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ABSTRACT
Cervical nuclei carry substantial diagnostic information for
cervical cancer. Therefore, in automation-assisted reading
of cervical cytology, automated and accurate segmentation
of nuclei is essential. This paper proposes a novel approach
for segmentation of cervical nuclei that combines fully con-
volutional networks (FCN) and graph-based approach (FCN-
G). FCN is trained to learn the nucleus high-level features
to generate a nucleus label mask and a nucleus probabilistic
map. The mask is used to construct a graph by image trans-
forming. The map is formulated into the graph cost func-
tion in addition to the properties of the nucleus border and
nucleus region. The prior constraints regarding the context
of nucleus-cytoplasm position are also utilized to modify the
local cost functions. The globally optimal path in the con-
structed graph is identified by dynamic programming. Valida-
tion of our method was performed on cell nuclei from Herlev
Pap smear dataset. Our method shows a Zijdenbos similarity
index (ZSI) of 0.92 ± 0.09, compared to the best state-of-
the-art approach of 0.89 ± 0.15. The nucleus areas measured
by our method correlated strongly with the independent stan-
dard (r2 = 0.91).

Index Terms— Deep learning, FCN, graph-based seg-
mentation, Pap smear

1. INTRODUCTION

In cervical cytology diagnosis, nuclear features already in-
clude substantial diagnostic information, as all the cytology
abnormalities (including atypical squamous cells of unde-
termined significance [ASC-US], ASC-cannot exclude HSIL
[ASC-H], low grade squamous intraepithelial lesion [LSIL],
high SIL [HSIL], and squamous cell carcinoma) accom-
pany specific nuclear abnormality [1]. In order to accurately
characterize nuclear features, accurate segmentation of nu-
clei is a necessary step, and is also of utmost importance in
automation-assisted cervical screening techniques [2].
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Generally, methods for the automated segmentation of
cervical nuclei includes two components: initial segmenta-
tion and fine segmentation. For initial segmentation, K-means
(spatial [3] or fuzzy [4] version), multi-scale watershed [5],
and adaptive thresholding [2] are proposed. Besides coarse
performance, these methods are based on simple assumption
about the nucleus characters (e.g., low intensity, circular bor-
ders), which may not be true in all cases (e.g., some nuclei
exhibit high intensity and/or irregular shape). Therefore, pre-
and post-analysis stage are needed. Recently, a convolutional
neural network (CNN) image patch-based classification [6]
method is proposed to detect nuclei. This method is able
to overcome the aforementioned problems, but does not in-
corporate spatially dense information. Moreover, the heavy
computational burden makes it not preferable in practical use.

For fine segmentation of the nuclei, snake models (specif-
ically a radiating gradient vector flow (RGVF) snake [3]), and
graph cuts [2, 6] are the most commonly used techniques.
However, these techniques do not involve inherent shape con-
straints for the segmented boundary, thus may result in irreg-
ular nucleus boundary. The graph-based approach [7] em-
beds the shape prior in the constructed graph, and the nu-
cleus boundary can be detected as a globally optimal solu-
tion. However, the success of graph-based approaches relies
on two clues: 1) a relatively reliable initial segmentation for
constructing the graph and constraining the graph searching
range; 2) a robust and task-specific cost function for describ-
ing the object. Previously, the first clue is usually obtained
based on simple assumptions [7] or low-level features [8];
the second clue is based on hand-crafted/engineered costs [7]
and/or machine learning costs based on low-level features [8].

To improve the aforementioned problems, we propose
to segment cervical nuclei by combining fully convolu-
tional networks (FCN) [9] and graph-based approaches (de-
noted by FCN-G). Different from CNN-based segmenta-
tions, FCN takes an arbitrary-sized whole image as input and
correspondingly-sized ground truth segmentation as output.
By building a fully convolutional version of existing CNNs
followed by a deconvolution layer which interpolates the
coarse output to generate dense pixel output, FCN is able to
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Fig. 1. Framework of combining fully convolutional networks (FCN) and a graph-based approach (denoted by FCN-G).

be trained end-to-end, pixel-to-pixel, and predicts all the pixel
labels of a whole image at a time. With these advantages,
FCN is efficient, does not require pre- and post-processing,
and learns high-level features. For the graph-based segmen-
tation, we employ the basic framework previously proposed
in [7], but additionally incorporate FCN-learned nucleus
in-region cost and context constraint in a globally optimal
solution. Following an initial segmentation of nuclei and cy-
toplasm by FCN, the graph-based approach yields improved
cell nucleus segmentation. We show quantitative compar-
isons between the FCN-G and the state-of-the-art approaches
[3, 5, 4] on the Herlev Pap smear dataset [10].

