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ABSTRACT

Latency or lag in an interactive graphics system is the delay
between user input and displayed output.  We have found latency
and the apparent bobbing and swimming of objects that it
produces to be a serious problem for head-mounted display
(HMD) and augmented reality applications.  At UNC, we have
been investigating a number of ways to reduce latency; we present
two of these.  Slats is an experimental rendering system for our
Pixel-Planes 5 graphics machine guaranteeing a constant single
NTSC field of latency.  This guaranteed response is especially
important for predictive tracking.  Just-in-time pixels is an attempt
to compensate for rendering latency by rendering the pixels in a
scanned display based on their position in the scan.

1 INTRODUCTION

1.1 What is latency?

Performance of current graphics systems is commonly measured
in terms of the number of triangles rendered per second or in
terms of the number of complete frames rendered per second.
While these measures are useful, they don’t tell the whole story.

Latency, which measures the start to finish time of an operation
such as drawing a single image, is an often neglected measure of
graphics performance.  For some current modes of interaction,
like manipulating a 3D object with a joystick, this measure of
responsiveness may not be important.  But for emerging modes of
“natural” interaction, latency is a critical measure.

1.2 Why is it there?

All graphics systems must have some latency simply because it
takes some time to compute an image.  In addition, a system that
can produce a new image every frame may (and often will) have
more than one frame of latency.  This is caused by the pipelining
used to increase graphics performance.  The classic problem with
pipelining is that it provides increased throughput at a cost in
latency.  The computations required for a single frame are divided
into stages and their execution is overlapped.  This can expand the
effective time available to work on that single frame since several
frames are being computed at once.  However, the latency is as

long as the full time spent computing the frame in all of its stages.

1.3 Why is it bad?

Latency is a problem for head-mounted display (HMD)
applications.  The higher the total latency, the more the world
seems to lag behind the user’s head motions.  The effect of this lag
is a high viscosity world.

The effect of latency is even more noticeable with see-through
HMDs.  Such displays superimpose computer generated objects
on the user’s view of the physical world.  The lag becomes
obvious in this situation because the real world moves without lag,
while the virtual objects shift in position during the lag time,
catching up to their proper positions when the user stops moving.
This “swimming” of the virtual objects not only detracts from the
desired illusion of the objects’ physical presence, but also hinders
any effort to use this technology for real applications.

Most see-through HMD applications require a world without these
“swimming” effects.  If we hope to have applications present 3D
instructions to guide the performance of “complex 3D tasks” [9],
such as repairs to a photocopy machine or even a jet engine, the
instructions must stay fixed to the machine in question.   Current
research into the use of see-through HMDs by obstetricians to
visualize 3D ultrasound data indicates the need for lower latency
visualization systems [3].  The use of see-through HMDs for
assisting surgical procedures is unthinkable until we make
significant advances in the area of low latency graphics systems.

2 COMBATTING LATENCY

2.1 Matching

A possible solution to this lag problem is to use video techniques
to cause the user’s view of the real world to lag in synchronization
with the virtual world.  However, this only works while the
latency is relatively small.

2.2 Prediction

Another solution to the latency problem is to predict where the
user’s head will be when the image is finally displayed [10, 1, 2].
This technique, called predictive tracking, involves using both
recent tracking data and accurate knowledge of the system’s total
latency to make a best guess at the position and orientation of the
user’s head when the image is displayed inside the HMD.  Azuma
states that for prediction to work effectively, the lag must be small
and consistent.  In fact he uses the single field-time latency
rendering system (Slats), which we will discuss shortly, to achieve
accurate prediction.
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2.3 Rendering latency: compensation and reduction

2.3.1 Range of solutions

There are a wide spectrum of approaches that can be used to
reduce lag in image generation or compensate for it.  One way to
compensate for image generation latency is to offset the display of
the computed image based upon the latest available tracking data.

