Parallel Rendering: A Sorting Classification

Why Parallelism

Applications need:
- High frame rates
- High resolution
- Large geometric models
- Stereo
- Anti-aliasing
- etc.

Performance implications:
- Hundreds of MFLOPS compute power
- Gigabytes per second memory bandwidth

Stages of Parallelism

Processing Tasks

Geometry Processors
- Each processor gets a subset of primitives
- Transformation
 (Lighting)
- Set-up for Rasterization

Rasterization Processors
- Each processor gets a subset of pixels
- Visibility computation
- Shading

Rendering as Sorting

Primitives in Screen-space Regions

Primitives may lie anywhere on or off screen
Determine effect of each primitive on each pixel
Primitives are sorted onto screen
Sorting affects distribution of data on geometry and rasterization processors
Where to sort

Sort First
Sort during geometry processing

Sort Middle
Sort between geometry processing and rasterization

Sort Last
Sort during rasterization

Sort First

Sort First: Data Arrangement
Distribute both geometry and rasterization work according to position of primitives on screen
Load balancing difficult
- Different screen regions of equal sizes may contain different numbers of primitives
- May need dynamic region sizes

Sort First: Communications
- Must determine primitive screen coverage before full transformation
- Exploit frame-to-frame coherence
 - Shuffle primitives between geometry processors only if screen coverage changes
- Possibly employ primitive clustering and bounding volumes
 - Pre-transform bounding volumes for small groups of primitives

Sort Middle

Sort Middle: Data Arrangement

Geometry processors
- Arbitrary (random) distribution of primitives
- Good for load balancing

Rasterization processors
- Screen-space distribution of primitives
- Load balancing difficult
Sort Middle: Communications

All geometry transformed primitives must be communicated every frame
All geometry processors must communicate with all rasterization processors
O(n²) communications paths

Sort Last: Data Arrangement

Arbitrary (random) arrangement of data on both geometry and rasterization processors
Great for load balancing
Each rasterization processor makes image of entire screen, with subset of primitives

Sort Last: Communications

Rasterization processors must communicate final pixel data
Composition of pixel data may take place along linear or tree-shaped network
Requires high bandwidth, assuming pixel data is much larger than primitive data