I (30 points) Two possible solutions are shown below.

Solution 1: i. Algorithm (10 points)

Input: Two arrays A and B, both of length n

Output: True if A and B have at least one common element. False otherwise.

1. flag = False;
2. for i ← 1 to n do
3. key ← A[i];
4. for j = 1 to n do
5. if B[j] == key then
6. flag ← True;
7. break;
8. end
9. end
10. return flag;

ii. Correctness (10 points)

Loop invariant: At the start of each iteration of the for loop in of lines 2-10, if flag=False, the subarrays A[1..i - 1] and B[1..n] do not have any common element; if flag=True, the subarrays A[1..i - 1] and B[1..n] do not have any common element and A[i] ∈ B[1..n].

Initialization (input to loop): i = 1, A[1..i - 1] is empty, nothing need to be proved.

Maintenance (loop to loop): new i = i_old + 1, flag=False, A[i - 1] ∉ B[1..n]. Hence loop invariant holds.

Termination (loop to out): If flag=True, for current i, A[i] ∈ B[1..n] and A[i-1] ∉ B[1..n]; If flag=False, i = n + 1, A[n] ∉ B[1..n]. Then we conclude that A[1..n] does not have common element with B[1..n], Hence the algorithm is correct.

iii. Speed (10 points)

i takes less than or equal to n values and j takes less than or equal to n values. It takes O(1) for each comparison, hence T(n) = O(n^2).

Solution 2: i. Algorithm
Input: Two arrays A and B, both of length n

Output: True if A and B have at least one comment element. False otherwise.

1. Sort A and B using Merge-Sort;
2. \(i \leftarrow 1; \)
3. \(j \leftarrow 1; \)
4. flag \(\leftarrow \) False;
5. while \(i \leq n \) and \(j \leq n \) do
6. if \(A[i] == B[j] \) then
7. flag \(\leftarrow \) True;
8. break;
9. end
10. else if \(A[i] < B[j] \) then
 11. \(i++; \)
12. end
13. else
14. \(j++; \)
15. end
16. end
17. return flag;

ii. Correctness
Correctness of merge sort refers to textbook.

Loop invariant: At the start of each iteration of the while loop in of lines 5-16, if flag=False, the subarrays \(A[1..i-1] \) and \(B[1..j-1] \) do not have any common element; if flag=True, the subarrays \(A[1..i-1] \) and \(B[1..j-1] \) do not have any common element and \(A[i] = B[j] \).

Initialization (input to loop): \(i = 1, j = 1, A[1..i-1] \) and \(B[1..j-1] \) are empty, nothing need to be proved.

Maintenance (loop to loop): flag must be False, if new \(i = old + 1, A[i-1] \notin B[1..j-1] \); if new \(j = old + 1, B[j-1] \notin A[1..i-1] \). Hence loop invariant holds.

Termination (loop to out): If flag=True, for current \(i, j, A[i] = B[j] \), but \(A[i-1] \notin B[1..j-1] \) and \(B[j-1] \notin A[1..i-1] \); If flag=False, then if \(i = n + 1, A[n] \notin B[1..j-1] \) and if \(j = n + 1, B[n] \notin A[1..i-1] \). Then we conclude that \(A[1..n] \) does not have common element with \(B[1..n] \), Hence the algorithm is correct.

iii. Speed
Merge-sort takes \(O(n \log n) \) time. \(i, j \) takes less than or equal to \(n \) values respectively, and each comparison takes \(O(1) \) time, hence \(T(n) = O(n \log n) + O(n) = O(n \log n) \)
II (10 points) For \(n > 1, \)
\[
 f(n) = 2f(n-1) + n \\
= 2(2f(n-2) + n-1) + n \\
= 2^2 f(n-2) + 2(n-1) + n \\
= \cdots \\
= 2^{n-1} f(1) + 2^{n-2}(n-(n-2)) + \cdots + 2(n-1) + n \\
= 1 \cdot 2^{n-1} + 2 \cdot 2^{n-2} + 3 \cdot 2^{n-3} + \cdots + (n-1) \cdot 2^1 + n \cdot 2^0
\]
Then
\[
2f(n) = 1 \cdot 2^n + 2 \cdot 2^{n-1} + 3 \cdot 2^{n-2} + 4 \cdot 2^{n-3} + \cdots + n \cdot 2^1
\]
By subtracting the above two equations, we have
\[
f(n) = 2^n + 2^{n-1} + 2 + 1 - n - 1 = 2^{n+1} - n - 2
\]
(1)
To prove by induction, when \(n = 1, \)
\[
f(1) = 2^2 - 1 - 2 = 1
\]
Assume for \(n = k, k = 1, 2, 3, \cdots, \) \(f(k) = 2^{k+1} - k - 2 \) holds, then for \(n = k + 1, \)
\[
f(k + 1) = 2f(k) + (k + 1) = 2(2^{k+1} - k - 2) + k + 1 = 2^{k+2} - (k + 1) - 2
\]
Hence the claim holds.

III (70 points) Note that here we assume \(\log \) means \(\log_2. \)

1 (10 points) T.
\[3n^2 + 6n \leq 9n^2 \text{ for any } n \geq 3, \text{ hence } 3n^2 + 6n = O(n^2). \]

2 (10 points) T.
\[3n^2 + 6n \leq 6n^2 \log n \text{ for any } n \geq 2, \text{ hence } 3n^2 + 6n = O(n^2 \log n). \]

3 (10 points) F.
\[O(\log n) > O(1). \text{ More precisely, given any } n_0 \text{ and } c, \ n^2 \log n > cn \text{ when } n \geq \max\{2^c, n_0\}. \]

4 (10 points) F.
\[3^n = O\left(\frac{3}{2}\right)^n O(2^n) > O(2^n). \text{ More precisely, given any } n_0 \text{ and } c, \ 3^n > c \cdot 2^n \text{ when } n \geq \max\\{\log_{3/2} c, n_0\}. \]

5 (10 points) F.
Note that taking log preserves inequality. If \(\log n \leq c(\log \log n)^4, \) then \(\log \log n \leq \log c + 4 \log \log \log n. \) Clearly \(\log \log n \geq \log \log \log n, \) hence it is false.

6 (10 points) T
Note that taking log preserves inequality. If \(n \leq c(\log n)^{\log n}, \) then \(\log n = \log c + \log n(\log \log n). \) Clearly this holds.

7 (10 points) T
Note that taking log preserves inequality. If \(n^{100} \leq c 2^n, \) then \(\log n^{100} = 100 \log n \leq \log c + \log 2^n = \log c + n \log 2. \) Clearly this holds.