This technique is used, for example, by the Visual Display
Research Tool (VDRT), a flight simulator developed at the Naval
Training Systems Center in Orlando, Florida [5, 6].  VDRT is a
helmet-mounted laser projection system which projects images
onto a retro-reflective dome (instead of using the conventional
mosaic of high resolution displays found in most flight
simulators).  In the VDRT system, images are first computed
based upon the predicted position of the user's head at the time of
image display.  Immediately prior to image readout, the most
recently available tracking data is used to compute the errors in
the predicted head position used to generate the image.  These
errors are then used to offset the raster of the laser projector in
pitch and yaw so that the image is projected at the angle for which
it was computed.  Rate signals are also calculated and are used to
develop a time dependent correction signal which helps keep the
projected image at the correct spatial orientation as the projector
moves during the display field period.

Similarly, Regan and Pose are building the prototype for a
hardware architecture called the address recalculation
pipeline[15].  This system achieves a very small latency for head
rotations by rendering a scene on the six faces of a cube.  As a
pixel is needed for display, appropriate memory locations from the
rendered cube faces are read.  A head rotation simply alters which
memory is accessed, and thus contributes nothing to the latency.
Head translation is handled by object-space subdivision and image
composition.  Objects are prioritized and re-rendered as necessary
to accommodate translations of the user’s head.  The image may
not always be correct if the rendering hardware cannot keep up,
but the most important objects, which include the closest ones,
should be rendered in time to keep their positions accurate.

Since pipelining can be a huge source of lag, latency can be
reduced by reducing pipelining or basing it on smaller units of
time like polygons or pixels instead of frames.  Most commercial
graphics systems are at least polygon pipelined.  Whatever level
the pipelining, a system that computes images frame by frame is
by necessity saddled with at least a frame time of latency.  Other
methods overcome this by divorcing the image generation from
the display update rate.

Frameless rendering[4] can be used to reduce latency in this way.
In this technique pixels are updated continuously in a random
pattern.  This removes the dependence on frames and fields.

Pixels may be transformed at whatever rate is most convenient.
This reduces latency at the cost of image clarity since only a
portion of the pixels are updated.  The transform rate can remain
locked to the tracker update rate or separated on a pixel-by-pixel
basis as with the just-in-time pixels method, discussed next.

2.3.2 Just-in-time pixels (JITP)

We will present a technique called just-in-time pixels, which deals
with the placement of pixels on a scan-line display as a problem of
temporal aliasing [14].  Although the display may take many
milliseconds to refresh, the image we see on the display typically
represents only a single instant in time.  When we see an object in
motion on the display, it appears distorted because we see the
higher scan lines before we see the lower ones, making it seem as
if the lower part of the object lags behind the upper part.
Avoidance of this distortion entails generating every pixel the way
it should appear at the exact time of its display.  This can lead to a
reduction in latency since neither the head position data, nor the
output pixels are limited to increments of an entire frame time.
This idea is of limited usefulness on current LCD HMDs with
their sluggish response.  However, it works quite well on the
miniature CRT HMDs currently available and is also applicable to
non-interactive video applications.

2.3.3 Slats

As a more conventional attack on latency, we have designed a
rendering pipeline called Slats as a testbed for exploring fixed and
low latency rendering [7].  Unlike just-in-time pixels, Slats still
uses the single transform per frame paradigm.  The rendering
latency of Slats is exactly one field time (16.7 ms).  This is perfect
for predictive tracking which requires low and predictable
latency.  We measure this rendering latency from the time Slats
begins transforming the data set into screen coordinates to the
time the display devices begin to scan the pixel colors from the
frame buffers onto the screens.

3 MEASURING LATENCY

We have made both external and internal measurements of the
latency of the Pixel-Planes 5 PPHIGS graphics library [13, 7].
These have shown the image generation latency to be between 54
and 57 ms for minimal data sets.  The internal measurement
methods are quite specific to the PPHIGS library.  However, the
external measurements can be taken for any graphics system.

The external latency measurement apparatus records three timing
signals on a digital oscilloscope (see figure 1).  A pendulum and
led/photodiode pair provide the reference time for a real-world
event — the low point of the pendulum’s arc.  A tracker on the
pendulum is fed into the graphics system.  The graphics system
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Figure 3: Image generation in conventional
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Figure 4:  Image generation using just-in-time
pixels

starts a new frame when it detects the pendulum’s low point from
the tracking data.  An D/A converter is used to tell the
oscilloscope when the new frame has started.  Frames alternate
dark and light and a photodiode attached to the screen is used to
tell when the image changes.  The tracking latency was the time
between the signal from the pendulum’s photodiode and the
rendering start signal out of the D/A converter.  The rendering
latency was the time between the signal out of the D/A converter
and the signal from the photodiode attached to the screen.  These
time stamps were averaged over a number of frames.

