

unknown in general. If it is known, we say that the planar

motion is constrained. Without loss of generality, we

assume that the image plane is perpendicular to the motion

plane. If not, the image can be warped to become

perpendicular to the motion plane-by-plane homography

transformation. The assumption is usually true in practice,

e.g. for a camera carefully mounted on a vehicle moving on
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the ground. In particular, this is the case in a CM capturing

device as shown in Fig. 1.

1D camera. A 1D projective camera maps a point in P2

(the projective space of 2D) onto a point in P1 with a 2 £ 3

matrix, by analogy to a 2D projective camera that maps a

point in P3 to a point in P2: Much work has been done for

both uncalibrated and calibrated 1D projective cameras [4,

16]. What is more interesting is that the usual 2D camera

model could be related to this 1D camera model in various

aspects. A linear algorithm is proposed in Ref. [16] for

recovering 3D affine motion and shape from line corre-

spondences for affine cameras, and those line directions are

converted into 2D projective points using the 1D camera

model. The relationship between planar motion and 1D

cameras is revealed in Ref. [8]. It is shown that a 2D camera

undergoing planar motion can be reduced to a 1D camera

and a new method for self-calibrating a 2D projective

camera is therefore developed.

Concentric mosaics. Recently, there has been much

interest in computer vision and graphics in image-based

rendering methods [13]. These methods generate new views

of scenes from novel viewpoints, using a collection of

images as the underlying scene representation. The major

challenge is the very high dimensionality of plenoptic

functions. Many simplifying assumptions that limit the

underlying viewing space have been introduced: 5D

plenoptic modelling [13], 4D Lightfield/Lumigraph [12,

10], 3D CM [19] and 2D panorama [15,6,21]. Among all

these approaches, CM [19] is a good trade-off between the

ease of acquisition and viewing space. The camera motion

of images in CM is constrained to planar concentric circles,

as shown in Fig. 1, and the image plane is parallel to the

rotation axis, i.e. perpendicular to the plane. Therefore, the

camera motion is a special case of constrained planar

motion.

As the rendering using CM is performed by ray

interpolation, like Lightfield, based on constant depth

assumption without geometric information, it is necessary

to compute the geometric structure to be capable of handling

more complex scenes than constant-depth-type scenes and

correcting the inherent vertical distortion problem [19].

Since, the CM capture device undergoes a constrained

planar motion, this is a possible application of our new SFM

algorithm. We apply our new methods to the images

captured by CM and show preliminary result in the

experiments.

Organisation. The paper is organized as follows. Section

2 describes the geometric analysis of images captured under

constrained planar motion. Then, we describe the 1D affine

camera model and 2D reconstruction from 1D images in

Section 3. Experiment results are given in Section 4. Finally,

the concluding remarks are given in Section 5. Throughout

the paper, vectors are denoted in lower case boldface,

matrices and tensors in upper case boldface. Scalars are any

plain letters or lower case Greek.

2. Geometry of images under constrained planar motion

A general approach described in Refs. [1,5,24,25]

consists of first computing a projective structure, then

extracting fixed entities by planar motion or by assuming

constant internal camera parameters. We follow a different

approach [8] in which the 2D image under planar motion is

reduced to the 1D trifocal line image. The 1D cameras

defined this way are virtual and almost no physical points

live in these subspaces. The virtual points on the trifocal

plane could be simply created by projecting the 2D image

points onto the trifocal line [8].

We take this decomposition principle further by

introducing a complete decoupling of the 2D image into

two complementary 1D images, one on the trifocal (motion)

line and the other on the pencil of epipolar lines. The 3D

space is accordingly decomposed into two orthogonal

subspaces, one of 2D represented by the trifocal plane and

another of 1D by the pencil of epipolar planes.

