Ray Casting

Ray Casting Algorithm

For each pixel

1. Compute ray from eye through pixel

2. For each primitive
 — Test for ray-object intersection

3. Shade pixel using nearest primitive (or set to background color)
Computing the Rays

Choose eye point, view direction, up direction, fields of view (x and y)

\[p_t = \text{eye} + t*v \] (v typically normalized)

Compute rays to two opposite corners

Compute step sizes, \(\Delta x \) and \(\Delta y \) to go from pixel to pixel

To compute new ray: take step, then normalize

2D ray calculation

view is normalized
view direction

right = (view\(_y\), -view\(_x\))

\[v_a = \text{view} - \tan{\theta} * \text{right} \]
\[v_b = \text{view} + \tan{\theta} * \text{right} \]

step = (\(v_b - v_a \)) / num_pixels

\[v_0 = v_a + \text{step} / 2 \]
\[v_i = v_{i-1} + \text{step} \]

In 3D, we have an additional step size and field-of-view angle as well as an up vector.

Note: take equal-sized steps in viewing plane, not equal angles!
Computing Intersections

Ray is in parametric form (t is parameter)

Represent primitive in implicit form:
\[f(x,y,z) = 0 \]
(any (x,y,z) on surface evaluates to zero)

Substitute (x,y,z) of ray into \(f(x,y,z) \) and solve for \(t \)

- degree n implicit function will be degree n in \(t \)
- quadric surfaces may be solved with quadratic equation -- pick real solution closest to eye

Example Quadric Functions

Sphere: \((x-a)^2 + (y-b)^2 + (z-c)^2 - r^2 = 0\)

Circular cylinder (parallel to z-axis):
\((x-a)^2 + (y-b)^2 - r^2 = 0\)

Hyperbolic paraboloid:
\(\frac{y^2}{b^2} - \frac{x^2}{a^2} - z = 0\)
General Quadrics

General quadric has form:

\[Ax^2 + 2Bxy + 2Cxz + 2Dx + Ey^2 + 2Fyz + 2Gy + Hz^2 + 2Iz + J = 0 \]

or...

\[x^t Q x = 0, \quad \text{where } x^t = [x \ y \ z \ 1] \text{ and } Q = \begin{bmatrix} A & B & C & D \\ B & E & F & G \\ C & F & H & I \\ D & G & I & J \end{bmatrix} \]

Quadric Intersections

Quadric: \(x^t Q x = 0 \)

Ray: \(x = p + tv \)

Substituting ray for \(x \):

\[
(p + tv)^t Q (p + tv) = 0 \\
p^t Q p + p^t Q tv + tv^t Q p + tv^t Q tv = 0 \\
(v^t Q v) t^2 + (p^t Q v + v^t Q p) t + p^t Q p = 0 \\
(v^t Q v) t^2 + (2v^t Q p) t + p^t Q p = 0 \\
(Q \text{ is symmetric})
\]
Common Ray-tracing Primitives

Sphere, ellipsoid
Cylinders
Plane, triangle
 • $Ax + By + Cz + D = 0$
Torus
Bezier/Nurbs patches
 • parametric, so use implicit form of ray
 — intersection of two planes

Local Illumination Shading

Compute normal at closest intersection
 • $\nabla f = (\partial x, \partial y, \partial z)$ is normal vector field for implicit function, f

For each light
 • Use position and normal to compute light contribution
 • Accumulate light contributions

Color pixel
 • Clamp to avoid overflow
Shadows

Only add contribution from a light if it is visible from the point (and vice versa)

• test for intersections along ray in L direction
• accumulate contribution if no occlusion

(illumination is no longer totally local)

Truncating Primitives

Use another implicit function

• Test which side of the implicit function the intersection is on
• Keep intersection only if it is on the correct side

For example, truncate a cylinder using two plane equations (or perhaps a sphere)

• then cap using the two planes truncated by the cylinder
Constructive Solid Geometry

Perform hierarchical set operations on primitives

Union: \cup

Intersection: \cap

Difference: \dashv

CSG Operators

Square \cup Circle =

Square \cap Circle =

Square \dashv Circle =
CSG Hierarchy

\[
\text{Circle} \cap \text{Rectangle} = \text{Shape}
\]

Ray Tracing CSG

Each "object" may be a primitive or a CSG hierarchy

Find all ray-primitive intersections for hierarchy

Use CSG operators to determine which intervals are solid or vacant

Use start of nearest solid interval as ray-object intersection
CSG Tracing Algorithm

Start at root of CSG Hierarchy

Trace ray through left child - result is ordered list of intersections, forming solid and vacant intervals

Trace ray through right child

Merge lists of intersections/intervals by applying CSG operator of current node

CSG Example - golf ball

- Diagram showing a golf ball constructed from CSG operations:
 - a
 - b
 - c
 - a - b
 - (a - b) - c

- Diagram of the golf ball with CSG operations applied.
Some CSG Details

Each interval endpoint associated with intersection of ray with some surface

Normal computed from surface of intersection

Material parameters may come from either primitive