The internal measurements found the same range of rendering
latencies.  The test was set up to be as fair as possible given the
Pixel-Planes 5 architecture (figure 2 , explained in more detail
later).  The test involved one full screen triangle for each graphics
processor.  This ensured that every graphics processor would have
work to do and would have rendering instructions to send to every
renderer.  The first several frames were discarded to make sure the
pipeline was full.  Finally, latency determined from time stamps
on the graphics processors was averaged over a number of frames.

4 JUST-IN-TIME PIXELS

4.1 The idea

When using a raster display device,  the pixels that make up an
image are not displayed all at once but are spread out over time.
In a conventional graphics system generating NTSC video, for
example,  the pixels at the bottom of the screen are displayed
almost 17 ms after those at the top.  Matters are further aggravated
when using NTSC video by the fact that not all of the lines of an
NTSC image are displayed in one raster scan but are in fact
interlaced across two fields.  In the first field only the odd lines in
an image are displayed, and in the second field only the even.

Thus, unless animation is performed on fields (i.e. generating a
separate image for each field), the last pixel in an image is
displayed more than 33 ms after the first.  The problem with this
sequential readout of image data, is that it is not reflected in the
manner in which the image is computed.

Typically, in conventional computer graphics animation, only a
single viewing transform is used in generating the image data for
an entire frame.  Each frame represents a point sample in time
which is inconsistent with the way in which it is displayed.  As a
result, as shown in figure  3  and plate 1, the image does not truly
reflect the position of objects (relative to the view point of the
camera) at the time of display of each pixel.

A quick “back of the envelope” calculation can demonstrate the
magnitude of the errors that result if this display system delay is
ignored.  Assuming, for example, a camera rotation of 200
degrees/second (a reasonable value when compared with peak
velocities of 370 degrees/second during typical head motion - see
[12]) we find:

Assume:
1) 200 degrees/sec camera rotation
2) camera generating a 60 degree Field of View (FOV)

image
3) NTSC video

60 fields/sec NTSC video
~600 pixels/FOV horizontal resolution

We obtain:

200
degrees

sec
× 1

60

sec

fields
= 3.3

degrees

field
 camera rotation

Thus in a 60 degree FOV image when using NTSC video:

3.3 degrees × 1

60

FOV

degrees
× 600

pixels

FOV
= 33 pixels error



Thus with camera rotation of approximately 200 degrees/second,
registration errors of more than 30 pixels (for NTSC video) can
occur in one field time.  The term registration is being used here to
describe the correspondence between the displayed image and the
placement of objects in the computer generated world.

Note that even though the above discussion concentrates on
camera rotation, the argument is valid for any relative motion
between the camera and virtual objects.  Thus, even if the
camera's view point is unchanging, objects moving relative to the
camera will exhibit the same registration errors as above.  The
amount of error is dependent upon the velocity of the object
relative to the camera’s view direction.  If object motion is
combined with rotation the resulting errors are correspondingly
worse.

The ideal way to generate an image, therefore, would be to
recalculate for each pixel the position and orientation of the
camera and the position and orientation of the scene’s objects,
based upon the time of display of that pixel.  The resulting color
and intensity generated for the pixel will be consistent with the
pixel’s time of display.  Though objects moving relative to the
camera would appear distorted when the frame is shown statically,
the distorted JITP objects will actually appear undistorted when
viewed on the raster display.  As shown in figure 4  and plate 2,
each pixel in an ideal just-in-time pixels renderer represents a
sample of the virtual world that is consistent with the time of the
pixel’s display.

Computation of both the viewing matrix and object positions for
each pixel is quite expensive.  Acceptable approximations to just -
in-time pixels can be obtained, however, with considerably less
computation.  One option is to use a single transformation per
scan line.  This relies on the changes being small during the short
(approximately 65 µs) time for the line.  Calculations show this to
be a reasonable assumption, allowing on the order of 0.13 pixels
error.

