Ray Casting

Ray Casting Algorithm

For each pixel

1. Compute ray from eye through pixel
2. For each primitive
 — Test for ray-object intersection
3. Shade pixel using nearest primitive (or set to background color)
Computing the Rays

Choose eye point, view direction, up direction, fields of view (x and y)

\[p_t = \text{eye} + t*v \] (v typically normalized)

Compute rays to two opposite corners

Compute step sizes, \(\Delta x \) and \(\Delta y \) to go from pixel to pixel

To compute new ray: take step, then normalize

2D ray calculation

- view is normalized view direction
- right = (view\(_y\), -view\(_x\))
- \(v_a = \text{view} - \tan\theta * \text{right} \)
- \(v_b = \text{view} + \tan\theta * \text{right} \)
- step = \((v_b - v_a) / \text{num_pixels} \)
- \(v_0 = v_a + \text{step} / 2 \)
- \(v_i = v_{i-1} + \text{step} \)

In 3D, we have an additional step size and field-of-view angle as well as an up vector.

Note: take equal-sized steps in viewing plane, not equal angles!
Computing Intersections

Ray is in parametric form (t is parameter)

Represent primitive in implicit form:
\[f(x,y,z) = 0 \]
(any \((x,y,z)\) on surface evaluates to zero)

Substitute \((x,y,z)\) of ray into \(f(x,y,z)\) and solve for \(t\)

- degree \(n\) implicit function will be degree \(n\) in \(t\)
- quadric surfaces may be solved with quadratic equation -- pick real solution closest to eye

Example Quadric Functions

Sphere: \((x-a)^2 + (y-b)^2 + (z-c)^2 = r^2 = 0\)

Circular cylinder (parallel to z-axis):
\((x-a)^2 + (y-b)^2 = r^2 = 0\)

Hyperbolic paraboloid:
\(y^2/b^2 - x^2/a^2 - z = 0\)
General Quadrics

General quadric has form:

$$Ax^2 + 2Bxy + 2Cxz + 2Dx + Ey^2 + 2Fyz + 2Gy + Hz^2 + 2Iz + J = 0$$

or...

$$x^tQx = 0, \quad \text{where } x^t = [x \ y \ z \ 1] \text{ and }$$

$$Q = \begin{bmatrix} A & B & C & D \\ B & E & F & G \\ C & F & H & I \\ D & G & I & J \end{bmatrix}$$

Quadric Intersections

Quadric: $$x^tQx = 0$$

Ray: $$x = p + tv$$

Substituting ray for x:

$$(p + tv)^tQ(p + tv) = 0$$

$$p^tQp + p^tQtv + tv^tQp + tv^tQtv = 0$$

$$(v^tQv)t^2 + (p^tQv + v^tQp)t + p^tQp = 0$$

$$(v^tQv)t^2 + (2v^tQp)t + p^tQp = 0$$

(Q is symmetric)
Common Ray-tracing Primitives

Sphere, ellipsoid

Cylinders

Plane, triangle
 • $Ax + By + Cz + D = 0$

Torus

Bezher/Nurbs patches
 • parametric, so use implicit form of ray
 —intersection of two planes

Local Illumination Shading

Compute normal at closest intersection
 • $\nabla f = (\partial x, \partial y, \partial z)$ is normal vector field for implicit function, f

For each light
 • Use position and normal to compute light contribution
 • Accumulate light contributions

Color pixel
 • Clamp to avoid overflow
Shadows

Only add contribution from a light if it is visible from the point (and vice versa)

- test for intersections along ray in L direction
- accumulate contribution if no occlusion

(illumination is no longer totally local)

Truncating Primitives

Use another implicit function

- Test which side of the implicit function the intersection is on
- Keep intersection only if it is on the correct side

For example, truncate a cylinder using two plane equations (or perhaps a sphere)

- then cap using the two planes truncated by the cylinder
Constructive Solid Geometry

Perform hierarchical set operations on primitives

Union: \cup

Intersection: \cap

Difference: \setminus

CSG Operators

Square \cup Circle =

Square \cap Circle =

Square \setminus Circle =
CSG Hierarchy

Ray Tracing CSG

Each “object” may be a primitive or a CSG hierarchy

Find all ray-primitive intersections for hierarchy

Use CSG operators to determine which intervals are solid or vacant

Use start of nearest solid interval as ray-object intersection
CSG Tracing Algorithm

Start at root of CSG Hierarchy

Trace ray through left child - result is ordered list of intersections, forming solid and vacant intervals

Trace ray through right child

Merge lists of intersections/intervals by applying CSG operator of current node

CSG Example - golf ball

(a-b) - c
Some CSG Details

Each interval endpoint associated with intersection of ray with some surface

Normal computed from surface of intersection

Material parameters may come from either primitive