23.2-2 Suppose that we represent the graph $G = (V, E)$ as an adjacency matrix. Give a simple implementation of Prims algorithm for this case that runs in $O(V^2)$ time.

Solution. If Graph $G = (V, E)$ is represented as an adjacency matrix, for an vertex u, to find its adjacent vertices, instead of searching the adjacency list, we search the row of u in the adjacency matrix. We assume that the adjacency matrix stores the edge weights, and those unconnected edges have weights 0. The Prim’s algorithms is modified as:

Algorithm 1: MST-PRIM2(G, r)

1. **for** each $u \in V[G]$ **do**
 2. $key[u] = \infty$;
 3. $\pi[u] = NIL$;
4. **end**
5. $key[r] = 0$;
7. **while** $Q \neq \emptyset$ **do**
8. $u = EXTRACT-MIN(Q)$;
9. **for** each $v \in V[G]$ **do**
10. **if** $A[u,v] \neq 0$ and $v \in Q$ and $A[u,v] < key[v]$ **then**
11. $\pi[v] = u$;
13. **end**
14. **end**
15. **end**

The outer loop (while) has $|V|$ variables and the inner loop (for) has $|V|$ variables. Hence the algorithm runs in $O(V^2)$.

Remarks There are several ways to implement Prim’s algorithm in $O(V^2)$ algorithm:

(a) Using the priority queue as above;

(b) Using an array so each time extracting the minimum by one-by-one comparison, which takes $O(V)$ time;

(c) Converting the adjacency matrix into adjacency list representation in $O(V^2)$ time, then using the implementation in textbook.

All above methods run in $O(V^2)$ time.

\[\square\]
Professor Borden proposes a new divide-and-conquer algorithm for computing minimum spanning trees, which goes as follows. Given a graph \(G = (V, E) \), partition the set \(V \) of vertices into two sets \(V_1 \) and \(V_2 \) such that \(|V_1|\) and \(|V_2|\) differ by at most 1. Let \(E_1 \) be the set of edges that are incident only on vertices in \(V_1 \), and let \(E_2 \) be the set of edges that are incident only on vertices in \(V_2 \). Recursively solve a minimum-spanning-tree problem on each of the two subgraphs \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \). Finally, select the minimum-weight edge in \(E \) that crosses the cut \(V_1, V_2 \), and use this edge to unite the resulting two minimum spanning trees into a single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning tree of \(G \), or provide an example for which the algorithm fails.

Solution. We claim that the algorithm will fail. A simple counter example is shown in Figure 1. Graph \(G = (V, E) \) has four vertices: \(\{v_1, v_2, v_3, v_4\} \), and is partitioned into subsets

\[
\begin{align*}
G_1 & \quad \text{with} \quad V_1 = \{v_1, v_2\} \quad \text{and} \quad G_2 = (V_2, E_2) \quad \text{with} \quad V_2 = \{v_3, v_4\}. \\
\text{The minimum-spanning-tree (MST) of } G_1 & \quad \text{has weight 4, and the MST of } G_2 \quad \text{has weight 5, and the minimum-weight edge crossing the cut } (V_1, V_2) \quad \text{has weight 1, in sum the spanning tree forming by the proposed algorithm is } v_2 - v_1 - v_4 - v_3 \quad \text{which has weight 10. On the contrary, it is obvious that the MST of } G \quad \text{is } v_4 - v_1 - v_2 - v_3 \quad \text{with weight 7. Hence the proposed algorithm fails to obtain an MST.} \quad \blacksquare
\end{align*}
\]

How can the number of strongly connected components of a graph change if a new edge is added?

Solution. The number of strongly connected components (SCCs) may remain the same or reduced to any number no less than 1, i.e. let \(m \) be the number of SCCs in the original graph, and \(m' \) be the number of SCCs of the new graph after adding the edge, then \(m' \leq m \) and \(m' \geq 1 \).

An explanatory example is shown in Figure 2. The left figure shows the original graph in which each node is an SCC, thus total \(n \) SCCs. If the new added edge is a self-loop of any node, or if the new added edge is pointing down, then then number of SCCs will not change. If the new added edge is a pointing up, it forms an SCC, and it may reduce the number of SCC to any number between 1 and \(n \).
22.5-3 Professor Bacon claims that the algorithm for strongly connected components would be simpler if it used the original (instead of the transpose) graph in the second depth-first search and scanned the vertices in order of increasing finishing times. Does this simpler algorithm always produce correct results?

Solution. This simpler algorithm cannot always produce correct results. Figure 3 shows an example that will lead to an incorrect result. Assuming that we start DFS from v_1, then after the first DFS the order of increasing finishing time is v_2, v_1, v_3. In the second DFS, if using the original graph and scanning the vertices in order of increasing finishing time, that is, starting from v_2, will lead to one strongly connected component (SCC) of $\{v_1, v_2, v_3\}$. In fact, there are two SCCs in the graph: $\{v_1, v_2\}$ and $\{v_3\}$.

![Figure 3: An example disproving the proposed algorithm.](image-url)