The second 1D camera is imaging the pencil of

epipolar planes in space. It is in fact a sort of dual 1D

imaging, as the ambient space elements are now dual

elements, i.e. planes. Even more, this dual space is only

of 1D, so the projection is described by a 2 £ 2 1D

homography from P1 to P1 instead of a 2 £ 3 matrix

from P2 to P1: This is similar to 2D homography

description of planar scenes by 2D cameras. Any image

line intersecting the epipolar pencil produces a 1D

projective image of the epipolar pencils. This decoupling

of 2D image into 1D images is only possible, provided

that the trifocal tensor or fundamental matrices have been

estimated, this make the practical implementation of the

decomposition more sensitive to the prior geometric

computation.

Now, we apply this decomposition to the images

captured under constrained planar motion. When the

image plane is perpendicular to the motion plane and

parallel to the rotation axes, the vanishing point of the

rotation axes is therefore, the point at infinity of

the vertical direction and the image of the motion plane,

the trifocal line, is horizontal in the image space. This

simplifies the decomposition of the 2D image signifi-

cantly. The projection of a 2D image point onto the

trifocal line is its horizontal coordinate in the image. With

the vanishing point of rotation axes at vertical infinity,

Fig. 1. The concentric mosaic acquisition set-up.

L. Quan et al. / Image and Vision Computing 22 (2004) 379–389380



the second 1D projection also gets simplified, as the

vertical 1D homography now becomes an affine trans-

formation. The vertical 1D camera is therefore, a kind of

affine camera instead of projective. This motivates the

definition and analysis of 1D affine camera in Section 3.1.

Now let us introduce the space Euclidean coordinate

frame such that xz plane is the ground motion plane and the

y-axis is orthogonal to the ground plane. The horizontal and

vertical pixel coordinates are u and v: The 2D camera matrix

P relates the 3D space point x and 2D image point u by

lu ¼ Px: The constrained planar motion preserves the point

at infinity in y-axis direction and the ground plane y ¼ 0 is

imaged into the horizon line v ¼ 0: The camera moving this

way has the matrix of the form [25]

a 0 b c

0 d 0 0

e 0 f g

0
BB@

1
CCA ð1Þ

Projecting 3D points with coordinates ðx; y; z; tÞT into two

orthogonal subspaces of 2D with coordinates ðx; 0; z; tÞT and

of 1D with coordinates ð0; y; 0; tÞT: Working with points in

these subspaces, the 2D camera matrix (Eq. (2)) decom-

poses to a 1D projective camera from P2 to P1

l
u

1

 !
¼

a b c

e f g

 ! x

z

t

0
BB@

1
CCA ð2Þ

and a 1D affine camera from P1 to P1

m
v

1

 !
¼

d 0

0 g

 !
y

t

 !
ð3Þ

When these subspaces have been reconstructed, the 3D

space point can be recovered by properly combining the

subspace coordinates. The 1D subspace reconstruction is

affine, its coordinate representation can be chosen as

mð0; 1; 0; 0ÞT: As the two subspaces are orthogonal, the

corresponding 3D space point can be obtained by linearly

combining lðx; 0; z; 1ÞT þ mð0; 1; 0; 0ÞT: The scale l=m can

be fixed by imposing that lðx; 0; z; 1ÞT þ mð0; 1; 0; 0ÞT ¼

ðlx;m; lz;lÞT ¼ ðx; y; z; tÞT: Thus, m=l ¼ y=t:

Alternatively, this decoupling schema may be viewed as

two 1D cameras directly from 3D spaces by

a 0 b c

e 0 f g

 !
and

0 d 0 0

0 0 0 g

 !

but these 3D to 1D cameras being singular do not bring any

new insight.