2. METHODS

Our segmentation framework comprises two stages (as shown
in Fig. 1): fully convolutional networks (FCN) initial segmen-
tation and graph-based fine segmentation. (1) FCN is first
adopted to segment the whole cell image into background,
cytoplasm and nuclei, meanwhile produces a probability map
for cell nuclei. FCN allows for capturing implicit and in-
formative deep features of cell nuclei, but usually produce
segmentation results that may not precisely localize on the
nucleus boundaries. Therefore, (2) the graph-based fine seg-
mentation is exploited, consisting of two sub-steps: (a) a
rectangle (sub-image) around the FCN-segmented nucleus is
cropped according to an annotation protocol [7] that ensures
involving the entire nucleus area; (b) a graph-based approach
incorporating the FCN-learned nucleus probability map is
used to detect the improved nucleus boundary.

2.1. Fully Convolutional Networks

We adopt FCN [9] to predict the pixel-level labels for back-
ground, cytoplasm, and nuclei in cervical cell images. To ac-
count for the difference between abnormal and normal nu-
clei, we separate the nuclei class into abnormal and normal
classes, resulting in four classes/labels for FCN training and
predicting. The FCN prediction generates binary masks and
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Fig. 2. Schema of the FCN. conv: convolution; pool: max-
pooling; deconv: deconvolution.

probabilistic label maps for the four classes. Among them,
the nucleus mask is used to crop a sub-image containing nu-
cleus, and the nucleus probability map is used to produce an
in-region cost, both are used in the graph-based segmentation.

2.1.1. FCN Training

We adopt the VGGnets architecture [11] as the basis of our
FCN. To construct the FCN, VGGnets’ last fully connected
layer is discarded and the other two fully connected layers
are converted to convolution. Then, a 1×1 convolution with
4 channels corresponding to the four cervical cell classes is
appended. Finally, a deconvolutional layer is added to up-
sample the coarse outputs to pixel-level outputs. This archi-
tecture is FCN-32s and is shown in Fig. 2.

In our preliminary experiment, we found FCN-16s per-
forming better on our dataset. Specifically, a 1×1 convolu-
tional layer is appended on top of pool4 to produce additional
predictions, which are then added to a 2× up-sampling ver-
sion of conv7’s predictions. Finally, this sum of predictions
is up-sampled back to the image with the 16 pixel stride. For
FCN training, transfer learning is used. A pre-trained VG-
Gnets is used to initialize the conv layers and the other layers
are initialized with Gaussian distribution. Then all layers of
the FCN-16s are fine-tuned by back-propagation algorithm.

2.1.2. FCN Predicting

During the predicting stage, the FCN generates four proba-
bility maps, each for one class. The final segmentation mask
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Fig. 3. Schema of construction of a graph in (b) from the
image center in (a) using a polar transform.

is obtained by maximum voting of the four probability maps,
followed by a combination of abnormal and normal nucleus
masks, and then by morphological opening operation. The
final nucleus probability map is obtained by summing the ab-
normal and normal nucleus probability maps.

2.2. Graph-Based Nucleus Segmentation

2.2.1. Graph Construction

Given an cropped image, image transforming is performed by
transforming the image coordinates from Cartesian to polar,
as shown in Fig. 3. As a result, the ellipse-like border of the
nucleus becomes a curve which starts from the first column
and ends at the last column in the transformed image. Then a
graph with Ng graph columns is constructed and searched for
the optimal path, where Ng equals to the number of columns
of the transformed image. In this graph, each node (yellow
points in Fig. 3(b)) corresponds to a pixel in the transformed
image. The successors of a node (pointed by green arrows
in Fig. 3(b)) are the three nodes on the subsequent column
corresponding to three possible changes of edge direction.

2.2.2. Cost Function Design

The cost assigned to the graph node contains three specific in-
formation components related to cervical nuclei.The first two
cost terms are detailed in [7]. Briefly, the edge cost ce is cal-
culated based on the normalized image gradient magnitude
and image gradient direction. The region cost cr is assigned
as the sum of the inside and outside variances computed in
the graph column.

Given the FCN-learned nucleus probability map, an in-
region-based cost is assigned as the cumulative sum of the
probability-values p in the graph column as follow,

cfcn(i, j) = −
j′≤j∑
j′=1

p(i, j′) , (1)

Then, the aforementioned three cost terms are combined
into a total cost function c to allow more robust segmentation,

c(i, j) = α · ce(i, j) + β · cr(i, j) + γ · cfcn(i, j) , (2)

where α, β and γ are the weights for the edge, region, and
FCN term respectively. Each of the three terms is normalized
to the range [0,1] before their combination.

