Pinhole cameras

- Abstract camera model - box with a small hole in it
- Pinhole cameras work in practice
Real Pinhole Cameras

Pinhole too big - many directions are averaged, blurring the image

Pinhole too small - diffraction effects blur the image

Generally, pinhole cameras are dark, because a very small set of rays from a particular point hits the screen.

The reason for lenses

Lenses gather and focus light, allowing for brighter images.
The thin lens

Thin Lens Properties:

1. A ray entering parallel to optical axis goes through the focal point.
2. A ray emerging from focal point is parallel to optical axis
3. A ray through the optical center is unaltered

\[\frac{1}{z'} - \frac{1}{z} = \frac{1}{f} \]

Note that, if the image plane is very small and/or \(z \gg z' \), then \(z' \) is about \(f \).
Field of View

• The effective diameter of a lens \((d) \) is the portion of a lens actually reachable by light rays.

• The effective diameter and the focal length determine the field of view:

\[
\tan w = \frac{d}{(2f')}
\]

• \(w \) is the half the total angular “view” of a lens system.

• Another fact is that in practice points at different distances are imaged, leading to so-called “circles of confusion” of size \(\frac{d}{z} \frac{|z'-z|}{z'} \) where \(z \) is the nominal image plane and \(z' \) is the focusing distance given by the thin lens equation.

• The “depth of field” is the range of distances that produce acceptably focused images. Depth of field varies inversely with focal length and lens diameter.

Lens Realities

Real lenses have a finite depth of field, and usually suffer from a variety of defects

vignetting

Spherical Aberration
Standard Camera Coordinates

- By convention, we place the image in front of the optical center
 - typically we approximate by saying it lies one focal distance from the center
 - in reality this can't be true for a finite size chip!

- Optical axis is z axis pointing outward

- X axis is parallel to the scanlines (rows) pointing to the right!

- By the right hand rule, the Y axis must point downward

- Note this corresponds with indexing an image from the upper left to the lower right, where the X coordinate is the column index and the Y coordinate is the row index.

The equation of projection

- Equating \(z' \) and \(f \)
 - We have, by similar triangles, that \((x, y, z) \rightarrow (-f \frac{x}{z}, -f \frac{y}{z}, -f) \)
 - Ignore the third coordinate, and flip the image around to get:

\[
(x, y, z) \rightarrow \left(f \frac{x}{z}, f \frac{y}{z} \right)
\]
Distant objects are smaller

Parallel lines meet
common to draw film plane in front of the focal point

A Good Exercise: Show this is the case!
Some Useful Geometry

- In 3D space
 - points:
 - Cartesian point \((x,y,z)\)
 - Projective pt \((x,y,z,w)\) with convention that \(w\) is a scale factor
 - lines:
 - a point \(p\) on the line and unit vector \(v\) for direction
 - for minimal parameterization, \(p\) is closest point to origin
 - Alternative, a line is the intersection of two planes (see below)
 - planes
 - a point \(p\) on the plane and a unit normal \(n\) s.t. \(n \cdot (p' - p) = 0\)
 - multiplying through, also \(n \cdot p' - d = 0\), where \(d\) is distance of closest pt to origin.
 - any vector \(n \cdot q = 0\) where \(q\) is a projective pt
 - note, for two planes, the intersection is two equations in 4 unknowns up to scale --- i.e. a one-dimensional subspace, or a line
 - Note that planes and points are dual --- in the above, I can equally think of \(n\) or \(q\) as the normal (resp. point).

- In 2D space
 - points:
 - Cartesian point \((x,y)\)
 - Projective pt \((x,y,w)\) with convention that \(w\) is a scale factor
 - lines
 - a point \(p\) on the line and a unit normal \(n\) s.t. \(n \cdot (p' - p) = 0\)
 - multiplying through, also \(n \cdot p' - d = 0\), where \(d\) is distance of closest pt to origin.
 - any vector \(n \cdot q = 0\) where \(q\) is a projective pt
 - note, for two lines, the intersection is two equations in 3 unknowns up to scale --- i.e. a one-dimensional subspace, or a point
 - note that points and lines are dual --- I can think of \(n\) or \(q\) as the normal (resp. point)
Some Projective Concepts

• The vector \(p = (x,y,z,w)' \) is equivalent to the vector \(kp \) for nonzero \(k \)
 – note the vector \(p = 0 \) is disallowed from this representation