In summary, the above analysis gives a simplified SFM

scheme for images captured under constrained planar

motion

† decoupling the original 2D images into two 1D images

by ðu; vÞT 7! u and ðu; vÞT 7! v;

† reconstructing 2D points lðx; z; 1Þ from the correspond-

ing u-coordinates in multiple views and 1D points ðy; tÞ

from the corresponding v-coordinates in multiple views;

† reconstructing 3D points by spanning the subspaces

tðx; 0; z; 1ÞT þ yð0; 1; 0; 0ÞT:

The 2D reconstruction methods from multiple images

will be detailed in Section 3. The 1D reconstruction from a

single image is straightforward, it just reads-off 1D affine

coordinates ðy; 1Þ from v as y ¼ gv:

Another way to reconstruct 3D points is by extension of

2D Euclidean reconstruction (up to a global scale) ðX;ZÞ of

the xz-plane. With respect to the reference camera

represented by ðI3£3; 0Þ; Y ¼ ðv 2 v0ÞZ=f from

l

u

v

1

0
BB@

1
CCA ¼

f 0 u0

0 f v0

0 0 1

0
BB@

1
CCA

X

Y

Z

0
BB@

1
CCA

Notice that the 1D image decomposition method for the

above-simplified SFM algorithm does not need any prior

geometric computation unlike the general planar motion

case. The motion constraint has been incorporated into the

earliest stage of reconstruction. This is a key advantage over

the general SFM methods. Another advantage is that, as the

1D trifocal line image is not physical, projecting a 2D image

point to it is very simple, much more virtual points on this

1D image can be obtained. This makes the reconstruction

more numerically stable.

3. 2D reconstruction from 1D images

After reducing 2D images to 1D images, the problem of

2D reconstruction from multiple 1D images will be

addressed in this section. We first introduce and analyse

the 1D affine camera model in Section 3.1 to complete the

1D camera model description, and then describe a

reconstruction algorithm based on this concept by factor-

isation in Section 3.2. A complete Euclidean reconstruction

algorithm from projective images based on the previous

results in Refs. [4,16] is described for calibrated 1D

projective cameras in Section 3.3. Since, the motion of

images captured by CM is more constrained, and is actually

circular motion, a further adoption of the reconstruction

algorithm is described simply in Section 3.4.

3.1. Analysis of 1D affine camera

The 1D affine camera could be introduced by analogy

to a 2D affine camera introduced by Mundy and

Zisserman [14] as an imaging device from 2D to 1D,

which preserves the affine properties characterized by the

points at infinity. More importantly, it is motivated by

the practical weak perspective geometry of 1D projective

camera for CM images to describe a common degeneracy

L. Quan et al. / Image and Vision Computing 22 (2004) 379–389 381



of the 1D projective camera either when the viewing

field is narrow or the scene is shallow compared to the

average distance from the camera. This is of particular

importance for CM images as many CM sequences have

been captured to facilitate constant-depth rendering.

A general 1D projective camera maps a point

x ¼ ðx1; x2; x3Þ
T in P2 to a point u ¼ ðu1; u2Þ

T in P1 by

a general 2 £ 3 matrix M as lu ¼ M2£3x: If a 2D point

x is on the line at infinity, identified as x3 ¼ 0; to

preserve the affine property, it should be mapped onto

the point u at infinity on the image line, identified as

u2 ¼ 0: This reduces the 1D projective camera to the 1D

affine camera in the following form

p11 p12 p13

0 0 p23

 !
¼

m1£2 t

01£2 1

 !
ð4Þ

The 1D affine camera maps the finite points ðx; y; 1ÞT

onto finite image points ðu; 1ÞT with

lu ¼ m1£2

x

y

 !
þ t

If we further use relative coordinates with respect to a

given reference point, for instance, the centroid of the

point set, Du ¼ u 2 ur in R1 and ðDx;DyÞT ¼ ðx 2 xr; y 2

yrÞ
T in R2: The translation component t is cancelled and

the projection for finite points in relative coordinates

therefore becomes

lDu ¼ m1£2

Dx

Dy

 !
ð5Þ

This is the basic 1D affine camera projection. We now

examine the geometric constraints available for points

seen in multiple views similar to the 2D camera case [7,

11,18,20,23].

