Finding point-pairs

- Given an a, find a corresponding b on the surface.
- Then one approach would be to search every possible triangle or surface point and then take the closest point.
- The key is to find a more efficient way to do this
Find Closest Point from Dense Cloud

• Basic approach is to divide space into regions. Suppose that we have one point b_k^* that is a possible match for a point a_k. The distance $\Delta^* = ||b_k^* - a_k||$ obviously acts as an upper bound on the distance of the closest point to the surface.

• Given a region R containing many possible points b_j, if we can compute a lower bound Δ_L on the distance from a to any point in R, then we need only consider points inside R if $\Delta_L < \Delta^*$.
Find Closest Point from Dense Cloud

• There are many ways to implement this idea
 – Simply partitioning space into many buckets
 – Octrees, KD trees, covariance trees, etc.
Approaches to closest triangle finding

1. (Simplest) Construct linear list of triangles and search sequentially for closest triangle to each point.

2. (Only slightly harder) Construct bounding spheres around each triangle and use these to reduce the number of careful checks required.

3. (Faster if have lots of points) Construct hierarchical data structure to speed search.

4. (Better but harder) Rotate each level of the tree to align with data.
FindClosestPoint(a,[p,q,r])

Many approaches. One is to solve the system

\[a - p \approx \lambda (q - p) + \mu (r - p) \]

in a least squares sense for \(\lambda \) and \(\mu \). Then compute

\[c = p + \lambda (q - p) + \mu (r - p) \]

If \(\lambda \geq 0, \mu \geq 0, \lambda + \mu \leq 1 \), then \(c \) lies within the triangle and is the closest point. Otherwise, you need to find a point on the border of the triangle.

Hint: For efficiency, work out the least squares problem explicitly. You will have to solve a 2 x 2 linear system for \(\lambda, \mu \).
Finding closest point on triangle

Region	$\lambda<0$	$\mu<0$	$\lambda+\mu>1$	Closest point
A | Yes | Yes | No | p
B | No | Yes | No | $\text{ProjectOnSegment}(c,p,q)$
C | No | Yes | Yes | q
D | No | No | Yes | $\text{ProjectOnSegment}(c,q,r)$
E | Yes | No | Yes | r
F | Yes | No | No | $\text{ProjectOnSegment}(c,r,p)$
G | No | No | No | c
ProjectOnSegment(c,p,q)

\[\lambda = \frac{(c - p) \cdot (q - p)}{(q - p) \cdot (q - p)} \]

\[\lambda^* = \text{Max}(0, \text{Min}(\lambda, 1)) \]

\[c^* = p + \lambda^* (q - p) \]
Bounding Sphere

Suppose you have a point \mathbf{p} and are trying to find the closest triangle $(\mathbf{a}_k, \mathbf{b}_k, \mathbf{c}_k)$ to \mathbf{p}. If you have already found a triangle $(\mathbf{a}_j, \mathbf{b}_j, \mathbf{c}_j)$ with a point \mathbf{r}_j on it, when do you need to check carefully for some triangle k?

Answer: if \mathbf{q}_k is the center of a sphere of radius ρ_k enclosing $(\mathbf{a}_k, \mathbf{b}_k, \mathbf{c}_k)$, then you only need to check carefully if

$$||\mathbf{p} - \mathbf{q}_k|| - \rho_k < ||\mathbf{p} - \mathbf{r}_j||.$$
Bounding Sphere

Assume edge \((\vec{a}, \vec{b})\) is the longest. Then the center \(\vec{q}\) of the sphere will obey

\[
\begin{align*}
(\vec{b} - \vec{q}) \cdot (\vec{b} - \vec{q}) &= (\vec{a} - \vec{q}) \cdot (\vec{a} - \vec{q}) \\
(\vec{c} - \vec{q}) \cdot (\vec{c} - \vec{q}) &\leq (\vec{a} - \vec{q}) \cdot (\vec{a} - \vec{q}) \\
(\vec{b} - \vec{a}) \times (\vec{c} - \vec{a}) \cdot (\vec{q} - \vec{a}) &= 0
\end{align*}
\]

Simple approach: Try \(\vec{q} = (\vec{a} + \vec{b})/2\). If inequality holds, then done. Else solve the system as three equalities to get \(\vec{q}\).

The radius \(\rho = \|\vec{q} - \vec{a}\|\).
Hierarchical cellular decompositions
Hierarchical cellular decompositions
Constructing tree of bounding spheres

class BoundingSphere {
 public:
 Vec3 Center; // Coordinates of center
 double Radius; // radius of sphere
 Thing* Object; // some reference to the thing
 // bounded
};
Constructing octree of bounding spheres

class BoundingBoxTreeNode {
 Vec3 Center; // splitting point
 Vec3 UB; // corners of box
 Vec3 LB;
 int HaveSubtrees;
 int nSpheres;
 double MaxRadius; // maximum radius of sphere in box
 BoundingBoxTreeNode* SubTrees[2][2][2];
 BoundingBoxSphere** Spheres;
 :
 :
 BoundingBoxTreeNode(BoundingSphere** BS, int nS);
 ConstructSubtrees();
 void FindClosestPoint(Vec3 v, double& bound, Vec3& closest);
};
Constructing octree of bounding spheres

