Reconciling Two Views of Cryptography

(The Computational Soundness of Formal Encryption)

Martin Abadi, Phillip Rogaway

Presented by:
Bushra, Justin, Nydia, Ryon
Outline

- Goal of the Paper
- Formal View of Encryption Schemes
- Computational View of Encryption Schemes
- Bridging the Gap
Formal View

\{ M \}_K
Goals:

- How to convert between the formal view and the computational view.
- Proving equivalence implies indistinguishability.
Expressions

EXP

\(M, N ::= \) expressions

\(K \) key (for \(K \in \text{Keys} \))

\(i \) bit (for \(i \in \text{Bool} \))

\((M, N) \) pair

\(\{M\}_K \) encryption (for \(K \in \text{Keys} \))
(\{(\{(0,K')\}_K\}_K',K)\)
Cyclic Expression

\[(\{K'\}_K, \{K\}_{K'}) \]
Acyclic Expression

Formal View

\((\{K\}_{K'}, \{0\}_K)\)
Equivalence

Two expressions are said to be equivalent if they have the same patterns:

\[M \equiv N \text{ if and only if } \text{pattern}(M) = \text{pattern}(N) \]
Pattern

Equivalent to Exp, but with the inclusion of the □ symbol.

□ - represents a ciphertext that an attacker cannot decrypt.
Formal View

\[(\{\{K_1\}\}_{k_2}^{k_3}, K_3) \equiv (\{0\}_{k_1}^{k_3}, K_3)\]
Equivalent up to Renaming

Two expressions are said to be equivalent up to renaming if there exists a bijection, \(\sigma \), on \textbf{Keys}.

\[M \sim N \text{ if and only if } M \equiv N\sigma \]
Formal View

\[(\{0\}_K, K) \cong (\{0\}_{K'}, K')\]
Recap

Formal View

Expression
- Acyclic
- Cyclic

Patterns
- Equivalent
- Equivalent up to renaming
Computational View

Encryption Scheme: $\Pi (K, \epsilon, D)$

- K: Parameter \times Coins \rightarrow Key
- ϵ: Key \times String \times Coins \rightarrow Ciphertext
- D: Key \times String \rightarrow Plaintext

where Parameter is represented by η
Computational View

Ensemble

A collection of distributions on strings

$$D = \{D_n\}$$
If an adversary cannot tell what set x is from then D and D' are indistinguishable.
Attributes of Secure Encryption Schemes

- Repetition Concealing/ Revealing
- Which-key Concealing/ Revealing
- Message-length Concealing/ Revealing
Repetition Concealing/Revealing

- Given $c = E_k(x)$ and $d = E_k(x)$
- Can you tell whether the plaintext x is the same in both instances?
Computational View

Which Key Concealing/Revealing

- Given $c = E_k(x)$ and $d = E_{k'}(x)$
- Can you tell whether k and k' are the same?
Computational View

Message Length
Concealing/Revealing

- Given $c = E_k(x)$ and $d = E_k(y)$
- Can you tell whether x and y are the same length?
Security Types

Represented as a 3-bit binary number, where concealing = 0 bit and revealing = 1 bit

Example:

- type-0 : 000 Repetition, Which-key and Message-length Concealing
- type-3 : 011 Repetition concealing, Which-Key and Message-length Revealing
Computational View

Type-n Advantage

Oracle

Good Box

Bad Box

$\epsilon_K(m)$

Oracle response

$\epsilon_K(\text{garbage})$

m
Computational View

type-0 Security Advantage

![Diagram showing the computational view of type-0 security advantage](image-url)
type-1 Security Advantage

Computational View

Oracle

$\epsilon_K(m), \epsilon_{K'}(m)$

$\epsilon_K(0^{\|m\|}), \epsilon_K(0^{\|m\|})$

Oracle response

$\epsilon_K(m)$ or $\epsilon_{K'}(m)$

$\epsilon_K(0^{\|m\|})$ or $\epsilon_K(0^{\|m\|})$
Computational View

type-3 Security Advantage

Oracle

\[\epsilon_K(m) \]

\[\epsilon_K(0^{\mid m \mid}) \]

\(m \)

Oracle response

\(\epsilon_K(m) \)

\(\epsilon_K(0^{\mid m \mid}) \)
Computational View

CTR mode is which–key concealing, message length revealing, repetition concealing

- Which-key, repetition
 - Cannot tell psuedorandom function from a random function
- Ciphertext length is same as plaintext
Hiding Message length for CTR?

- Make the plaintext some fixed length
- Then the plaintext is encrypted
Recap

Computational View

Encryption Scheme: $\Pi (K, \epsilon, D)$

Repetition

Which-Key

Concealing

Revealing

Message-length

Advantage
Bridging the Gap

Relating the two views of Cryptography

Step 1. Associate an ensemble to an expression M, given an encryption scheme Π.

Step 2. Proving equivalent expression implies indistinguishable ensembles
Given:
formal expression $M \in \text{EXP}$
encryption scheme $\Pi (K, E, D)$

Then:
$[M]_{\Pi[\eta]}$ • Distribution of strings
$[M]_{\Pi}$ • Ensemble
Formal expression

- **KEY**
 - mapped to bits
 - Each expression in the pair is separated and fed in to the algorithm individually

- **Pair (X,Y)**

- **{M}_K**
 - M is fed back in
 - Mapped to corresponding bits used to represent True or False

- **Bool**
Bridging the Gap

Formal expression: \(\{\text{true}\}_K, K \)

\[
\begin{align*}
\text{KEY} & \quad \rightarrow \\
\{\text{true}\}_K & \\
\rightarrow & \\
\text{Pair} & \quad (\{\text{true}\}_K, K) \\
\rightarrow & \\
\{M\}_K & \\
\rightarrow & \\
\{\text{true}\}_K & \\
\rightarrow & \\
\text{Bool} & \\
\rightarrow & \\
1 & \\
\rightarrow & \\
\text{true} & \\
\rightarrow & \\
(\{\text{true}\}_K, K)&
\end{align*}
\]
“Let M and N be acyclic expressions and let Π be a type-0 secure encryption scheme. Suppose that $M \simeq N$. Then

\[
\begin{bmatrix} M \end{bmatrix}_\Pi \simeq \begin{bmatrix} N \end{bmatrix}_\Pi
\]

Proof to come….stay tuned…..