Assuming constant internal camera parameters, three

views of the point Dx can be written as follows

lDu ¼ mDx;

lDu0 ¼ m0Dx;

lDu00 ¼ m00Dx

8>><
>>: ð6Þ

or written in matrix form as

m Du

m0 Du0

m00 Du00

0
BB@

1
CCA Dx

2l

 !
¼ 0

The vector ðDx;2lÞT is not vanishing, so

m Du

m0 Du0

m00 Du00



 ¼
Du

a b Du0

Du00



 ¼ 0

The expansion of this determinant produces a linear

constraint for the three 1D affine views

ða £ bÞT

Du

Du0

Du00

0
BB@

1
CCA ¼ 0

or simply as

aDu þ bDu0 þ cDu00 ¼ 0 ð7Þ

So the geometry of three uncalibrated 1D affine views is

completely characterized by this linear constraint rep-

resented by the homogeneous 3-vector ða; b; cÞT which has

only 2 d.o.f. With at least three point correspondences in

three views, two relative points plus the reference point, the

vector ða; b; cÞT could be estimated linearly.

3.2. 2D reconstruction from 1D affine camera by

factorisation

The above three-view linear constraint directly encodes

the relative motion parameters. For reconstruction, by

analogy to the factorisation method [22] for 2D affine

cameras, we could proceed in the same way by stacking p

points in n images to create the measurement matrix as

Du1
1 · · · Du1

p

Du2
1 Du2

p

..

.

Dun
1 Dun

p

0
BBBBBBBB@

1
CCCCCCCCA

¼

m1

..

.

mn

0
BBB@

1
CCCAðDx1 · · · Dxp Þ

or in compact form as Un£p ¼ Mn£2S2£p

The rank of the measurement matrix cannot exceed two.

By taking SVD for the measurement matrix, keeping the

two largest singular values and forcing all others to be zero,

we obtain the best rank-two approximation of the measure-

ment matrix Û ¼ M̂Ŝ: However, M̂ and Ŝ will in general fail

to correspond to the true camera matrices and point

reconstruction, since for any non-singular 2 £ 2 affine

matrix A; Û ¼ M̂Ŝ ¼ ðM̂AÞðA21ŜÞ ¼ M0S0; so M0 and S0

also correspond to a possible reconstruction. In other words,

the reconstruction is up to a plane affine transformation.

We need to look for an A such that miA ¼ cRi
1£2; where

Ri
1£2 is a row of a rotation matrix, the motion of ith camera

and c is an independent scaling factor that each 1D affine

camera may have, actually the assumed constant focal

length. So that the metric constraint for an Euclidean

reconstruction is

miAATmiT ¼ 1 ð8Þ

where the global scaling factor of A is assumed to be fixed,

lAl ¼ 1=c: Such an affine matrix A has 3 d.o.f, and each

camera matrix mi from the affine reconstruction will place

one constraint on the entries of A via Eq. (8). There will

L. Quan et al. / Image and Vision Computing 22 (2004) 379–389382



generally be far more than three views used in practice,

therefore, the computation of A is a simple over-determined

data fitting problem which, though nonlinear, can be solved

efficiently and reliably.

This reconstruction might be sufficient, and if not, it

can be served as an initial solution for a nonlinear

optimisation. The factorisation method requires 2D points

to be visible in all 1D images. For missing points, they

can be handled using the linear three-view constraint Eq.

(7) developed in Section 3.1.

3.3. 2D reconstruction from 1D projective camera

The affine camera model nicely approximate the

geometry of projective camera when the viewing field

is narrow or the scene is shallow compared to the

average distance from the camera. When these assump-

tions do not hold, reconstruction algorithm using

projective cameras is favoured instead of that using

affine camera model. We describe a complete reconstruc-

tion method from three 1D projective cameras, which

assembles the recent results in Refs. [3,4,16,8] for 1D

cameras.

† Computing uncalibrated 1D trifocal tensor. The geo-

metry of three 1D images is completely characterized by

the 1D trifocal tensor Tijk [8]. It minimally parame-

terises the three uncalibrated images and can be

estimated linearly with at least seven point

correspondences.

