Ray Casting
For each pixel

1. Compute ray from eye through pixel
2. For each primitive
 — Test for ray-object intersection
3. Shade pixel using nearest primitive (or set to background color)
Computing the Rays

Choose eye point, view direction, up direction, fields of view (x and y)

\[p_t = \text{eye} + t*\mathbf{v} \] (\(\mathbf{v}\) typically normalized)

Compute rays to two opposite corners

Compute step sizes, \(\Delta x\) and \(\Delta y\) to go from pixel to pixel

To compute new ray: take step, then normalize
2D ray calculation

view is normalized view direction

right = (view_y, -view_x)
va = view - tanθ * right
vb = view + tanθ * right
step = (vb - va) / num_pixels
v0 = va + step / 2
vi = vi-1 + step

In 3D, we have an additional step size and field-of-view angle as well as an up vector.

Note: take equal-sized steps in viewing plane, not equal angles!
Computing Intersections

Ray is in **parametric** form (t is parameter)

Represent primitive in **implicit** form:

\[f(x,y,z) = 0 \]

(any \(x,y,z\) on surface evaluates to zero)

Substitute \((x,y,z)\) of ray into \(f(x,y,z)\) and solve for \(t\)

- degree \(n\) implicit function will be degree \(n\) in \(t\)
- quadric surfaces may be solved with quadratic equation -- pick real solution closest to eye
Example Quadric Functions

Sphere: \((x-a)^2 + (y-b)^2 + (z-c)^2 - r^2 = 0\)

Circular cylinder (parallel to z-axis):
\[(x-a)^2 + (y-b)^2 - r^2 = 0\]

Hyperbolic paraboloid:
\[\frac{y^2}{b^2} - \frac{x^2}{a^2} - z = 0\]
General Quadrics

General quadric has form:

\[A x^2 + 2Bxy + 2Cxz + 2Dx + Ey^2 + 2Fyz + 2Gy + Hz^2 + 2Iz + J = 0 \]

or...

\[x^tQx = 0, \quad \text{where} \quad x^t = [x \ y \ z \ 1] \quad \text{and} \quad Q = \begin{bmatrix} A & B & C & D \\ B & E & F & G \\ C & F & H & I \\ D & G & I & J \end{bmatrix} \]
Quadric Intersections

Quadric: \(x^tQx = 0 \)

Ray: \(x = p + tv \)

Substituting ray for \(x \):

\[
(p + tv)^tQ(p + tv) = 0
\]
\[
p^tQp + p^tQtv + tv^tQp + tv^tQtv = 0
\]
\[
(v^tQv)t^2 + (p^tQv + v^tQp)t + p^tQp = 0
\]
\[
(v^tQv)t^2 + (2v^tQp)t + p^tQp = 0
\]

\(Q\) is symmetric
Common Ray-tracing Primitives

Sphere, ellipsoid

Cylinders

Plane, triangle
 • $Ax + By + Cz + D = 0$

Torus

Bezier/Nurbs patches
 • parametric, so use implicit form of ray
 — intersection of two planes
Local Illumination Shading

Compute normal at closest intersection

• \(\nabla f = (\partial x, \partial y, \partial z) \) is normal vector field for implicit function, \(f \)

For each light

• Use position and normal to compute light contribution

• Accumulate light contributions

Color pixel

• Clamp to avoid overflow
Shadows

Only add contribution from a light if it is \textbf{visible} from the point (and vice versa)

- test for intersections along ray in L direction
- accumulate contribution if no occlusion

\textit{(illumination is no longer totally local)}
Truncating Primitives

Use another implicit function

- Test which side of the implicit function the intersection is on
- Keep intersection only if it is on the correct side

For example, truncate a cylinder using two plane equations (or perhaps a sphere)

- then cap using the two planes truncated by the cylinder
Constructive Solid Geometry

Perform hierarchical set operations on primitives

Union: \cup

Intersection: \cap

Difference: \setminus
CSG Operators

Square ∪ Circle =

Square ∩ Circle =

Square ← Circle =
CSG Hierarchy

\[\text{Circle} \cap \text{Rectangle} = \text{Shape} \]
Ray Tracing CSG

Each “object” may be a primitive or a CSG hierarchy

Find all ray-primitive intersections for hierarchy

Use CSG operators to determine which intervals are solid or vacant

Use start of nearest solid interval as ray-object intersection
CSG Tracing Algorithm

Start at root of CSG Hierarchy

Trace ray through left child - result is ordered list of intersections, forming solid and vacant intervals

Trace ray through right child

Merge lists of intersections/intervals by applying CSG operator of current node
CSG Example - golf ball

\[
\begin{align*}
 a & \rightarrow a \\
 b & \rightarrow b \\
 a-b & \rightarrow a-b \\
 (a-b) & \rightarrow (a-b) - c
\end{align*}
\]
Some CSG Details

Each interval endpoint associated with intersection of ray with some surface

Normal computed from surface of intersection

Material parameters may come from either primitive