• The vector \(v = (x,y,z,0)' \) is termed a “point at infinity”; it corresponds to a direction

• In \(\mathbb{P}^2 \),
 – given two points \(p_1 \) and \(p_2 \), \(l = p_1 \times p_2 \) is the line containing them
 – given two lines, \(l_1 \) and \(l_2 \), \(p = l_1 \times l_2 \) is point of intersection
 – A point \(p \) lies on a line \(l \) if \(p \times l = 0 \) (note this is a consequence of the triple product rule)
 – \(l = (0,0,1) \) is the “line at infinity”
 – it follows that, for any point \(p \) at infinity, \(l \times p = 0 \), which implies that points at infinity lie on the line at infinity.

Some Projective Concepts

• The vector \(p = (x,y,z,w)' \) is equivalent to the vector \(kp \) for nonzero \(k \)
 – note the vector \(p = 0 \) is disallowed from this representation

• The vector \(v = (x,y,z,0)' \) is termed a “point at infinity”; it corresponds to a direction

• In \(\mathbb{P}^3 \),
 – A point \(p \) lies on a plane \(l \) if \(p \times l = 0 \) (note this is a consequence of the triple product rule; there is an equivalent expression in determinants)
 – \(l = (0,0,0,1) \) is the “plane at infinity”
 – it follows that, for any point \(p \) at infinity, \(l \times p = 0 \), which implies that points at infinity lie on the line at infinity.
Some Projective Concepts

- The vector \(p = (x,y,z,w)' \) is equivalent to the vector \(kp \) for nonzero \(k \)
 - note the vector \(p = 0 \) is disallowed from this representation
- The vector \(v = (x,y,z,0)' \) is termed a “point at infinity”; it corresponds to a direction
- Plücker coordinates
 - In general, a representation for a line through points \(p_1 \) and \(p_2 \) is given by all possible 2x2 determinants of \([p_1 \ p_2] \) (an \(n \) by \(2 \) matrix)
 - \(u = (l_{14}, l_{15}, l_{16}, l_{17}, l_{18}) \) are the Plücker coordinates of the line passing through the two points.
 - if the points are not at infinity, then this is also the same as \((p_2 - p_1, p_1 \times p_2) \)
 - The first 3 coordinates are the direction of the line
 - The second 3 are the normal to the plane (in \(\mathbb{R}^3 \)) containing the origin and the points
 - In general, a representation for a plane passing through three points \(p_1, p_2 \) and \(p_3 \) are the determinants of all 3 by 3 submatrices \([p_1 \ p_2 \ p_3] \)
 - let \(l_{i,j} \) mean the determinant of the matrix of matrix formed by the rows \(i \) and \(j \)
 - \(P = (l_{234}, l_{134}, l_{142}, l_{123}) \)
 - Note the three points are colinear if all four of these values are zero (hence the original 3x4 matrix has rank 2, as we would expect).
 - Two lines are colinear if we create the 4x4 matrix \([p_1, p_2, p_1', p_2'] \) where the \(p \)'s come from one line, and the \(p \)'s come from another.

Parallel lines meet

- First, show how lines project to images.
- Second, consider lines that have the same direction (are parallel)
- Third, consider the degenerate case of lines parallel in the image
 - (by convention, the vanishing point is at infinity!)

A Good Exercise: Show this is the case!
Vanishing points

• Another good exercise (really follows from the previous one): show the form of projection of *lines* into images.

• Each set of parallel lines (=direction) meets at a different point
 – The vanishing point for this direction

• Sets of parallel lines on the same plane lead to collinear vanishing points.
 – The line is called the horizon for that plane

The Camera Matrix

• Homogenous coordinates for 3D
 – four coordinates for 3D point
 – equivalence relation \((X,Y,Z,T) \text{ is the same as } (kX, kY, kZ, kT)\)

• Turn previous expression into HC’s
 – HC’s for 3D point are \((X,Y,Z,T)\)
 – HC’s for point in image are \((U,V,W)\)

\[
\begin{pmatrix}
U \\
V \\
W
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & f \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
Z \\
T
\end{pmatrix}
\]

\[(U,V,W) \rightarrow \left(\frac{U}{W}, \frac{V}{W} \right) = (u,v) \]
Orthographic projection