2.2.3. Nucleus Context Prior Constraints

The graph-based segmentation might incorrectly identify bor-
ders that coincide with large image gradients between cyto-
plasm and background. To solve this problem, two kinds
of constraints including the hard context constraint and the
context-prior penalty are used to modify the costs of the graph
nodes with ∆d pixels above and below the cytoplasm bound-
ary while the costs of all other nodes remain unchanged,

c′(i, j) =

 fc(c(i, j)) if − ∆d ≤ n(i, j) − bj ≤ 0
K if n(i, j) − bj > 0
c(i, j) otherwise

,

(3)
where c(i, j) and c′(i, j) denote the costs of node n(i, j) be-
fore and after considering the proximity of cytoplasm, respec-
tively. bj is a cytoplasm boundary point in polar coordinates.
The reason for these constraints are: first, the costs of nodes
which are immediately above the cytoplasm points need to
become less “attractive” by utilizing an update function,

fc(c(i, j)) = c(i, j) · (1 + 0.25e
−d(bj , n(i, j))2

2∆d2
) , (4)

where d(.) denotes the distance (number of nodes); second,
resulting from the hard context constraint, nodes far away
from coarsely segmented cytoplasm boundary points become
less attractive when modified according to the truncated L1

distance. K is set to 2.

2.2.4. Boundary Detection

The optimal path in the graph is determined by dynamic pro-
gramming, and then reversely mapped to the original image
in Cartesian coordinate system to get a contour of nucleus.

3. EXPERIMENTS AND RESULTS

The cell data used to train and test the proposed method come
from a publicly available dataset (Herlev) [10], which consists
of 917 Pap smear images – each containing one cervical cell
– with ground truth segmentation and classification. All the
cervical images’ longer sides are rescaled to a length of 500
pixels, to avoid performance problems on the original resolu-
tion we encountered in our preliminary experiments.

The FCN is implemented using MatConvNet package
[12], and runs on NVIDIA GeForce GTX TITAN Z GPU
with 6 GB of memory. FCN is trained by Stochastic Gradient
Descent (SGD), with a mini-batch size of 20, momentum of
0.9, learning rate of 0.0001, and epoch of 50. A dropout of
0.5 is used. The parameters for graph-based approach are set
as Ng = 360, α = 1, β = 0.5, γ = 0.5, and ∆d = 2.



Fig. 4. Examples of our segmentation method on Herlev
dataset. First to third rows: original image, ground truth
(green boundaries), and our results (red boundaries).

We evaluate our method using five-fold cross validation.
The performance evaluation metric is Zijdenbos similarity in-
dex (ZSI) ( 2TP

2TP+FP+FN ) as in [3, 5, 4]. Fig. 4 shows ex-
amples of our segmentation results. Table 1 shows the quanti-
tative comparison of RGVF snake [3], multi-scale watershed
[5], fuzzy K-means [4], and our method in terms of mean ±
std. of ZSI for all nuclei from the Herlev dataset. In ad-
dition, linear regression analysis is used to compare nucleus
areas. Compared with ground truth, FCN-G shows strong cor-
relation of r2 = 0.91. The whole processing time of FCN-G
is 0.36 s per image on average.

Table 1. Performance comparison of our method with previ-
ous methods on the Herlev dataset.

Methods ZSI
Fuzzy K-means [4] 0.80 ± 0.24
RGVF snake [3] 0.87 ± 0.19
Multi-scale watershed [5] 0.89 ± 0.15
FCN-G 0.92 ± 0.09

4. CONCLUSION

The first combination of fully convolutional networks (FCN)
and graph-based approach is proposed for automated and effi-
cient cervical nucleus segmentation. The FCN learning of nu-
cleus region is used to guide the graph construction and gener-
ate an in-region cost function. Globally optimal segmentation
is guaranteed according to nucleus shape constraint, edge-
and region-information, and nucleus context prior. The exper-
imental results on the Herlev dataset demonstrate the superior
performance of the proposed method.
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segmentation and classification of cervical cell images,”
Pattern Recognit., vol. 45, no. 12, pp. 4151–4168, 2012.

[6] Y. Song, L. Zhang, S. Chen, D. Ni, B. Lei, and T. Wang,
“Accurate segmentation of cervical cytoplasm and nu-
clei based on multi-scale convolutional network and
graph partitioning,” TBME, vol. 62, no. 10, pp. 2421–
2433, 2015.

[7] L. Zhang, S. Liu, T. Wang, S. Chen, and M. Sonka, “Im-
proved segmentation of abnormal cervical nuclei using
a graph-search based approach,” in SPIE Medical Imag-
ing, 2015, pp. 94200W–94200W.

[8] S. Kashyap, I. Oguz, H. Zhang, and M. Sonka, “Au-
tomated segmentation of knee MRI using hierarchical
classifiers and just enough interaction based learning:
Data from osteoarthritis initiative,” in MICCAI, 2016,
pp. 344–351.

[9] J. Long, E. Shelhamer, and T. Darrell, “Fully convolu-
tional networks for semantic segmentation,” in CVPR,
2015, pp. 3431–3440.

[10] J. Jantzen, J. Norup, G. Dounias, and B. Bjerre-
gaard, “Pap-smear benchmark data for pattern classi-
fication,” Nature inspired Smart Information Systems
(NiSIS 2005), pp. 1–9, 2005.

[11] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
ICLR, 2015.

[12] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional
neural networks for matlab,” in ICME, 2015, pp. 689–
692.


