Light Fields

By Levoy and Hanrahan, SIGGRAPH 96

Representation for sampled plenoptic function

- stores data about visible light at various positions and directions

Created from set of images

Resamplings employ data from lots of different images
Light Field Dimensionality

Position and direction for each sample is a 5D space.

For empty space (no occlusion), space reduced to 4D:

- Sample is constant along a line.
- Light field defined on 4D space of directed lines.
Define two parallel planes

- uv-plane and st-plane

Light field defined as $L(u,v,s,t)$

- (r,g,b) for each (u,v,s,t) tuple

Use multiple slabs to cover larger space
Sampling

Typically create regular sampling of uv- and st-planes

Place eye point at \((u,v)\) on the uv-plane

Generate image with each corresponding to a point on the st-plane

- each pixel for image \((u,v)\) supplies sample \((u,v,x,y)\)
- using skewed perspective matrix, \((x,y) = (s,t)\)

Data looks like 2D array of 2D images
Visualization of Light Field

Generating Samples

Using rendered images

- Place eye at \((u,v)\)
- Skew projection to cover proper \((s,t)\) range
- Generate image

Using real photographs (looking inward)

- Computer-controlled camera on planar gantry
- Camera tilts to center on object
- \((s,t)\) resampled from \((x,y)\)
- Object platform (and lighting) rotates to capture different slabs
Stanford Light Field Gantry

Resampling

Foreach pixel in the rendered image

• compute line coordinates (intersections with uv- and st-planes

• Apply nearest neighbor, bilinear, or quadrilinear sampling to generate value of pixel from nearby lines in light field
Computing Line Parameters

Possible using ray/plane intersection

Faster using “texture mapping” to take advantage of plane coherence

• Store (u,v) coordinates in texture map
• Render uv-plane as textured rectangle
• Look up (u,v) coordinates for each pixel
• Repeat for (s,t) coordinates
Anti-aliasing

Pre-filter data to remove aliases

Integrate over range of eye points to filter (u,v)

Apply lens aperture to filter (s,t)

Filter size should be consistent with sample spacing
Compression

Light fields can be BIG (gigabytes)
Want to transmit over internet
Want to fit in memory
Need random access during reconstruction
Compression can be slow, decompression must be fast
Two Stage Compression/Decompression

Lossy vector quantization (VQ) compression

- Decompose data into small chunks, described as vector
- Train with data to generate codebook (containing codewords to represent)
- Store index of best codeword for each vector

Lossless entropy coding (using gzip)
Decompression

Decompress entropy coding (gunzip) on loading to memory

- entropy coding doesn’t allow random access

Decompress vector quantization (fast lookup) for each line sample on the fly

May compress 24:1 for VQ, 5:1 for gzip, total of 120:1