† Self-calibration of the 1D camera. The 1D camera

could be self-calibrated for constant calibration

parameters via 1D trifocal tensor [8]. The knowledge

of the internal parameters of a 1D camera is

equivalent to that of the image points i and j; which

are the image of the circular points in the motion

plane in space, the horizontal plane, P2 [1,8]. This

pair of conjugate complex points can be uniquely

determined by solving the cubic equation: T111x3 þ

ðT211 þT112 þT121Þx
2 þðT212 þT221 þT122ÞxþT222 ¼ 0:

They are the conjugate complex roots of the cubic

equation. The real part of the ratio of the projective

coordinates of the image of the circular point i is the

position of the principal point u0 and the imaginary

part is the focal length a:

† Computing calibrated 1D trifocal tensor. The internal

parameters of the camera can either be self-calibrated

as described in Section 3.2 or given by off-line

calibration, then we come to the case of calibrated 1D

camera. To handle calibrated geometry properly, the

image coordinates could be first normalized by

applying K21ðui; 1Þ
T to get ðxi; 1Þ

T: To see what

happens for the calibrated trifocal tensor, it suffices to

notice that knowing the internal parameters of a 1D

camera is equivalent to knowing two points, the pair

of circular points! Substituting the circular points

ð^i; 1Þ into the trilinear constraint gives the two

following scalar constraints [4] T122 þ T212 þ T221 2

T111 ¼ 0 and T112 þ T121 þ T211 2 T222 ¼ 0:

The 1D trifocal tensor can now be linearly re-

estimated by taking into account of these constraints.

Substituting T111 and T222 back into the original trilinear

constraint equation gives constrained trilinear constraint.

† Recovering external projection matrix. After the

calibrated 1D trifocal tensor has been computed, the

tensor components can be converted into external

parameters of the cameras. The external projection

matrices for three views can be written as

ðRðuÞ; t2£1Þ; ðRðu0Þ; t02£1Þ and ðRðu00Þ; t002£1Þ

Since, the world coordinate frame can be chosen

arbitrarily, it can be chosen in the way such that u ¼ 0

and t ¼ 0: Therefore, there are totally five d.o.f

for external parameters, two for u0; u00; and three for

t0; t00(4 2 the global scale). There are also five non-

homogeneous tensor components for the calibrated

trifocal tensor (eight entries minus one global scale and

two constraints discussed earlier). The conversion from

the trifocal components to external camera parameters

can be solved algebraically, but up to a two-way

ambiguity [4,16].

† Reconstructing 2D point coordinates. Each 2D point can

be reconstructed by solving linear equations provided by

lðu; 1ÞT ¼ M2£3ðx; y; 1Þ
T:

Fig. 2. Point correspondences in a triplet image from KIDS sequence.
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† Nonlinear optimisation. Finally, the reconstruction can be

improved by a nonlinear optimisation method, i.e. bundle

adjustment.

3.4. 2D reconstruction from calibrated 1D projective

cameras under circular motion

One application of our new SFM algorithm is to apply it

to CM rendering process to alleviate the problems caused by

constant-depth assumption. However, the images captured

by CM are not only under constrained planar motion, but

have stronger motion constraint: a circular motion [9]. All

the camera centers are located on a circle on the motion

plane, and all the rotations between each pair of cameras are

around the same axis passing through the circle center. The

calibrated 2 £ 3 projection matrices for a triplet of views

can be parameterised as

ðRðuÞ; tÞ; ðRðu0Þ; tÞ; and ðRðu00Þ; tÞ

The associated trifocal tensor has also two additional

constraints than the calibrated 1D trifocal tensor. One is

that T222 ¼ 0 if we choose ty ¼ 0 without loss of generality.

The other has more complicated expression. This particular

parameterisation also suggests a more efficient bundle-like

nonlinear optimisation.

4. Experimental results

Experiments on analysing image data by the new SFM

algorithm have been carried out. In this section, we show

some preliminary results based on tracking results of points

of interest from triplets of original images captured by

the concentric mosaic set-up in our lab. The matching points

are obtained using the algorithm presented in Ref. [26].