Another approximation is to use only two transformations per
field, one for the first pixel and one for the last pixel.  Object
positions are linearly interpolated between these two.

4.3 JITP applied to latency

A partial test implementation has been constructed that renders
images using the just-in-time pixels paradigm.  This system is
intended to be used in a see-through HMD to help reduce image
generation latency.  In a real-time JITP system, instead of
computing pixel values based upon the predicted position and
velocity of the virtual camera, each pixel is computed based upon
the position and orientation of the user’s head at the time of
display of that pixel.  Generation of a just-in-time pixel in real
time, therefore, requires knowledge of when a pixel is going to be
displayed and where the user is going to be looking at the time.
This implies the continuous and parallel execution of the
following two central functions:

1) Synchronization of image generation and image scanout
2) Determination of the position and orientation of the

user’s head at the time of display of each pixel

By synchronizing image generation and image scanout, the JITP
renderer can make use of the details of how the pixels in an image
are scanned out to determine when a particular pixel is to be
displayed.  By knowing what scanline the pixel is on, for example,
and how fast the scanlines in an image are displayed, the JITP
renderer can easily calculate the time of display of that pixel.

Determination of where the user is looking can be accomplished
through use of a conventional head tracking system (magnetic or
optical for example).  Determination of where the user is looking
at the time of display of a pixel requires the use of a predictive
tracking scheme.  This is due to the presence of delays between
the sampling of the position and orientation of the user’s head and
the corresponding display of a pixel.  Included in the end-to-end
delays is the time to collect tracking data, image generation time
and the delays due to image scanout.

In the current implementation, the calculations for each scanline
are pushed as late as possible.  Ideally data for each scanline is
transferred to the frame buffer just before it is read out by the
raster scan.  This technique, known as beam racing, was first used
in early flight simulators.  By pushing the graphics calculation as
late as possible, beam racing allows image generation delays to be
combined with display system delays.  The result is lower overall
end-to-end delay which simplifies the task of predicting the future
position and orientation of the user’s head.  Prediction also
benefits from the fact that the delayed computation makes it
possible to use the latest available tracking data in the generation
of the predicted user view point.

5 SLATS

5.1 Brief Pixel-Planes 5 description

To understand how Slats works requires some knowledge of
Pixel-Planes 5 [11].  Using Pixel-Planes 5 gave us total control
over the graphics software, which was all developed in-house.
Because our goal was to achieve lower latency by modifying the
rendering pipeline, such low-level control was necessary.

Referring to figure 2 , Pixel-Planes 5 uses parallelism at both the
transformation and rasterization stages of the rendering process.
Primitives are typically generated on a host workstation and sent
via a ring network to a set of graphics processors (GPs), where
they are stored in local display lists.  The graphics processors
traverse these display lists, transforming the primitives from
object coordinates to screen coordinates and generating
appropriate rendering commands.  The graphics processors then
send these commands over the ring to the renderers, which
perform rasterization and shading.  Each of which handles a
128x128 region of the screen.  Finally, the renderers send the
resulting pixel values to a frame buffer, which is synchronized
with a video display for output.

5.2 PPHIGS pipeline

PPHIGS is the standard rendering library for Pixel-Planes 5.  It is
controlled by a software layer called Rendering Control [8].  The
rendering process is broken into three main stages.  In the
transform stage, the GPs transform the primitives.  In the render
stage, the renderers scan convert and shade the primitives.  If there
are more regions on the screen than there are renderers, the first
renderer to finish starts on the next screen region.  Finally, in the
copy stage, the pixel data is copied into the frame buffer.  This is
illustrated in figure 5 .

In this timing diagram and the ones that follow, each line shows
use of an independent hardware resource.  So the GPs, renderers,
and frame buffer can all be used simultaneously.  However one
stage on the GPs must be finished before the next can begin.
Arrows show, for one frame of interest, the dependencies between
the different resources.   All other timings can (and probably will)
change depending on the contents of the scene.
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Figure 8:  Slats timing for a stereo pair.  a, b, and c
are the transform, render, and copy stages
respectively.  Stage b starts after the first batch of
triangles are transformed in a.  The first half of c
must finish before the vertical retrace.