Suppose I let \(f \) go to infinity; then

\[u = x \]
\[v = y \]

The model for orthographic projection

\[
\begin{pmatrix}
U \\
V \\
W
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
X \\
Y \\
Z \\
T
\end{pmatrix}
\]
Weak perspective

- Issue
 - perspective effects, but not over the scale of individual objects
 - collect points into a group at about the same depth, then divide each point by the depth of its group
 - Adv: easy
 - Disadv: wrong

\[u = sx \]
\[v = sy \]
\[s = f / Z^* \]

The model for weak perspective projection

\[
\begin{pmatrix}
U \\
V \\
W
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z^*/f & Z
\end{pmatrix}
\begin{pmatrix}
X \\
Y \\
Z
\end{pmatrix}
\]
The Affine Camera

- Choose a nominal point \(x_0, y_0, z_0 \) and describe projection relative to that point

- \(u = f \left[\frac{x_0}{z_0} + \frac{x-x_0}{z_0} \right] = f (a_1 x + a_2 z + d_1) \)
- \(v = f \left[\frac{y_0}{z_0} + \frac{y-y_0}{z_0} \right] = f (a_3 y + a_4 z + d_2) \)

- gathering up

- \(A = [a_1, 0, a_2, 0, a_3, a_4] \)
- \(d = [d_1, d_2] \)
- \(u = A P + d \)

Geometric Transforms

In general, a point in n-D space transforms by

\[P' = \text{rotate}(point) + \text{translate}(point) \]

In 2-D space, this can be written as a matrix equation:

\[
\begin{pmatrix}
x' \\
y'
\end{pmatrix} =
\begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} +
\begin{pmatrix}
tx \\
ty
\end{pmatrix}
\]

In 3-D space (or n-D), this can generalized as a matrix equation:

\[p' = R p + T \quad \text{or} \quad p = R^t (p' - T) \]
Geometric Transforms

Now, using the idea of homogeneous transforms, we can write:

\[
p' = \begin{pmatrix} R & T \\ 0 & 0 & 0 & 1 \end{pmatrix} p
\]

R and T both require 3 parameters. These correspond to the 6 extrinsic parameters needed for camera calibration.

Intrinsic Parameters

Intrinsic Parameters describe the conversion from unit focal length metric to pixel coordinates (and the reverse)

\[
x_{\text{mm}} = -(x_{\text{pix}} - o_x) s_x \rightarrow -1/s_x x_{\text{mm}} + o_x = x_{\text{pix}}
\]

\[
y_{\text{mm}} = -(y_{\text{pix}} - o_y) s_y \rightarrow -1/s_y y_{\text{mm}} + o_y = y_{\text{pix}}
\]

or

\[
\begin{pmatrix} x \\ y \\ w \end{pmatrix}_{\text{pix}} = \begin{pmatrix} -1/s_x & 0 & o_x \\ 0 & -1/s_y & o_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}_{\text{mm}} = K_{\text{int}} p
\]

It is common to combine scale and focal length together as these are both scaling factors; note projection is unitless in this case!
The Camera Matrix

- Homogenous coordinates for 3D
 - four coordinates for 3D point
 - equivalence relation \((X,Y,Z,T)\) is the same as \((kX, kY, kZ,kT)\)
- Turn previous expression into HC’s
 - HC’s for 3D point are \((X,Y,Z,T)\)
 - HC’s for point in image are \((U,V,W)\)

\[
\begin{pmatrix}
U \\
V \\
W
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{pmatrix} \begin{pmatrix}
X \\
Y \\
Z \\
T
\end{pmatrix} \quad (U,V,W) \rightarrow \left(\frac{U}{W},\frac{V}{W}\right) = (u,v)
\]

Camera parameters

- Summary:
 - points expressed in external frame
 - points are converted to canonical camera coordinates
 - points are projected
 - points are converted to pixel units

\[
\begin{pmatrix}
U \\
V \\
W
\end{pmatrix} = \text{Transformation representing intrinsic parameters} \quad \begin{pmatrix}
X \\
Y \\
Z
\end{pmatrix} \quad \text{Transformation representing projection model} \quad \begin{pmatrix}
X \\
Y \\
Z \\
T
\end{pmatrix} \quad \text{Transformation representing extrinsic parameters}
\]

point in pixel coords. \quad point in metric image coords. \quad point in cam. coords. \quad point in world coords.
Lens Distortion

• In general, lenses introduce minor irregularities into images, typically radial distortions:

\[
\begin{align*}
x &= x_d(1 + k_1 r^2 + k_2 r^4) \\
y &= y_d(1 + k_1 r^2 + k_2 r^4) \\
r^2 &= x_d^2 + y_d^2
\end{align*}
\]

• The values \(k_1\) and \(k_2\) are additional parameters that must be estimated in order to have a model for the camera system.