BoundingBoxTreeNode(BoundingSphere** BS, int nS)
{
 Spheres = BS; nSpheres = nS;
 Center = Centroid(Spheres, nSpheres);
 MaxRadius = FindMaxRadius(Spheres, nSpheres);
 UB = FindMaxCoordinates(Spheres, nSpheres);
 LB = FindMinCoordinates(Spheres, nSpheres);
 ConstructSubtrees();
};
Constructing octree of bounding spheres

ConstructSubtrees()
{
 if (nSpheres<= minCount || length(UB-LB)<=minDiag)
 {
 HaveSubtrees=0; return; }

 HaveSubtrees = 1;
 int nnn,npn,npp,nnp,pnn,ppn,ppp,pnp;

 // number of spheres in each subtree
 SplitSort(Center, Spheres, nnn,npn,npp,nnp,pnn,ppn,ppp,pnp);
 Subtrees[0][0][0] = BoundingBoxTree(Spheres[0],nnn);
 Subtrees[0][1][0] = BoundingBoxTree(Spheres[nnn],npn);
 Subtrees[0][1][1] = BoundingBoxTree(Spheres[nnn+npn],npp);
 \vdots
 \vdots
}

Constructing octree of bounding spheres

SplitSort(Vec3 SplittingPoint, BoundingSphere** Spheres, int& nnn, int& npn, ... ,int& pnp)
{
 // reorder Spheres(…) into eight buckets according to
 // comparison of coordinates of Sphere(k)->Center
 // with coordinates of splitting point. E.g., first bucket has
 // Sphere(k)->Center.x < SplittingPoint.x
 // Sphere(k)->Center.y < SplittingPoint.y
 // Sphere(k)->Center.z < SplittingPoint.z
 // This can be done “in place” by suitable exchanges.
 // Set nnn = number of spheres with all coordinates less than
 // splitting point, etc.
}
Searching an octree of bounding spheres
Searching an octree of bounding spheres

void BoundingBoxTreeNode::FindClosestPoint
 (Vec3 v, double& bound, Vec3& closest)
{
 double dist = bound + MaxRadius;
 if (v.x > UB.x+dist) return; if (v.y > UB.y+dist) return;
 …. ; if (v.z < LB.z-dist) return;
 if (HaveSubtrees)
 { Subtrees[0][0][0].FindClosestPoint(v,bound,closest);
 :
 Subtrees[1][1][1].FindClosestPoint(v,bound,closest);
 }
 else
 for (int i=0;i<nSpheres;i++)
 UpdateClosest(Spheres[i],v,bound,closest);
};
void UpdateClosest(BoundingSphere* S,
 Vec3 v, double& bound, Vec3& closest)
{
 double dist = v-S->Center;;
 if (dist - S->Radius > bound) return;
 Vec3 cp = ClosestPointTo(*S->Object,v);
 dist = LengthOf(cp-v);
 if (dist<bound) { bound = dist; closest=cp;};
}
Covariance Trees
Covariance Trees
Covariance Trees
Covariance Trees
Covariance Tree Construction

Given surface sample of N points $\{\vec{v}_i\}$

Compute centroid $\vec{p} = \frac{1}{N} \sum_{i=1}^{N} \vec{v}_i$

Compute residual vectors $\vec{u}_i = \vec{v}_i - \vec{p}$
Covariance Tree Construction

Form outer product matrix \(A = \sum_i \vec{u}_i \vec{u}_i^T \)

Compute eigenvalues \(\{ \lambda_1, \lambda_2, \lambda_3 \} \) and eigenvectors \(Q = [\vec{q}_1, \vec{q}_2, \vec{q}_3] \) of \(A \)

Find a rotation \(R \) such that \(R_x \) is the eigenvector corresponding to the largest eigenvalue.

(Depending on algorithm used, \(Q \) will be a rotation matrix, so all you may have to do is rotate \(Q \))
Define a local node coordinate system \(F_{\text{node}} = [R, \vec{p}] \) and sort the surface points according to the sign of the x component of \(\vec{b}_i = R^{-1} \cdot \vec{u}_i \). Compute bounding box
\[
\vec{b}_{\text{min}} \leq R^{-1} \cdot \vec{u}_i \leq \vec{b}_{\text{max}}
\]
Assign these points to "left" and "right" subtree nodes.
Covariance tree search

Given

- node with associated F_{node} and surface sample points \bar{s}_i.
- sample point \bar{a}, previous closest point \bar{c}, $dist = \|\bar{a} - \bar{c}\|

Transform \bar{a} into local coordinate system $\bar{b} = F_{node}^{-1}\bar{a}$

Check to see if the point \bar{b} is outside an enlarged bounding box $\bar{b}^{\text{min}} - dist \leq \bar{b} \leq \bar{b}^{\text{max}} + dist$. If so, then quit.
Otherwise, if no subnodes, do exhaustive search for closest.
Otherwise, search left and right subtrees.
Simple spatial sort

Index based on coordinates

Point list