I (10 points)
Note that the optimal substructure of LCS holds. We introduce another variable to record
the ending symbol of the common subsequence. Let $c[i, j, a]$ be the length of the longest
restricted common subsequence (LRCS) between two strings $x_1 x_2 \cdots x_i$ and $y_1 y_2 \cdots y_j$ ending
with symbol a. Let S be the dictionary of alphabets and s be its size. Since the LRCS requires
that no two consecutive symbols are equal, the recursion formula becomes:

$$
c[i, j, a] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0, \\
c[i-1, j-1, a] & \text{if } i, j > 0 \text{ and } a \notin \{x_i, y_j\}, \\
c[i, j-1, a] & \text{if } i, j > 0 \text{ and } a = x_i \text{ and } a \neq y_j, \\
c[i-1, j, a] & \text{if } i, j > 0 \text{ and } a = y_j \text{ and } a \neq x_i, \\
\max_{b \neq a}\{c[i-1, j-1, a], c[i-1, j-1, b] + 1\} & \text{if } i, j > 0 \text{ and } a = y_j = x_i.
\end{cases}
$$

Given the strings $X = x_1 x_2 \cdots x_m$ and $Y = y_1 y_2 \cdots y_n$, the maximum length will be determined
by $\max_a\{c[m, n, a]\}$.

Note that in the fifth case the maximization can be reused for all $b \in S$ (except that a
eq b that is maximum solution, in which the second largest solution is chosen). Hence
algorithm runs in $O(mns)$.

II (10 points)
Let T denote the 2-4 tree and k be the key to insert into T. The insertion is executed as:

1. From root(T) search downwardly to locate the leaf node x to be inserted into.
2. Insert k into x.
3. If x has 4 keys, say $\{k_1, k_2, k_3, k_4\}$, repeat:
 i. If x is the root, create new node as the root, move k_3 to the root node, and split the
 rest of x into two nodes x_1 and x_2 such that x_1 contains $\{k_1, k_2\}$ and x_2 contains $\{k_4\}$.
 Let the two children of the root point to x_1 and x_2 respectively. Increase the height of T
 by 1, return T.
 ii. Else, randomly select k_2 or k_3, wlog let us take k_3 for example, insert k_3 into x’s parent
 node, denoted by y, and split the rest of x into two nodes x_1 and x_2 such that x_1 contains
 $\{k_1, k_2\}$ and x_2 contains $\{k_4\}$. Update the two pointers in y before k_3 and after k_3 to
 point to x_2 and x_3, respectively, then update x by y.

 till x has less than 4 keys.
4 Return T.

Step 1 takes $O(\log n)$ time. Step 2 takes $O(1)$ time. Step 3 starts from a leaf node and runs at most to the root, therefore it takes $O(\log n)$ time. In sum the algorithm runs in $O(\log n)$.