Summary: Other Models

• The orthographic and scaled orthographic cameras (also called weak perspective)
 – simply ignore \(z\)
 – differ in the scaling from \(x/y\) to \(u/v\) coordinates
 – preserve Euclidean structure to a great degree

• The affine camera is a generalization of orthographic models.
 – \(u = A p + d\)
 – \(A\) is 2 x 3 and \(d\) is 2x1
 – This can be derived from scaled orthography or by linearizing perspective about a point not on the optical axis

• The projective camera is a generalization of the perspective camera.
 – \(u' = M p\)
 – \(M\) is 3x4 nonsingular defined up to a scale factor
 – This just a generalization (by one parameter) from “real” model

• Both have the advantage of being linear models on real and projective spaces, respectively.
Related Transformation Models

- Euclidean models (homogeneous transforms); $b^p = b^T_a a^p$
- Similarity models: $b^p = s b^T_a a^p$
- Affine models: $b^p = b^K_a a^p$, $K = [A,t;0 0 0 1]$, $A \in \text{GL}(3)$
- Projective models: $b^p = b^M_a a^p$, $M \in \text{GL}(4)$
 - Ray models
 - Affine plane
 - Sphere

Model Stratification

<table>
<thead>
<tr>
<th>Transforms</th>
<th>Euclidean</th>
<th>Similarity</th>
<th>Affine</th>
<th>Projective</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotation</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>translation</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>uniform scaling</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>nonuniform scaling</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shear</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>perspective</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>composition of proj.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Invariants</th>
<th>Euclidean</th>
<th>Similarity</th>
<th>Affine</th>
<th>Projective</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>angle</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ratios</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>parallelism</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>incidence/cross rat.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Why Projective (or Affine or ...)

- Recall in Euclidean space, we can define a change of coordinates by choosing a new origin and three orthogonal unit vectors that are the new coordinate axes
 - The class of all such transformation is SE(3) which forms a group
 - One rendering is the class of all homogeneous transformations
 - This does not model what happens when things are imaged (why?)
- If we allow a change in scale, we arrive at similarity transforms, also a group
 - This sometimes can model what happens in imaging (why?)
- If we allow the 3x3 rotation to be an arbitrary member of GL(3) we arrive at affine transformations (yet another group!)
 - This also sometimes is a good model of imaging
 - The basis is now defined by three arbitrary, non-parallel vectors
- The process of perspective projection does not form a group
 - that is, a picture of a picture cannot in general be described as a perspective projection
- Projective systems include perspectivities as a special case and do form a group
 - We now require 4 basis vectors (three axes plus an additional independent vector)
 - A model for linear transformations (also called collineations or homographies) on P^n is $GL(n+1)$ which is, of course, a group

Camera calibration

- Issues:
 - what are intrinsic parameters of the camera?
 - what is the camera matrix? (intrinsic+extrinsic)
- General strategy:
 - view calibration object
 - identify image points
 - obtain camera matrix by minimizing error
 - obtain intrinsic parameters from camera matrix
- Most modern systems employ the multi-plane method
 - avoids knowing absolute coordinates of calibration points
- Error minimization:
 - Linear least squares
 - easy problem numerically
 - solution can be rather bad
 - Minimize image distance
 - more difficult numerical problem
 - solution usually rather good, but can be hard to find
 - start with linear least squares
 - Numerical scaling is an issue
The problem:
Compute the camera intrinsic (4 or more) and extrinsic parameters (6) using only observed camera data.