For stereo operation, PPHIGS handles first the left eye and then
the right eye.  However, both are considered part of a single unit.
When the application software says to draw a frame, images for
both eyes are drawn.  This is illustrated in figure 6.

As was mentioned earlier, the timings, other than those explicitly
shown, can vary quite a bit.  The lowest latency possible with
PPHIGS occurs when the transform and render stages are small
and the copy time is the limiting factor.  In this case, the
synchronization between the stages forces three fields of latency
between the time the transformation begins and the time both eyes
are complete and the images are displayed.  This is illustrated in
figure 7.

5.3 Slats pipeline

Slats achieves its guaranteed latency by insisting that all the work
for one field be finished during the field immediately before it.
Since it is built with latency sensitive HMD applications in mind,
it always generates stereo images.  The pipelining in Slats is at a
polygon level.  As soon as a set of polygons are transformed (in
clumps of 30 for ring network efficiency), they are sent to the
renderers.  Each renderer handles four screen regions so the entire
screen for both eyes can be covered by the available renderers.

Since a field is two regions high, the copy stage happens in two
parts.  The copy of the second half of the screen, which only takes
3.9 ms, doesn’t occur until after the field is already being
displayed.  The copying of the first half of the screen must be
done before the vertical retrace since those pixels are immediately
displayed.  This is illustrated in figure 8.

In many ways, Slats falls short of a general graphics library like
PPHIGS.  For the sake of simplicity, it uses only a single GP
instead of the many (up to 50) available to PPHIGS.  This
severely limits the number of triangles that Slats can handle.  The
use of four regions per renderer makes polygon level pipelining
easier, but also limits the shading model to simple Gouraud color
interpolation.

All of the triangles must be transformed and rendered before the
first copy begins, a period of about 12.8 ms.  If there are too many
primitives to make this deadline, Slats fails to generate a correct
image.  In the current implementation, this translates to about 100
triangles (or 12,000 triangles per second).  Even if we optimized
the code—and PPHIGS achieved about a factor of three
performance increase after the triangle code was optimized to fit
in the GP instruction cache—the communication bandwidth out of
one GP and the speed of the renderers limits the maximum
performance to about 250 triangles.  We estimate that using
multiple GPs and more renderers we might be able to push this to
a few thousand, but currently don’t have plans to follow this path.

These limitations are not flaws, Slats excels at what it is built for:
experiments requiring low latency, fixed latency, or both.
Azuma’s work on predictive tracking [1] used Slats for just this
reason.

Because it considers both eyes simultaneously, it can share more
of the work than PPHIGS, which handles them sequentially but
grouped.  In fact, both eyes can be copied at the same time.
Because it only renders the lines of the image visible in each field
— the even lines are rendered while the odd field is visible, and
the odd lines are rendered while the even lines are visible — it has
half the rendering and half the copying.

As a comparison of the performance of both, figure 9  shows the
pixel error for the setup used in our video.  There is 33 ms of
latency for the optical ceiling tracker[2], making a total of 90 ms
for PPHIGS and 50 ms for Slats.  Other trackers may have lower
latency, but this will only increase the importance of image
generation latency since the error is linear with respect to
latency[1].  The error was calculated off-line with captured tracker
data from a typical demo with a naive user under the optical
ceiling tracker.  The pixel error shown is computed by taking a
point in the center of the field of view for each frame and
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Figure 9: Pixels of error between a pixel at the
center of the screen and the location where it
should have been displayed by the time the frame
was visible.  For 90 ms, corresponding to PPHIGS
+ 33 ms tracker latency, and 50 ms, corresponding
to Slats + 33 ms tracker latency.

determining how far from the center it would be when the frame is
displayed.

6 CONCLUSION

We have presented two methods for reducing image generation
latency.  Both, necessarily, at a cost in polygon performance.  As
HMD applications become more prevalent, people will require
minimal latency, much as they do high polygon rendering
performance today.
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Plate 1: Image from an animation of UNC’s Old
Well, moving from left to right, rendered with
conventional methods.  On a scan line display, this
appears slanted.

Plate 2: Image from an animation of UNC’s Old
Well, moving from left to right, rendered with the
just-in-time pixels method.  On a scan line display,
this appears to be straight.