KIDS sequence. For the KIDS triplet shown in Fig. 2,

there are 159 and 107 match candidates in the first and

second pairs. We obtain 89 final match triplets. The 3D

affine reconstruction using standard 2D factorisation

method is shown in Fig. 3. The horizontal plane is

referenced by coordinates ðx; zÞ; so the z-coordinate gives

the depth and the y-coordinate the height. The 2D affine and

Euclidean reconstruction using our 1D factorisation method

is shown in Fig. 4.

In Fig. 5, two columns and the background wall are

drawn over the reconstructed plane to illustrate

Fig. 4. 2D Affine and Euclidean reconstruction by 1D factorisation for KIDS sequence.

Fig. 3. 3D Affine reconstruction by 2D factorisation for KIDS sequence and projection onto ðx; zÞ plane.

L. Quan et al. / Image and Vision Computing 22 (2004) 379–389384



the reconstruction quality. If the camera is calibrated off-

line, i.e. the aspect ratio and principal point is known, with

the known depth z; the height y can be obtained by rescaling

the vertical coordinate by the depth and 3D Euclidean

reconstruction is possible. Fig. 6 shows the 3D Euclidean

reconstruction by extending the 2D reconstruction.

TOY sequence. For the TOY triplet shown in Fig. 7,

there are 151 and 126 match candidates in the first and

Fig. 6. The 3D Euclidean reconstruction by extending the 2D reconstruction for KIDS triplet: 3D and projection onto xy plane.

Fig. 7. Point correspondences in a triplet from TOY sequence.

Fig. 5. One original image and the reconstructed plane by merging two triplets of KIDS sequence with manual drawing for illustration.
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second pairs. 76 final corresponding triplets are obtained.

The 3D affine reconstruction using standard 2D factor-

isation method is shown in Fig. 8. The 2D affine and

Euclidean reconstruction using our 1D factorisation

method are shown in Fig. 9. We can notice the superior

reconstruction quality by 1D factorisation method

over the 2D factorisation. The 3D Euclidean reconstruc-

tion by extending the 2D Euclidean reconstruction

using off-line calibrated internal parameters are shown

in Fig. 10.

Fig. 9. 2D Affine and Euclidean reconstruction by 1D factorisation for TOY triplet.

Fig. 10. The 3D Euclidean reconstruction by extending the 2D reconstruction for TOY triplet: 3D and projection onto xy plane.

Fig. 8. 3D Reconstruction by 2D factorisation method for TOY triplet and projection onto ðx; zÞ plane.
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The final 3D VRML model shown in Figs. 11 and 12 are

reconstructed from re-sampled dense matching by the

extension of Euclidean 2D reconstruction. The 3D recon-

struction quality is sufficient for image-based-rendering

purpose.

5. Conclusion

This paper analyses the geometry and proposes a new

SFM algorithm under constrained planar motion. We have

shown that the 2D image captured under constrained planar

motion can be decomposed into two 1D images in an easy

manner: one captured by a horizontal 1D projective camera

and one captured by a vertical affine camera. The 3D

reconstruction is, therefore decomposed into the reconstruc-

tion in the subspaces, i.e. a 2D metric reconstruction

combined with a 1D affine reconstruction. We have

introduced the new concept of 1D affine camera and 1D

factorisation method for 2D reconstruction in the horizontal

subspace. The key advantage of the new algorithm is that

the prior motion information has been integrated into

the system. The 2D/1D image conversion does not need any

geometric estimation of fundamental matrices or trifocal

tensors. Another advantage of virtual 1D camera over a

physical 1D camera is that it sees through the 2D scene, so it

may have more virtual points independent of occlusions in

different heights. Preliminary results have been demon-

strated both theoretical and practical advantages of the

decomposition method used in this paper over the general

Fig. 11. 3D reconstruction of KIDS triplet in VRML. On the top are a mesh model and a top view of the mesh. On the bottom are a side view of the mesh and

textured model.
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SFM methods which tend to be singular under the

constrained motion model.
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