CAMERA CALIBRATION: A WARMUP

A simple way to get scale parameters; we can compute the optical center as the numerical center and therefore have the intrinsic parameters.
Calibration: Another Warmup

• Suppose we want to calibrate the affine camera and we know $u_i = A p_i + d$ for many pairs i

• m is mean of u's and q is mean of p’s; note $m = A q + d$

• $U = [u_1 - m, u_2 - m, \ldots, u_n - m]$ and $P = [p_1 - q, p_2 - q, \ldots, p_n - q]$

• $U = A P \Diamond U P' (P P')^{-1} = A$

• d is now mean of $u_i - A p_i$

Types of Calibration

• Photogrammetric Calibration
• Self Calibration
• Multi-Plane Calibration
Photogrammetric Calibration

- Calibration is performed through imaging a pattern whose geometry in 3d is known with high precision.

- PRO: Calibration can be performed very efficiently
- CON: Expensive set-up apparatus is required; multiple orthogonal planes.

- Approach 1: Direct Parameter Calibration
- Approach 2: Projection Matrix Estimation

The General Case

- Affine is “easy” because it is linear and unconstrained (note orthographic is harder because of constraints)

- Perspective case is also harder because it is both nonlinear and constrained

- Observation: optical center can be computed from the orthocenter of vanishing points of orthogonal sets of lines.
Basic Equations

\[cT_w = (T_x, T_y, T_z)' \]

\[cR_w = (R_x, R_y, R_z)' \]

\[c_p = cR_w p + cT_w \]

\[u = -f \frac{R_x p + T_x}{R_z p + T_z} \]

\[v = -f \frac{R_y p + T_y}{R_z p + T_z} \]

Basic Equations

\[u_{pix} = \frac{1}{s_x} u + o_x \]

\[v_{pix} = \frac{1}{s_y} v + o_y \]

\[\bar{u} = u_{pix} - o_x = -f \frac{R_x p + T_x}{R_z p + T_z} \]

\[\bar{v} = v_{pix} - o_y = -f \frac{R_y p + T_y}{R_z p + T_z} \]
Basic Equations

\[\bar{w}_i f_y (R_y p_i + T_y) = \bar{v}_i f_x (R_x p_i + T_x) \]
\[\bar{w}_i (R_y p_i - T_y) - \bar{v}_i \alpha (R_x p_i + T_x) = 0 \]

\[r = \alpha R_x \text{ and } w = \alpha T_x \]
\[t = R_y \text{ and } s = T_y \]

one of these for each point

\[A_i = (u_i p_i, u_i, -v_i p_i, -v_i) \text{ and } A[t, s, w, r]' = 0 \]

Properties of SVD

• Recall the singular values of a matrix are related to its rank.

• Recall that \(Ax = 0 \) can have a nonzero \(x \) as solution only if \(A \) is singular.

• Finally, note that the matrix \(V \) of the SVD is an orthogonal basis for the domain of \(A \); in particular the zero singular values are the basis vectors for the null space.

• Putting all this together, we see that \(A \) must have rank 7 (in this particular case) and thus \(x \) must be a vector in this subspace.

• Clearly, \(x \) is defined only up to scale.
Basic Equations

\[A_i = (u_i p_i, u_i, -v_i p_i, -v_i) \] \text{ and } \\
\[A[t, s, w, r]' = Am = 0 \]

Note that m is defined up a scale factor!

\[A = UDV' \] and choose m as column of V corresponding to the smallest singular value

\[||t|| = |\gamma| \] gives scale factor for solution
\[||w|| = |\gamma| \alpha \]

We now know \(R_x \) and \(R_y \) up to a sign and \(\gamma \).
\(R_z = R_x \times R_y \)

We will probably use another SVD to orthogonalize this system \((R = UDV'; \text{ set } D \text{ to } I \text{ and multiply}) \).
Last Details

• We still need to compute the correct sign.
 – note that the denominator of the original equations must be positive (points must be in front of the cameras)
 – Thus, the numerator and the projection must disagree in sign.
 – We know everything in numerator and we know the projection, hence we can determine the sign.

• We still need to compute \(T_z \) and \(f_x \)
 – we can formulate this as a least squares problem on those two values using the first equation.

\[
\bar{u} = -f_x \frac{R_x p + T_x}{R_z p + T_z} \rightarrow \\
\bar{u}(R_z p + T_z) = -f_x(R_x p + T_x) \\
f_x(R_x p + T_x) + \bar{u}T_z = -\bar{u}R_z p \\
A(f_x, T_z)' = b \rightarrow (f_x, T_z)' = (A' A)^{-1} A' b
\]

Direct Calibration: The Algorithm

1. Compute image center from orthocenter
2. Compute the A matrix (6.8)
3. Compute solution with SVD
4. Compute gamma and alpha
5. Compute R (and normalize)
6. Compute \(f_x \) and and \(T_z \)
7. If necessary, solve a nonlinear regression to get distortion parameters
Indirect Calibration: The Basic Idea

• We know that we can also just write
 – \(u_h = M p_h \)
 – \(x = (u/w) \) and \(y = (v/w) \), \(u_h = (u,v,1)' \)
 – As before, we can multiply through (after plugging in for \(u,v, \) and \(w \))

• Once again, we can write
 – \(A m = 0 \)

• Once again, we use an SVD to compute \(m \) up to a scale factor.

Getting The Camera Parameters

\[
M = \begin{bmatrix}
-f_x R_x + o_x R_z & -f_x T_x + o_x T_z \\
-f_y R_y + o_y R_z & -f_y T_y + o_y T_z \\
R_z & T_z
\end{bmatrix}
\]

We’ll write

\[
M = \begin{bmatrix}
q_1 \\
q_2 \\
q_3 \\
q_4'
\end{bmatrix}
\]
Getting The Camera Parameters

\[
M = \begin{bmatrix}
-f_x R_x + o_x R_z & -f_x T_x + o_y T_z \\
-f_y R_y + o_y R_z & -f_y T_y + o_y T_z \\
R_z & T_z
\end{bmatrix}
\]

We’ll write

\[
M = \begin{bmatrix}
q_1 \\
q_2 \\
q_3 \\
q_4'
\end{bmatrix}
\]

FIRST:

\[|q_3| \text{ is scale up to sign; divide by this value}\]

\[M_{3,4} \text{ is } T_z \text{ up to sign, but } T_z \text{ must be positive; if not divide } M \text{ by } -1\]

THEN:

\[
R_y = (q_2 - o_y R_z)/f_y
\]

\[
R_x = R_y \times R_z
\]

\[
T_x = -(q_{4,1} - o_x T_z)/f_x
\]

\[
T_y = -(q_{4,2} - o_y T_z)/f_y
\]

Finally, use SVD to orthogonalize the rotation,

Self-Calibration

- Calculate the intrinsic parameters solely from point correspondences from multiple images.
- Static scene and intrinsics are assumed.
- No expensive apparatus.
- Highly flexible but not well-established.
- Projective Geometry – image of the absolute conic.
Model Examples: Points on a Plane

- Normal vector \(n = (n_x, n_y, n_z, 0)' \); point \(P = (p_x, p_y, p_z, 1) \)
 - plane equation: \(n \cdot P = d \)
 - w/o loss of generality, assume \(n_z \neq 0 \)
 - Thus, \(p_z = a \cdot p_x + b \cdot p_y + c \); let \(B = (a, b, 0, c) \)
 - Define \(P' = (p_x, p_y, 0, 1) \)
 - \(P = P' + (0, 0, B \cdot P', 0) \)

- Affine: \(u = A \cdot P, A \) a 3 by 4 matrix
 - \(u = A_{1,2,4} \cdot P' + A_3 \cdot B \cdot P' = A_{3 \times 3} \cdot P_{3 \times 1} \)
 - Note that we can now "reproject" the points \(u \) and group the projections --- in short projection of projections stays within the affine group

- Projective \(p = M \cdot P, M \) a 4 by 3 matrix
 - \(p = M_{1,2,4} \cdot P' + M_3 \cdot B \cdot P' = M \cdot P_{3 \times 1} \)
 - Note that we can now "reproject" the points \(p \) and group the resulting matrices --- in short projections of projections stays within the projective group

Multi-Plane Calibration

- Hybrid method: Photogrammetric and Self-Calibration.
- Uses a planar pattern imaged multiple times (inexpensive).
- Used widely in practice and there are many implementations.
- Based on a group of projective transformations called homographies.

- \(m \) be a 2d point \([u \ v \ 1]'\) and \(M \) be a 3d point \([x \ y \ z \ 1]'\).

- Projection is

\[
\tilde{s}m = A[R \ T] \tilde{M}
\]
Review: Projection Model

\[
\begin{pmatrix}
U \\
V \\
W
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & f
\end{pmatrix} \begin{pmatrix}
X \\
Y \\
Z \\
T
\end{pmatrix}
\]

\[
\begin{pmatrix}
U \\
V \\
W
\end{pmatrix} = \begin{pmatrix}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
X \\
Y \\
Z \\
T
\end{pmatrix}
\]

\[
\begin{pmatrix}
U \\
V \\
W
\end{pmatrix}_{pix} = \begin{pmatrix}
s_u & 0 & o_u \\
0 & s_v & o_v \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
U \\
V \\
W
\end{pmatrix}_{mm} = Ap
\]

10/15/04

CS 441, Copyright G.D. Hager
Result

• We know that

\[\begin{bmatrix} h_1 & h_2 & h_3 \end{bmatrix} = sA \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} \]

• From one homography, how many constraints on the intrinsic parameters can we obtain?
 – Extrinsic have 6 degrees of freedom.
 – The homography supplies 8 values.
 – Thus, we should be able to obtain 2 constraints per homography.

• Use the constraints on the rotation matrix columns…

Planar Homographies

• First Fundamental Theorem of Projective Geometry:
 – There exists a unique homography that performs a change of basis between two projective spaces of the same dimension.

\[s\tilde{m} = H\tilde{M} \]

 – Notice that the homography is defined up to scale (s).

• In \(P(2) \), we have
 – \(p' = Hp \) for points \(p \)
 – \(u' = H^t u \) for lines \(u \)

• Note to define the homography, we need three basis vectors *plus* the unit point!
Planar Homographies

• First Fundamental Theorem of Projective Geometry:
 – There exists a unique homography that performs a change of basis between two projective spaces of the same dimension.

 \[
 s[u \ v \ 1]^T = A[r_1 \ r_2 \ r_3 \ t][X \ Y \ Z \ 1]^T \\
 s[u \ v \ 1]^T = A[r_1 \ r_2 \ r_3 \ t][X \ Y \ 0 \ 1]^T \\
 s[u \ v \ 1]^T = A[r_1 \ r_2 \ t][X \ Y \ 1]^T \\
 s[u \ v \ 1]^T = H[X \ Y \ 1]^T \\
 \]

 – Projection Becomes
 \[
 s\tilde{m} = H\tilde{M} \\
 \]

 – Notice that the homography is defined up to scale (s).

Estimating A Homography

• Here is what looks like a reasonable recipe for computing homographies:
 – Planar pts \((x_1; y_1; 1, x_2; y_2; 1, ..., x_n; y_n; 1) = X\)
 – Corresponding pts \((u_1; v_1; 1, u_2; v_2; 1, ..., u_n; v_n; 1) = U\)
 – \(U = HX\)
 – \(U X' (X X')^{-1} = H\)

 • The problem is that \(X\) will not be full rank (why?). So we’ll have to work a little harder ...
Computing Intrinsics

• Rotation Matrix is orthogonal:

\[r_i^T r_j = 0 \]
\[r_i^T r_i = r_j^T r_j \]

• Write the homography in terms of its columns:

\[h_1 = sA r_1 \]
\[h_2 = sA r_2 \]
\[h_3 = sA t \]

Computing Intrinsics

• Derive the two constraints:

\[h_1 = sA r_1 \]
\[\frac{1}{s} A^{-1} h_1 = r_1 \]
\[\frac{1}{s} A^{-1} h_2 = r_2 \]
\[r_1^T r_2 = 0 \]
\[h_1^T A^{-T} A^{-1} h_2 = 0 \]
\[r_1^T r_1 = r_2^T r_2 \]
\[h_1^T A^{-T} A^{-1} h_1 = h_2^T A^{-T} A^{-1} h_2 \]
Closed-Form Solution

Let \(B = A^{-T}A^{-1} = \)

\[
\begin{bmatrix}
\frac{1}{\alpha^2} & -\frac{\gamma}{\alpha^2\beta} & \frac{\gamma}{\alpha^2\beta} \\
-\frac{\gamma}{\alpha^2\beta} & \frac{\gamma^2}{\alpha^2\beta^2} + \frac{1}{\beta^2} & -\frac{\gamma^2}{\alpha^2\beta^2} \\
\frac{\gamma^2}{\alpha^2\beta^2} - \frac{\gamma^2}{\alpha^2\beta^2} - \frac{\gamma}{\alpha^2\beta} & -\frac{\gamma}{\alpha^2\beta} & \frac{\gamma}{\alpha^2\beta}
\end{bmatrix}
\]

• Notice \(B \) is symmetric, 6 parameters can be written as a vector \(b \).
• From the two constraints, we have \(h_i^T B h_j = v_{ij}^T \)

\[
\begin{bmatrix}
v^T_{ij} \\
(v_{11} - v_{22})^T
\end{bmatrix} b = 0;
\]

• Stack up \(n \) of these for \(n \) images and build a \(2n*6 \) system.
• Solve with SVD (yet again).
• Extrinsic “fall-out” of the result easily.

Non-linear Refinement

• Closed-form solution minimized algebraic distance.
• Since full-perspective is a non-linear model
 – Can include distortion parameters (radial, tangential)
 – Use maximum likelihood inference for our estimated parameters.

\[
\sum_{i=1}^{n} \sum_{j=1}^{m} \left| m_{ij} - \hat{m}(A, R_k, T_k, M_j) \right|^2
\]
Multi-Plane Approach In Action

• …if we can get matlab to work…

Calibration Summary

• Two groups of parameters:
 – internal (intrinsic) and external (extrinsic)
• Many methods
 – direct and indirect, flexible/robust
• The form of the equations that arise here and the way they are solved is common in vision:
 – bilinear forms
 – $Ax = 0$
 – Orthogonality constraints in rotations

• Most modern systems use the method of multiple planes (matlab demo)
 – more difficult optimization over a large # of parameters
 – more convenient for the user
An Example Using Homographies

- Image rectification is the computation of an image as seen by a rotated camera
 - The computation of the planar reprojection is a homography
 - we’ll show later that depth doesn’t matter when rotating; for now we’ll just use intuition

Rectification Using Homographies

- Pick a rotation matrix R from old to new image

- Consider all points in the image *you want to compute*; then
 - construct pixel coordinates $x = (u, v, 1)$
 - K maps unit focal length metric coordinates to pixel (normalized camera)
 - $x' = KR^tK^{-1}x \quad \diamond \quad x' = Hx$

- Sample a point x' in the original image for each point x in the new.
Bilinear Interpolation

- A minor detail --- new value $x' = (u',v',1)$ may not be integer

- let $u' = i + f_u$ and $v' = j+f_v$

- New image value $b = (1-f_u)((1-f_v)I(j,i) + f_v I(j+1,i)) + f_u((1-f_v)I(j,i+1) + f_v I(j+1,i+1))$

Rectification: Basic Algorithm

1. Create a mesh of pixel coordinates for the rectified image
2. Turn the mesh into a list of homogeneous points
3. Project *backwards* through the intrinsic parameters to get unit focal length values
4. Rotate these values back to the current camera coordinate system.
5. Project them *forward* through the intrinsic parameters to get pixel coordinates again.
 - Note equivalently this is the homography $KR'R'$ where K is the intrinsic parameter matrix
6. Sample at these points to populate the rectified image
 - typically use bilinear interpolation in the sampling
Rectification Results

.2 rad
.4 rad
.6 rad

“Homework” Problems

- Derive the relationship between the Plucker coordinates of a line in space and its projection in Plucker coordinates

- Show that the projection of parallel lines meet at a point (and show how to solve for the point)

- Given two sets of points that define two projective bases, show how to solve for the homography that relates them.

- Describe a simple algorithm for calibrating an affine camera given known ground truth points and their observation --- how many points do you need?
Two-Camera Geometry

PlPr
TPr = R(Pl – T)

(Pl – T) · (T x Pl) = 0
Pr^t R (T x Pl) = 0
Pr^t E Pl = 0

where E = R sk(T)

sk(T) =

\[
\begin{pmatrix}
0 & -T_z & T_y \\
T_z & 0 & -T_x \\
-T_y & T_x & 0
\end{pmatrix}
\]

The matrix E is called the essential matrix and completely describes the epipolar geometry of the stereo pair.
Fundamental Matrix Derivation

Note that E is invariant to the scale of the points, therefore we also have

$$p_r^t E \ p_l = 0$$

where p denotes the (metric) image projection of P

Now if K denotes the internal calibration, converting from metric to pixel coordinates, we have further that

$$r_r^t K^t E \ K^{-1} r_l = r_r^t F \ r_l = 0$$

where r denotes the pixel coordinates of p. F is called the fundamental matrix.